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ABSTRACT 

It is well known that the Cayley-Hamilton theorem is an interesting and important theorem in linear algebras, which 
was first explicitly stated by A. Cayley and W. R. Hamilton about in 1858, but the first general proof was published in 
1878 by G. Frobenius, and numerous others have appeared since then, for example see [1,2]. From the structure theo- 
rem for finitely generated modules over a principal ideal domain it straightforwardly follows the Cayley-Hamilton 
theorem and the proposition that there exists a vector v in a finite dimensional linear space V such that v and a linear 
transformation of V have the same minimal polynomial. In this note, we provide alternative proofs of these results by 
only utilizing the knowledge of linear algebras. 
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1. Introduction 

Let F  be a field, V  be a vector space over F  with 
dimension , and n   be a linear transformation of . 
It is known that  becomes a 

V
V  F x -module according 

to the following definition: 

 F x V V   

    ,f x v f v . 

For a fixed linear transformation   and a vector 
, the annihilator of  with respective to v V v   is de- 

fined to be 

        0ann v p x F x p v    . 

Similarly, the annihilator of  with respective to V   
is defined to be 

        0,ann V p x F x p v v V      . 

Since  F x

V

 is a principal ideal domain the ideals 
 and  can be generated by the unique 

monic polynomials, denote them by  and  
, respectively. Which are called the order ideals of 

 and  in abstract algebras, respectively. They are 
also called the minimal polynomials of  and V  with 
respective to 

 ann v

 m x

v

 ann V
 vm x

v
  in linear algebras, respectively. It is 

clear that the minimal polynomial of zero vector (or zero 
transformation) is 1. By the structure theorem for finitely 
generated modules over a principal ideal domain [3,4], 
the module  can be decomposed into a direct sum of 
finite cyclic submodules: 

V

     1 2 sV F x F x F x      ,     (1) 

and 1 2, , , s     are vectors in  such that V

       1,i i i iann d x d x d x  ,        (2) 

where 1,2, , 1i s  . Let  x  be the characteristic 
polynomial of  . By (1) and (2) one has 
      s sm x ann d x  

s s

; 

      
1 1

i i
i i

x ann d x 
 

    . 

Furthermore, these results straightforwardly imply the 
following theorem: 

Theorem 1. [3,4] With the notations as above, we have 
1) [Cayley-Hamilton Theorem]  

   m x x  , and so .   0  

2) There exists a vector  such that v V

  vm x m x 

an proposition in 

. 

2. Proofs Based on Linear Algebras  

In this section we give an alternative proof of Theorem 1 
by only utilization of knowledge of linear algebras. To 
demonstrate an interesting proof of some proposition in 
linear algebras and its applications, we present two 
proofs of (2) in Theorem 1 for infinite fields and arbi- 
trary fields, respectively, and then use the related results 
to prove the Cayley-Hamilton theorem. 

The following lemma provide an interesting proof of 
linear algebras that a vector space over 
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an infinite field can not be an union of a finite number of 
its proper subspaces by Vandermonde determinants. 

Lemma 1. Let F  be an infinite field, and V  be a 
vector space over F with dimension n , and iV  be 
nontrivial subspaces f V  for 1,2,i s  . Then ere 
exists infinite many bases of V any element 
of them is not in each iV  for 1,2, , s  . Therefore, if 

1

s
ii

V V


  then V V  for so
et 1, n

 
 o

2

,
 that

th
 such  

i
me i . i

,Proof: L ,    be a F-ba s  e of V . For any 

n

b F  we set 
2 1

1 2 3
n

b b b b         . 

Let distinct elements in 1 2, , , nb b b  F . We have 

   

where is a Vandemonde matrix. So 


1 2 1 2 1 2, , ,

nb b b n nb   , , , , , ,Van b b     

 1 2, , , nVan b b b  

2
, ,

nb1
,b b   of V  because the determinant 

, nb  is nonz o. Let S  be the follow- 
ing e number of vecto  

  is a base
 1 2, ,b b 

 with an infinit
of Van

 set
er

rs:

 S b F  . b

Since  with  is a nontrivial subspace 
of

iV
e 

1,2, ,i s 
fy that  V  on can veri 1iV n  . And so S 

   
1 1

1
s s 

i i
i i

S V S V s n
 

   
 

   . 

Therefore, 


is infinite, and any distinct  

vectors in the set constitute a base of 
1

\
s

i
i

S S V


 
 


   

n  V . 
Proposition 1. Let F  be an infinite field. Let  be 

a 
V

F -vector space with imension n , and  d   be lin- 
ear transformation of V . Then t re exists a vector 
v V  such that  

a 
he

 vm x m x . 
of: It is clear that

2

,

 Pro 2,1, , n   are linearly de- 

pendent over F . So the   2degree deg  m x n .
 m x  of v
nite b

 

, 

where are mutually coprime irreducible poly- 

For 
any v V , the minimal polynom  is a 
monic factor of  m x . So there exis  num er of 
vectors , 1, 2iv i  uch that 

  x m x

 ial v
t fi

, , s s

    
1 2 sv v vm x m m x  

 
ivm x s  

. Set nomials   0V m     . One can verify 
that 

ii vV

1 2 sV V V V   . 

By Lemma 1, there exists  with  such 
th

V

k 1 k s 
at kV V . Which shows that 

  0, form    all
kv  , 

and so  
kvm   


kvm

, Propo

is a zero linear transformation. Hence 
we have   m x .  

In fact old
x

sition 1 h s for arbitrary fields from 

the introduction. To obtain a general proof we first give 
the following lemma. 

Lemma 2. Let F  be a field, be a -dimensional 
lin

V n
ear space over F , and   be a linear transformation 

of V . For any 0 ,
 

V   , there exists V   such 
that 

      ,m x lcm m x m x  ,  

here  and the following  stand for the least 

ngement, the minimal poly-
no

lcm
on 

 gcd
comcomm multiple and greatest mon divisor of two 

polynomials, respectively. 
Proof: By properly arra
mials of ,   with respective to   have the fol-

lowing irredu  factorization respectiv ly, cible e

  1 1

   1 2

1 1
sr r kk k km x p p p p   , r r s

u x u x

 

 
   

1 1

1 2

1 1
sr r ll l l

r r s

v x v x

m x p p p p

   . 

Moreover,  for , and i ik l  1,2, ,i r  i ik l  for 
1, ,r si    .  haveSo, we  

        1 2lcm x u x v x   , ,m x m

    1 2gcd , 1u x v x  . 

One can verify that the minima polynomials of l 
 2u    and  1v    are 

      ,u vm x      
2 11 2x u m x v     , x

respectively. Set    2 1u v      , then 

   1 2 0u v    . 

Which implies that 

     1 2m x u x v x .              (3) 

Conversely, from  2 1u  v       it follows 
that 

        
1 2 0vm m u       . 

Which shows that 

               
2 1 1 2, . .u vm x m x m  x i e u x m x v x   

So,    1u x m x  since     1 2gcd , 1u x v x   Sim -
la

i
rly,    2v x m x . By     1 2gcd , 1u x v x   again, 

we have 

     1 2u x v x m x .            (4) 

Equations (3) and (4) imply that 

 . 

Proposition 2. Let 

      1 2m x u x v x lcm m      x m x 

F  be a field. Let  be aV   
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F -vector space with mension n  and and  is an C n m  square matrix, and X  is an  
 mm n   matrix. So the characteristic polynomial of 

  is  

di    be a lin
nsform of V . Then there exist  vecto v V

ear 
tra s a r   such 
that  

   vm x m x . 

Proof: Let 1 2, , , n    be a F -base of 

,
n

m

 x

easily d

Let 

V

  x . 

 we can

vm

edu

. One 
can verify 

By repeated tilization of ,  find a 

 .

According  Proposition 2, we can ce the 

 Th : 

 
0n m
B X

n mx xI xI B xI C
C 

 
      

 
, 

that 

m x 

 

 

ly u

lcm

 to

and  

 
1 2

lcm m x m    , ,x

Lemma 2

 

eorem

ve

Ca

1
1 1

m m
m m 0xI B x b x b x b

      . 

Hence,    m x x  
Actually, the Cayley-Hamilton theorem can be ob-

tained by only using the minimal polynomial of a vector. 

, and .   0 

ctor v V  such that 

   m x m x    
1 2

, , ,
n

m x m x   Another Proof of Cayley-Hamilton Theorem: Let 
 x  be the characteristic polynomial of  . For any 

v V  let  m xv  be the minimal polynomial of the 
vector  with respective to v  . To prove the Cayley- 
Hamilton theorem, it is enough to show that 

yley-Hamilton theorem. 
Proof of Cayley-Hamilton  x  be 

the characteristic polynomial of  . We show 
   

 
    for anyvm x x v V  . m x x  . By Proposition  there exists v V   2

such that 

0

So, one ca verify that ve

   m x . Let  
m

vm x

n 

This statement can be verified by the same arguments 
as that in above proof.     m

v mm x m x x b    1x 

ctors 

1 1b

 
x b  . 

 1 v  , ,v v , m  
3. Acknowledgements 

are linearly independent over F . W  
basis of V  as follows: 

 , , ,v v  

e ex em to atend th

n m 

B X
C

form

 

 1 , ,m v  
1,

,

,

n m

n m

 



 has 

0

0

1

 




. 

We have 

 

  

1
1

1
1

, ,

, ,
0

m

m

v v

v v

  

  





 

 


 
 
 
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