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ABSTRACT

It is well known that the Cayley-Hamilton theorem is an interesting and important theorem in linear algebras, which
was first explicitly stated by A. Cayley and W. R. Hamilton about in 1858, but the first general proof was published in
1878 by G. Frobenius, and numerous others have appeared since then, for example see [1,2]. From the structure theo-
rem for finitely generated modules over a principal ideal domain it straightforwardly follows the Cayley-Hamilton
theorem and the proposition that there exists a vector v in a finite dimensional linear space V such that v and a linear
transformation of V have the same minimal polynomial. In this note, we provide aternative proofs of these results by

only utilizing the knowledge of linear algebras.
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1. Introduction

Let F be afield, V be avector space over F with
dimension n,and ¢ be alinear transformation of V .
Itisknownthat V becomesa F[x]-module according
to the following definition:

F[X]xV >V

(f(x),v) f(o)v.

For a fixed linear transformation ¢ and a vector
veV ,theannihilator of v with respectiveto ¢ isde
fined to be

ann(v) = { p(x)e F[X]|p(p)v= O} .

Similarly, the annihilator of V with respectiveto ¢
is defined to be

ann(V)z{p(x)e F[X]|p(¢)v= O,VVEV} .

Since F[x] is a principa ideal domain the ideals
ann(v) and ann(V) can be generated by the unique
monic polynomials, denotethemby m,(x) and
m, (X) , respectively. Which are called the order ideals of
v and V in abstract algebras, respectively. They are
also caled the minimal polynomials of v and V with
respective to ¢ in linear algebras, respectively. It is
clear that the minimal polynomial of zero vector (or zero
transformation) is 1. By the structure theorem for finitely
generated modules over a principa ideal domain [3,4],
the module V can be decomposed into a direct sum of
finite cyclic submodules:
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V =F[X]ay+F[X]a,++F[X]a, @)
and a,,a,,---,a, arevectorsin V such that

amn(;) = (d, (x)),d; (X)|d;,1 (%), )
where i=12,--,s-1. Let A (x) be the characteristic

polynomial of ¢ . By (1) and (2) one has

e m (X) = ann(as) = dS(X) ,

+ 8,(9=[Tam(a)=ITd (x)

Furthermore, these results straightforwardly imply the
following theorem:

Theorem 1. [3,4] With the notations as above, we have

1) [Cayley-Hamilton Theorem]

m¢(x)|A(p(x), andso A,(¢)=0.

2) Thereexistsavector veV such that
m, (x) =m, (x).

2. ProofsBased on Linear Algebras

In this section we give an aternative proof of Theorem 1
by only utilization of knowledge of linear algebras. To
demonstrate an interesting proof of some proposition in
linear algebras and its applications, we present two
proofs of (2) in Theorem 1 for infinite fields and arbi-
trary fields, respectively, and then use the related results
to prove the Cayley-Hamilton theorem.

The following lemma provide an interesting proof of
an proposition in linear algebras that a vector space over
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an infinite field can not be an union of a finite number of
its proper subspaces by Vandermonde determinants.

Lemma 1. Let F be an infinite field, and V be a
vector space over F with dimension n, and V, be
nontrivial subspaces of V for i=12,---,s. Then there
exists infinite many bases of V such that any element
of themisnotineach V, for i=12,--,s. Therefore, if
V=JV then V=V, forsomei.

Proof: Let ¢,,a,,---,c, beaF-baseof V. For any
beF weset

B, = a, +ba, +b’ay +---+b"a,, .
Let b,b,,---,b distinct elementsin F . We have
(ﬂbl,ﬂbz,-..,ﬂbn):(al,az,..-,an)Van(bl,bZ,...’bn)

where Van(b,,b,,---,b,) is a Vandemonde matrix. So
By Bo,r s By, isabaseof V  because the determinant
of Van(b,b,,--,b,) isnonzero. Let S be the follow-

ing set with an infinite number of vectors:
S={B,beF}.

Since V, with i=12,--,s is a nontrivial subspace
of V onecan verify that [SNV;|<n-1. And so

80(0\4] U(snv)

i=1

<s(n-1).

Therefore, S\ SO(UVJ isinfinite, and any distinct
i=1
n vectorsin the set constitute abase of V .

Proposition 1. Let F beaninfinitefield. Let V be
a F -vector space with dimension n, and ¢ bealin-
ear transformation of V . Then there exists a vector
veV suchthat m,(x)=m,(x). ,

Proof: It is clear that 1¢p,¢%,---,¢" are linearly de-
pendent over F. So the degree deg(m, (x))<n’. For
any veV, the minimal polynomial m,(x) of v isa
monic factor of m, (x). So there exist finite number of
vectors V,,i =1,2,---,s such that

m, (x) =m, (x)m, (x)---m, (),

where m, (x)’ s are mutually coprime irreducible poly-
nomials. Set V, :{a eV|m,| (p)a =0} . One can verify
that

V =V,UV,U--UV,.

By Lemma 1, there exists k with 1<k<s such
that V =V, . Which shows that

m, (p)a=0, foralaeV,
and so m, (@) is a zero linear transformation. Hence

wehave m, (x)=m,(x).
In fact, Proposition 1 holds for arbitrary fields from
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the introduction. To obtain a general proof we first give
the following lemma.

Lemma?2. Let F beafield, V bea n-dimensiona
linear space over F, and ¢ be alinear transformation
of V. Forany 0« f,yeV, there exists ¢ eV such
that

m, () =tem(m, (x),m, (x)).

here lcm and the following ged stand for the least
common multiple and greatest common divisor of two
polynomials, respectively.

Proof: By properly arrangement, the minimal poly-
nomials of S,y with respective to ¢ have the fol-
lowing irreducible factorization respectively,

k; k, K, k.
n’]ﬂ(x):pll'“prr prrll"'pss'
- ——

u(x) uz(x)
m, ()= pi-pr pit--ps
| S N ——)

vy (x) Vo(x)

Moreover, k =1, for i=12,-.-,r, and k <I, for
i=r+1---,s.So, wehave

m{m, (x):m, ()t (), (x).
ged(u, (X),v, (X)) =1.

One can verify that the minima polynomials of
U (@) and v(p)y are

My s (X) =W (X), M), (X)=V,(X),
respectively. Set a =u,(¢)B+v,(B)y . then
W (@), (p)a=0.
Which implies that
ma(x)|u1(x)v2(x). ©)

Conversely, from u,(¢)f=a-v,(p)y it follows
that

m, (9)M,,), () (U (9)B)=0.
Which shows that
M, s (9], ()M, (¥), 2 1 (], (X)v (x)

So, u,(x)|m, (x) sinceged(u,(x),v,(x))=1 Simi-
:Aa;\(rel)r/]év\éz(x)|ma(x). By gcd(u(x).v,(x))=1 again,

s (X) ¥, (x)|m, (x). C)
Equations (3) and (4) imply that
m, (%) =, (x)v; (x) =lem(m, (x)m ().

Proposition 2. Let F beafield. Let V bea
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F -vector space with dimension n and ¢ be alinear
transform of V . Then there exists avector veV such
that

m, (x)=m, (x).

Proof: Let o, ,, -, be a F-base of V. One
can verify that

m, (x) = Icm(mm1 (x),m,, (x),--,m,_ (x)) .

By repeatedly utilization of Lemma 2, we can find a
vector veV suchthat

m, () =lem(m, (x).m, (x),--.m, (x))=m,(x).

According to Proposition 2, we can easily deduce the
Cayley-Hamilton theorem.
Proof of Cayley-Hamilton Theorem: Let A, (x) be
the characteristic polynomial of ¢ . We show
m¢(x)|A¢, (x) . By Proposition 2 there exists veV
such that m,(x)=m,(x). Let
m, (X)=m,(x)=x"+b X" +---+bx+b,.

So, one can verify that vectors v,p(V),--,@™ (V)
are linearly independent over F . We extend them to a
basisof V asfollows:

V,go(v)'...’wmil(v),al'...’an_m_

We have

(Verres 0™ (V)11

:(V,...,(pm-l(v),al,...,anm)(s é]

wherethe m square matrix B hastheform
00 - 0 -h
10 -0 -b
B=|0 1 .- 0 -h,

S

o
|

00
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and C isan n—m sguare matrix,and X isan
mx(n—m) matrix. So the characteristic polynomial of

/TS
B X
X, -
0 C

A, (x)= =[x, -B||x,_,—C],
Xl =B = X" +b, X"+ +bx+hy.

and

Hence, mq,(x)|A¢(x),and A, (p)=0.

Actudly, the Cayley-Hamilton theorem can be ob-
tained by only using the minimal polynomial of a vector.

Another Proof of Cayley-Hamilton Theorem: Let
A¢(x) be the characteristic polynomia of ¢ . For any
veV let m(x) be the minimal polynomia of the
vector v with respective to ¢ . To prove the Cayley-
Hamilton theorem, it is enough to show that

m,(x)|A(p(x) foranyveV.

This statement can be verified by the same arguments
as that in above proof.
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