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ABSTRACT 

With a view to surmounting the singularity problem on the one hand, as well as the moving perihelion problem of the 
planets on the other, as two acutely vexed questions within Newton’s gravity concept, the goal of this paper is a modifi- 
cation of Newton’s gravity concept itself. 
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1. Introduction 

It would be difficult to exaggerate the influence of New- 
ton’s theory of gravitation on the subsequent develop- 
ment of physics. As well as explaining Kepler’s laws of 
planetary motion, Newton’s theory was central to the suc- 
cessful mathematization of physics using the newly-in- 
vented calculus and it served as a paradigm for the later 
theories of electrostatics and magnetostatics. However, 
new insights into Milky Way satellite galaxies raise awk- 
ward questions for cosmologists: Do we have to modify 
Newton’s theory of gravitation as it fails to explain so 
many observations? In other words, although Newton’s 
theory does, in fact, describe the everyday effects of gra- 
vity on Earth, things we can see and measure, it is con- 
ceivable that we have completely failed to comprehend 
the actual physics underlying the Newton’s force of grav- 
ity. In addition, Newton’s theory does not fully explain 
the precession of the perihelion of the orbits of the Plan-
ets, especially of planet Mercury. Namely, it has been 
experimentally stated that the perihelion of Mercury’s or- 
bits moves into the plane of its planetary motion around 
the Sun. In other words, all planetary motions of Sun’s 
planetary system depart from elliptical orbits obtained 
from Newton’s gravity theory, [1]. By the strict Schwarz- 
shild-Droste’s solution to the static gravitational field 
with spherical symmetry, in the general Einstein’s rela- 
tivity theory, the perihelion problem has been approxi- 
mately solved, [1]. On the other hand, Einstein’s theory 
has some difficulties hard to be overcome such as the 
problem of singularity, that occurs in Newton’s theory too 
(all relevant physical variables, such as velocity, force, 
kinetic and potential energy, don’t exist at point of sin- 

gularity). Accordingly, in order to solve simultaneously 
these two acutely vexed questions within Newton’s grav- 
ity theory, we present, in this research paper, an ap- 
proximative modification of Newton’s gravity concept 
itself. The outline of this article is as follows: In the Pre- 
liminaries, the space-time continuum (the integral space), 
as an ambient space, is completely defined. In Section 1 
we establish a causal connection between the expression 
for the kinetic energy of a material point and the Min- 
kowski metric in the four-dimensional space-time con- 
tinuum. In addition, in two separate subsections of this 
section we derive Newton’s equations of motion and the 
relativistic Hamilton-Jacobi equation for a free particle. 
Since the dynamic (Newton’s) equations of motion are 
formally derived from geodesic equations in Section 2, 
this section together with Appendix at the end of the pa- 
per provide a possibility of further work on the modifica- 
tion of Newton’s gravity theory in Section 3. In this last 
section we show that a comprehensive analysis of parti- 
cle motion under the modified Newton’s gravity force 
leads to the perihelion motions of a Planet’s elliptical 
orbit. 

2. Preliminaries 

By a material point , introduced for the purpose of an 
useful idealization, one means a geometrical point, which 
is spatially no dimensional on the one hand and exactly 
fixed mass on the other. Closely related to the notion of a 
geometrical point is the set of values 



 
1

n
a

 
 of some  

arbitrary  variables    denoting the contra- n
1

n
x



variant co-ordinates of the real -dimensional configu- n
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rative space. The geometrical point, defined by a set of 
zero values , is the zero co-ordinate point. If   

1
0

n
a

 


t

one of  arbitrary variables    is the time vari- n
1

n
x

 

able , then the space aforementioned becomes the 
space-time continuum (shortly called the integral space), 
[2]. As it was noted in [3] the value of  is called mo- 
ment or instant. 

t

t

The set of all geometrical points of the spatial sub- 
space of the integral space, to which the mass  can be 
joined in some strictly monotonous sequence of permit-
ted instants of the time , makes an odograph usually 
referring to the a trajectory (motion path) of . The 
time variable  is taken for a unique independent vari-  

m


t

able, so that all remaining spatial variables   1

1

ni

i
x




 are  

functional variables. Across all the future text Greek in-
dices take values , and Latin ones 1, 2, , n 1, 2, , 1n  . 
In the space-time continuum the aforementioned trajec-
tory of  blossoms into an integral curve. The vectors  

 x t   i and x tr   defined with respect to the  

origin are position vectors of  in the space-time con- 
tinuum and in the spatial subspace of the integral space, 
respectively. The concept of a vector in vector hy- 
per-dimensional spaces  should be conditionally 
comprehended in the sense of its geometrical presenta- 
tion in a form of segments. Hence it bears a name linear 
tensor, [4]. Covariant vectors 



3n 

 x
   e , where   

denotes x  , form a covariant vector basis   1 

n


e   

of the integral space. The vectors e , such that at any 
point of the space  

  e e , where the second order 
system 

  (Kronecker’s delta-symbol, [5]) is the  

identity  matrix, form a dual basis    of  n n
=1

n


e

  =1

n

 
e . The differential d  of the position vector    

of  is defined by d d dx x 
  e e , where the so 

called Einstein’s convention is applied to a summation 
with respect to the repetitive indexes (uppers and lowers), 
herein as well as in the further text of the paper. 

3. The Action Metric in the Integral Space 

Since the integral space is a metric affine space, whose 
linearly independent basis (fundamental) co-ordinate 
vectors reduced to the origin form an -hedral basis, it 
follows that if 

n
ds  is a line element of the metric affine 

space of the spatial continuum, then the expression for 
the kinetic energy   of  can be stated in more ap- 
propriate form:  



   22
d d d dt r r s

m
    2

,           (1) 

considering the fact that the basic mechanical (kinemat- 

ics and dynamics) parameters of  are its velocity 
 denotes d dt tv d r d t , quantity of motion mK v  

and kinetic energy   22  2m mv  v v . A term of 
, where  is nominally equal to the light veloc-

ity in vacuum, can be added to both sides of the previous 
equation, as follows  

 22 dc t c

       2 2 22 22
d d d d

2
.s c t t c t

m
        (2) 

For 2 2k mc  let  be such that  k   . Then, 
(2) becomes  

     2 22 2
d d d

2
c t s t

m
   .             (3) 

This means that if  2
2tm d  , where  

d d d     is a line element of the metric affine 
space of the space-time continuum, then the four-dimen- 
sional integral space has the Minkowski metric, [1,4]. So, 
in this case the Minkowski metric (3) represents the ki-
netic energy  of  in the integral space. Hence, 
the Minkowski metric 

 
     2 22 d d dc t s

2   is the 
kinetic metric of the integral space, [6]. 

If the Pfaff form d d  F r  is absolute differential, 
that means that there exists a scalar valued function 
 r  such that grad  F r , then  d 0    

and  

,                      (4) 

where k   , and   

.

 is the total mechani- 
cal energy of . 

Now, we can start with the action  in the Lagrange 
sense along a motion path of  in the integral space [4, 
6], 




2

1
2 d

t

t
t                   (5) 

Since d 2t m d  it follows from (4) and (5) 
that 

 

 

 

 2 2

1 1
2 d 2 d

t t

t t
m m

 

 
.         (6) 

Let us introduce an action line element , tho- 
roughly explained in [6], in such a way that 

dw

d dk w .              (7) 

Accordingly, the action metric is as follows 

   

    

2

2 22

d d d e d

2
d d ,

k w ka x x x x

t
m

d  
 



  

  







 



    (8) 

where 

  a k       a a a e   

and e   e e  are the metric tensors of  and  2
dw
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 2
d , respectively. 

3.1. Newton’s Equations of Motion 

By the well-known Maupertius-Lagrange’s principle [4], 
the path motion of  is just the path along which the 
action is stationary, more precisely along which the fol- 
lowing two mutually equivalent conditions 



 
 

 
 2 2

1 1

2

1

2

2

2
2

2

2 d 1 d

0 and 1 d 0,

t t

t t

t

t

v
m mc

c

v
mc t

c

 

 
     

 
    

 

 



 

 (9) 

where  is the variational operator, are satisfied. By (7), 
the previous conditions are reduced to  



 
 2

1
d 0

w t

w t
mc w  .               (10) 

The second condition in (9) leads to the Euler La- 
grange equations 

0,i
t

t id x
d                   (11) 

where     and  

 
   

2 2 2

2 2

2 1

1 ,

mc v c

k v c k

   

       
  

 
 

which yield Newton’s equations of motion 

2 .i
tt imd x                   (12) 

3.2. The Relativistic Hamilton-Jacobi Equation 
for a Free Particle 

Analyze (5) again, but now let  be a function of ,   t

that means that . As  
1

2 d
t

t
t t  

2t td me d x d ,t x
 

              (13) 

we introduce the functional H , nominally equal to , 
such that 



and 2 ,H H
t tme d x d

            (14) 

as well as the functional H  satisfying the condition  

  ,H Hk t                 (15) 

which together with (15) yields  

,H
td                     (16) 

since . Hence, 2 k      
2mc 
  is Lagrangian 

of . Further, since  for  H
t

1x ct , see 
(14), it follows from (15) that H

t    and  

0.H
t                    (17) 

The previous equation is the Hamilton-Jacobi one, so 
that H  is the principal Hamilton’s functional of . 
Clearly, the Hamiltonian  of  is equal to 


   , 

more precisely to the integral of motion, considering the 
fact that the kinetic energy   of  is a homogenous 
square function of 


td x . Now, by (14) and (15), we 

have H j
ijd x

H

i me  
kl H

t

.m

 , so that 
2 2i

k l ij t te m e d x d x j           (18) 

This together with (17) leads to the second form of the 
Hamilton-Jacobi equation  

1
.

2
H kl H H

t k le
m

                (19) 

In addition, 

1 1

2 2
2

,
2

H H

H H
t t

k k
a x

c c

mk
a m c a d x d


  

  
  

        
 

   

 
 

 


x

x




  (20) 

which together with (8) yields 
2 2

2 2

0

and 0,

H H

H H

a m c

AA
a m

c c


 

 
 

   

  
c       

  

 

 
 (21) 

where  ,0,0,0A k    . These two equations are ob- 
viously analogous to the relativistic Hamilton-Jacobi 
equation for a free particle, see [7,8]. 

4. The Binet Differential Equation 

As is well-known from the tensorial analysis, see [6], all 
curves of the integral space, for which the condition (10) 
is satisfied, are geodesics, and the absolute Bianchi 
(covariant) derivative w  of the unit tangent vector 

w

d u
d x u a  along geodesics is equal to zero (the vector 

projection of w  onto the tangent hyper-plane of the 
integral space is equal to zero). Thus, the geodesic equa-
tions are as follows 

d u

 
2

2 ˆ 0,

w w w

ww w w

ww w w

d d d x

d x d x d

d x d x d x

  


  


   


  


   

   

u a a a

a a a a         (22) 

where  denotes 2
wwd  22d dw , and 

 ˆ 2a a a a a a  
          are the 

second kind Christoffel symbols with respect to the ac-
tion metric space . Let . Since 

        

 2
dw grad F 

 e ka    , see (8), it follows that 

   

ˆ

1
,

2
e e

 
 

  
      

  

     
   


  (23) 

Copyright © 2012 SciRes.                                                                                  AM 



B. SARIĆ 1936 

where   2e e e e 
              are the 

second kind Christoffel symbols with respect to the 
Euclidean metric space  2

d de x xd 
 

 const.  

. A new 
form of the geodesic equations (22), for a constrained 
material point , is as follows F 0

 

2

2

1
,

2

ww w w

w w

d x d x d x

k
d x d x e

   


  
 

 

    
  

 
 

  (24) 

which yields  

 2 ,tt t tm d x d x d x e F     
            (25) 

since 

 22 2
ww t t w tt ttd x d w d x d td w d x2    ,  

 td w c k   and  2
tt w td wd t d x    . 

So, (25) represents the Euler-Lagrange differential 
equations of the extremal curve in the explicit form, and 
at the same time Newton’s second law of motion under 
the action of a potential force k

l
klF e    in the con- 

travariant form:  

 2 .k k i j kl k
tt ij t t lm d x d x d x e F         (26) 

Accordingly, one may conclude that the dynamic 
(Newton’s) Equations (26) of motion are formally de- 
rived from the geometric Equations (22). 

In the case of the free motion of  , when 
, both the kinetic and action metric form of 

the integral space are pseudo-euclidean, while integral 
curves are straight-lines (see Appendix), as it was thor- 
oughly explained in the monograph by [6]. On the other 
hand, the well-known Binet differential equation for cen- 
tral force motion of  

const.



2
12

1 1 1

2 r

d
r r k 
   d            (27) 

is obtained by differentiating (58) (see Appendix). 

5. Modified Newton’s Gravity Concept 

For the conservative Newton’s gravity force  
 the expression  is as follows gradN  F  
1 2k  r    , where 2M c   is the 

gravitational radius, so that (27) is reduced to  

2
2

1 1
,d

r r



               (28) 

where S c   and . 2 consttS r d  
0rSince, in the limit as  , Newton’s gravitational 

potential  r1 2k    tends to infinity, it is logical 
to assume that  is the first-order MacLaurin series 
approximation of the exponential function 


2 rke  , so 

that 2

e

r
N ke   and 

   
2

2 2
d rk w ke




 

   
 
 d .        (29) 

Accordingly, the modified Binet differential equation 
for the modified central Newton’s gravity force  

2

3

2
grad ,

e e

r
N N

k
e

r

 
   F r          (30) 

is as follows  
2

2
2

1 1
.rd

r r
e








                  (31) 

5.1. A motion Under the Action of  Ne
F

Start with Newton’s second law of motion  
2

2
3

2
.r

tt

k
md e

r

 
 r r              (32) 

Multiply (32) on the right by the sector velocity vector 
 S r v  as follows  

2
2

3

2
.r

tt

k
md e

r

 
   r S r S          (33) 

Since td S 0  it follows from (33) that 

 
2

2

02

d d and

2
d d

e

r

r
N

k
Me

r M

k
e r

r














 

  

r
v S L

r F

d

,r

       (34) 

where the vector 
2

0
rMe





  L v S r  satisfying the  

relation 0 L S  is no longer an element of Milan- 
kovic’s constant vector elements, more precisely is no 
longer Laplace’s integration vector constant, see [9]. If 
we now multiply L  by , we get  r

 
2

.rMe r





    L r v S r          (35) 

Since   2S  v S r , it follows from (35) that  
2

2

1
,

cosr

S
r

M L
e

M










           (36) 

where   is an angle between  and r L . This equa-
tion describes the motion of  under the action of the 
modified Newton’s gravity force 

e


NF . Conditionally 

speaking, there is no formal difference between (36) and 
its analog in the ordinary Newton’s gravity theory. The 
key difference lies in the fact that L  is no longer con- 
stant vector. 

For L  L  let 0 LL L  and 0d dL k , where 
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k  is the unit vector orthogonal to 0L . Then, from (34) 
we get  

0d d ,
eN

kL
r

M
  L k F k               (37) 

which together with (36) yields 

 
2

1 1
d sin d ,

re

r r r r



 
 

         
 

 
2        (38) 

where 2 2r S M     and  

  2 21 cr re r r L M e r  os    . 

In addition, the dot product 2L L L  leads to 
22 2 22

.r
L r r rv

e
M r r S




                       

  
     (39) 

Thus, 
2 22 2 4

22

2

1
.

r r r
r

L e e e v
e

M r r r Sr

  




   
              
    

   
 

  (40) 

If   is the angle between  and , it follows from 
(36) and (40) that  

r v

22 4

2
2 2

1
.tan

tan

r re e

r r r

 

 1



 
   
 
 


          (41) 

Hence, 

 2 2 cos1
1 and

tan tan sin sin
r r

r r
e e

r r

 

.
 

  
  

   
  

 (42) 

Note that π 2  , whenever  π 0,1,2,k k    . 
If we now multiply (38) by tan  we get  

2

21 1
tan d 2 d ,sin

re

r r r r



  
 

         
 

 
     (43) 

which together with (41) and (42) yields 

 

2
2d 2 tan dsin

sin
2 cos d ,

cos

rr r
e

r r r

r

r r

  

  


    
 
     
 


 




        (44) 

whenever 0 π 2  . If  2

π 2
π 2 rre r


 


   , 

then  
4

π

π2

2

2 tanr
rr d e

r












 


Since 2

π 2
, see (38), it 

follows from (36) that 
π 2

tanrL M e 


 




π 2

π 2

4 2

π 2

1 1
,

2 2 tan1 1

r re L e
d r

r M
r r





 





  

 

 
 

 (46) 

which together with (45) finally yields 

π 2
π 2

π 2

2

1
2 2

2 21

re
d

r r
r









 

 






   


.   (47) 

This result we can also get explicitly from (46). 
Namely, if   is the polar angle, then     . 
Therefore, it follows from (46) that  

 
π 2

π 2

1 1
1 .

2 tan1
d r d

r
r





   



 


1
      (48) 

Since 1 tand r r   we have 

π 2
π 2 π 2

1
1 2

2 2

r
d

r r
 

 
 

 

   
 

,     (49) 

that is just the same as (47). Hence, 

 
π 2π 2

π 2

π 2π 2

1
1 2 and

2

1 2 1
2 2

2

d d d
r

r

r r r






     


 







  



   


.

 (50) 

So, as  
π 2

21r a e


 , where  and e  are the  a

semimajor axis and the eccentricity of the orbit, the fol- 
lowing angle value 

 2

2π

1a e

  


               (51) 

is a very good approximation for the perihelion regres- 
sion   per one revolution  of the Planets.  2π  

5.2. The Modified Perturbing Force 

If, in addition to the modified Newton’s gravity force 

eNF , we include the modified perturbing force [10] 
ˆ2

ˆ
3

ˆ ˆ2ˆ ˆ ˆ,
ˆ ˆ

r
F k

e
r r

 
 F r r  

where  and r̂ 2ˆ pM c   are the radial vector be- 
tween the Planet and the perturbing planet (whose orbit 
is assumed to be circular and coplanar with Mercury’s 
orbit) and the gravitational radius for the perturbing 

.           (45) 
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planet, respectively, then 

 0

ˆ
ˆ ˆcos sin ,

2

k S
F F

M m
 

 


  
F S

t r  

where   is the angle between 
eNF

0r
 and , and  is 

the unit vector perpendicular to . Thus, the second 
equation of (35) becomes 

F̂ t

 

ˆ ˆd d

ˆ ˆd cos sin d
,

2

eN r

k r
r

M

F Fr

 

   


 
  
 

 


L F F

r

 

where 0
ˆ ˆ cosr F F r  and 

ˆ ˆ222 1
ˆˆ

0

ˆˆ 1 cos
ˆ

r

r rr
r

Me e
r

 
 



 
  

 
          

.


L v S r  

This vector is the modified Laplace’s integration 
vector (or more precisely, the modified Laplace-Runge- 
Lenz vector). Their original versions come from the or- 
dinary Newton’s gravity theory. If we denote  

  0
ˆ ˆcos sin 2r rr d F F d      r  

by , then we have ˆ
rF

 ˆ ˆ ˆd
eN r r

k r
r

M 
 

    
 

L F F F d .  

6. Conclusion 

The mathematical model of a material point motion in 
the three-dimensional spatial subspace of the four-di- 
mensional space-time continuum and in the field of the 
action of a conservative active force  is analogous to 
Newton’s mathematical model of the classical mechanics. 
In addition, the metric 

F

 2
d  of the integral space, 

which represents the kinetic energy of a material point 
from the viewpoint of that space, is the Minkowski metric 
from Einstein’s relativity theory. Accordingly, it can be 
said that in the paper a new connection has been estab-
lished, in contrast to an approximative one, between the 
classical Newton’s mathematical model and the relativis-
tic Einstein’s mathematical model. 

On the other hand the approximately modified New-
ton’s gravity concept is not, from any point of view, in 
collision with old Newton’s one. At the same time it 
solves the acutely vexed questions within old Newton’s 
gravity concept (the singularity and perihelion problems). 
Furthermore, analyzing the analytical expression for the 
modified Newton’s gravity force 

eNF , we can separate 
the four indicative domains of its field of the action (see 
Figure 1). The first one is a domain of the weak action 
on finitely small distances. The second one is a domain 

 

r

FN

0 γM/c2
 

Figure 1. Modified Newton’s gravity force. 
 
of the strong action in a neighborhood of the gravita- 
tional radius 

 2 20 and 0r r rr rM c F F        . The third  

one is a domain of the action on finitely large distances 
relative to the gravitational radius   and with the rela- 
tively small velocities relative to the light velocity, and 
the fourth on finitely large distances relative to the gra- 
vitational radius   and with velocities that are compa- 
rable to the light velocity. Previously separated domains 
of the field of the action of the modified Newton’s 
gravity force 

eNF  it would be desirable to compare to 
the fields of the action of the four so far non-unified 
fundamental forces (weak and strong nuclear interactions, 
gravity and Lorenz’s electromagnetism). Clearly, all of 
these facts aforementioned could be subject of further 
analyses. Note at the end that a correction to Newton’s 
gravity law in the form of the functional dependence 

3 cr rr e   irresistibly reminding of the modified New- 
ton’s gravity force, and obviously wrongly called the fif- 
th force, has been revealed by a reexamination of the old 
attraction data and careful new force measurements pre- 
sented in [11]. 

r
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Appendix: The Freee Motion of  in the 
Integral Space 

 and 

  2 2 .cos wr d k               (57) 
Let us start with the Euler-Lagrange equations 

Let the polar extension and the polar angle r   be 
intensities of  and an angle between the position 
vector  and the polar axis  passing through the 
origin and the perihelial point, respectively. Then, since 

, where 

r

.

r

 

p

 2 constS r S r v  is the so-called 
sector velocity vector, it follows from the condition (57) 
that the motion is the plane one  0  and S c . 
As   d d 2 2

s r 2r d
2   then we obtain finally from 

(5), (10) and (57) that 

  0,
w

w d x
d                   (52) 

where 

,w we d x d x
k

 









           (53) 

as the condition for the action (12) to be stationary. The 
geodesic Equations (13) are explicitly obtained from it in 
a known way. If spatial co-ordinates are spherical ones 
 , ,r   , then the components of e  depend only on 

 and r  , so that it follows from (52) that    
2 2

2 24
2

1 1
d dr r

r k
,

 

          
     


    (58) 

11 0w wd e cd t
k

 
 

 
            (54) that just leads to the Binet differential equation for free 

motion in plane polar co-ordinates and 

2 1 1
0.d

r r                   (59) 
33 0,w wd e d

k
 

 

 




            (55) 

The solution 0 cosr r  , where 0  is the perihelial 
distance, to this differential equation, defines a straight- 
line in plane polar co-ordinates. 

rthat leads to 

  wcd t k                 (56) 
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