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ABSTRACT 

A block representation of the BLU factorization for block tridiagonal matrices is presented. Some properties on the fac-
tors obtained in the course of the factorization are studied. Simpler expressions for errors incurred at the process of the 
factorization for block tridiagonal matrices are considered. 
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1. Introduction 

Tridiagonal matrices are connected with different areas of 
science and engineering, including telecommunication 
system analysis [1] and finite difference methods for 
solving partial differential equations [2-4].  

The backward error analysis is one of the most power-
ful tools for studying the accuracy and stability of nu-
merical algorithms. A backward analysis for the LU fac-
torization and for the solution of the associated triangular 
linear systems is presented by Amodio and Mazzia [5]. 
BLU factorization appears to have first been proposed for 
block tridiagonal matrices, which frequently arise in the 
discretization of partial differential equations. References 
relevant to this application include Isaacson and Keller [6], 
Bank and Rose [7], Mattheij [8], Concus, Golub and 
Meurant [9], Varah [10], Bank and Rose [11], and Ya-
lamov and Plavlov [12]. For a block dense matrix, Dem-
mel and Higham [13] presented error analysis of BLU 
factorization, and Demmel, Higham and Shreiber [14] 
also extended earlier analysis.  

This paper is organized as follows. We begin, in Sec-
tion 2 by showing the representation of BLU factorization 
for block tridiagonal matrices. In Section 3 some proper-
ties on the factors associated with the factorization are 
presented. Finally, by the use of BLAS3 based on fast 
matrix multiplication techniques, an error analysis of the 
factorization is given in Section 4.  

Throughout, we use the “standard model” of floating- 
point arithmetic in which the evaluation of an expression 
in floating-point arithmetic is denoted by  fl  , with  

    1 , , , , ,fl a b a b u         /  

(see Higham [15] for details). Here is the unit round-

ing-off associated with the particular machine being used. 
Unless otherwise stated, in this section an unsubscripted 
norm denotes 

u

,max i j ijA a . 

2. Representation of BLU Factorization for  
Block Tridiagonal Matrices 

Consider a nonsingular block tridiagonal matrix 
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The second step of the factorization is applied to  
in order to obtain a matrix  with a sub-block , 
then 

1D

2S2D

1 2 2 2 .D L D U  

Applying the method recursively, it follows that 

1 .i i iD L DU  i  

After 1s   steps the block 1sS   is s sk k  and the 
factorization ends, we obtain 

1 1 1 1 1s s sA L L D U U LU     , 

where  and 
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ess of the representation obtained, we get the results as 
follows: 

1) Taking the second step for example, if  

1
1

2 2 1A B A C
D

 is nonsingular then we can factor 1 and 

1  in a similar manner, and this process can be contin-
ued recursively to obtain the complete block LU factori-
zation; 

S

2) There exists obvious difference between partitioned 
LU factorization (see [15] for further details), GE and 
block LU factorization in this paper. 

3. Some Properties on the Factors of BLU  
Factorization 

The usual property on Schur complements under BLU 
factorization for block diagonal dominance by rows is 
similar to that of point diagonal dominance, i.e., Schur 
complements under BLU factorization for block diagonal 
dominance by rows inherit the key property on original 
matrices. For the factors ,  and U , we have the 
following theorem. 

iD iU

Theorem 3.1. Let A  in (1) be nonsingular and block 
diagonally dominant by rows (columns). Then the fac-
tors , andU  also preserve the similar property. i i

Proof. By the process of the factorization, it follows 
that 

D U

 1diag , , ,i iD I I  iS . 

Since i  is block diagonally dominant, by the defini-
tion of block diagonal dominance, i  preserves the 
same property as the matrix i . The proof for i  and 

 is as follows. The definition of block diagonal domi-
nance, we have  
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Thus the matrices 1  and 2U  are also block diago-
nally dominant. The result follows by induction, that is, 

i  also preserves the same property as the matrix . For 
the matrix U, we have 
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By the above proof, it follows that the matrix  is 
also block diagonally dominant. □ 

U

The problem is whether the matrices i  for all L
1 1i s  

S
 and  can inherit the same property as the 

matrix i . The result is negative. Take the following 
block tridiagonal matrix and 
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where 0.005   and iA , i and  are B iC 2 2  ma-
trices. Since the following inequalities 
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then the matrix A  is block diagonally dominant by rows. 
Thus the matrix  is also block diagonally dominant by 
rows. However, 
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thus 1  and  are not block diagonally dominant by 
rows. □ 

L L

Only if the matrix A  in (1) is block diagonally domi-
nant by columns, the matrices i  for all 1 1L i s    
and  can preserve the key property of . The reason is 
as follows. 
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Therefore the matrices 1  and 2  are also block di-
agonally dominant by columns. Similarly, i  for all 

L L
L

1 3s i  

iS

 block diagonally dominant by columns by 
induction. Then  can also preserve the key property of 

. 
L

4. Error Analysis 

The use of BLAS3 based on fast matrix multiplication 
techniques affects the stability only insofar as it increases 
the constant terms in the normwise backward error 
bounds [13]. We make assumption about the underlying 
level-3 BLAS (matrix-matrix operations). 

If  and m nA  n pB 
C AB

then the computed ap-
proximation  to  satisfies Ĉ

   2
1

ˆ , , ,C AB C C c m n p A B O u      


,  (2) 

where  denotes a constant depending on  
and . For conventional BLAS3 implementations, (2) 
holds with  [13,15].  

 , ,c m n p

 , ,c m n

,m n
p

 2p n
The computed solution K̂ to the triangular systems 

JK Q , with  and , satisfies m mJ R  m pQ R 

   2
2

ˆ ˆ, ,JK Q Q Q c m p u J K O u      , 

where  denotes a constant depending on m  
and . In this section, we present the backward error 
analysis for the block LU factorization by applying 
BLAS3 based on fast matrix multiplication techniques. 

2 ,c m p
p

Theorem 4.1. Let  and  be the computed BLU 
factors of 
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Proof. Applying the standard analysis of errors, we can 
obtain the above result. Thus we omit it. □  
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j
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and U 1 satisfies 1 i s   . On the other hand, 
based on the structure i , the error bounds for L iU  
and U  is different from those of Theorem 4.1 and 
we can also obtain the bound for iD .  

Since the factors i  arising in the factorization in this 
paper are triangular matrices, from (2) we have 
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Compared to the proof of standard analysis of errors, 
there is a great different in form and the simpler proof of 
the latter embodies whose superiority. For the former, the 
error bound does not include ˆ

iU  , which makes the 
computation easier.  

Applying the result of Theorem 4.1, we have the fol-
lowing theorem. 
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