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ABSTRACT 

The present paper is concerned with the propagation of plane waves in an isotropic two-temperature generalized ther- 
moelastic solid half-space in context of Green and Naghdi theory of type II (without energy dissipation). The governing 
equations in x-z plane are solved to show the existence of three coupled plane waves. The reflection of plane waves 
from a thermally insulated free surface is considered to obtain the relations between the reflection coefficients. A par- 
ticular example of the half-space is chosen for numerical computations of the speeds and reflection coefficients of plane 
waves. Effects of two-temperature and rotation parameters on the speeds and the reflection coefficients of plane waves 
are shown graphically. 
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1. Introduction 

Lord and Shulman [1] and Green and Lindsay [2] ex- 
tended the classical dynamical coupled theory of thermo- 
elasticity to generalized thermoelasticity theories. These 
theories treat heat propagation as a wave phenomenon 
rather than a diffusion phenomenon and predict a finite 
speed of heat propagation. Ignaczak and Ostoja-Star- 
zewski [3] explained in detail, the above theories in their 
book on “Thermoelasticity with Finite Wave Speeds”. 
The theory of thermoelasticity without energy dissipation 
is another generalized theory, which was formulated by 
Green and Naghdi [4]. It includes the isothermal dis- 
placement gradients among its independent constitutive 
variables and differs from the previous theories in that it 
does not accommodate dissipation of thermal energy. 
The representative theories in the range of generalized 
thermoelasticity are reviewed by Hetnarski and Ignaczak 
[5]. Wave propagation in thermoelasticity has many ap- 
plications in various engineering fields. Some problems 
on wave propagation in coupled or generalized thermoe- 
lasticity are studied by various researchers, for example, 
Deresiewicz [6], Sinha and Sinha [7], Sinha and Elsibai 
[8,9], Sharma, et al. [10], Othman and Song [11], Singh 
[12,13], and many more. 

Gurtin and Williams [14,15] suggested the second law 

of thermodynamics for continuous bodies in which the 
entropy due to heat conduction was governed by one 
temperature, that of the heat supply by another tempera-
ture. Based on this suggestion, Chen and Gurtin [16] and 
Chen et al. [17,18] formulated a theory of thermoelastic- 
ity which depends on two distinct temperatures, the con- 
ductive temperature   and the thermodynamic tem- 
perature . The two-temperature theory involves a ma- 
terial parameter . The limit  implies that 

T
0a  0a 

T  and the classical theory can be recovered from 
two-temperature theory. The two-temperature model has 
been widely used to predict the electron and phonon 
temperature distributions in ultrashort laser processing of 
metals. Warren and Chen [19] stated that these two tem-
peratures can be equal in time-dependent problems under 
certain conditions, whereas  and  are generally 
different in particular problems involving wave propaga-
tion. Following Boley and Tolins [20], they studied the 
wave propagation in the two-temperature theory of cou- 
pled thermoelasticity. They showed that the two tem- 
peratures  and 

 T

T  , and the strain are represented in 
the form of a travelling wave plus a response, which oc- 
curs instantaneously throughout the body. Puri and Jor- 
dan [21] discussed the propagation of harmonic plane 
waves in two temperature theory. Quintanilla and Jordan 
[22] presented exact solutions of two initial-boundary 
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value problems in the two temperature theory with dual- 
phase-lag delay. Youssef [23] formulated a theory of two- 
temperature generalized thermoelasticity. Kumar and Mu- 
khopadhyay [24] extended the work of Puri and Jordan 
[21] in the context of the linear theory of two-tempera- 
ture generalized thermoelasticity formulated by Youssef 
[23]. Magana and Quintanilla [25] studied the uniqueness 
and growth of solutions in two-temperature generalized 
thermoelastic theories. Recently, Youssef [26] presented 
a theory of two-temperature thermoelasticity without en- 
ergy dissipation. 

In the present paper, we have applied Youssef [26] 
theory to study the wave propagation in an isotropic two- 
temperature thermoelastic solid. The governing equations 
are solved to obtain the cubic velocity equation. The re- 
quired boundary conditions at thermally insulated stress 
free surface are satisfied by the appropriate solutions in 
an isotropic thermoelastic solid half-space and we obtain 
three relations between the reflection coefficients for an 
incident plane wave. The speeds and reflection coeffi- 
cients of plane waves are also computed numerically for 
a particular model of the half-space to capture the effect 
of the two-temperature and rotation parameters. 

2. Basic Equations 

We consider a two-temperature thermoelastic medium, 
which is rotating uniformly with an angular velocity 

, where  is a unit vector representing the di-
rection of the axis of rotation.The displacement equation 
of motion in the rotating frame of reference has two ad-
ditional terms: Centripetal acceleration,  due 
to time-varying motion only and the Corioli's accelera- 
tion,  where  is the dynamic displacement 
vector. These terms do not appear in non-rotating media. 
Following Youssef [26], the governing equations for a 
rotating two-temperature generalized thermoelastic half- 
space without energy dissipation are taken in the follow- 
ing form: 

n  

2

n

 u  

0

u u

(i) The heat conduction equation  

, ,ii E kkK c T e                   (1) 

(ii) The displacement-strain relation  

 , ,

1
,

2ij i j j ie u u  

u

                 (2) 

(iii) The equation of motion  

 
  , , ,

2

,

i

j ij i jj i

u u

u u



   

     
   

 
          (3) 

(iv) The constitutive equations  

 2 ,ij ij kk ije e                  (4) 

where  3 2 t ,      is a coupling parameter and 

,t  is the thermal expansion coefficient.   and   
are called Lame’s elastic constants, ij  is the Kronecker 
delta, K   is material characterstic constant, T is the 
mechanical temperature, 0 T0   is the reference tem-
perature, 0T T    with 0 1T  , ij  is the stress 
tensor, ij  is the strain tensor, e   is the mass density, 

Ec  is the specific heat at constant strain, iu  are the 
components of the displacement vector,  is the con-
ductive temperature and satisfies the relation  



, ,iia                      (5) 

where  is the two-temperature parameter.  0a

3. Analytical 2D Solution 

We consider a homogeneous and isotropic thermoelastic 
medium of an infinite extent with Cartesian coordinates 
system  , ,x y z , which is previously at uniform tem- 
perature 0 . The origin is taken on the plane surface T

0z   and the z-axis is taken normally into the medium 
. The surface 0z  0z   is assumed stress-free and 

thermally insulated. The present study is restricted to the 
plane strain parallel to x-z plane, with the displacement 
vector  1,0,u u u3  and rotational vector   ,00,  . 
Now, the Equation (3) has the following two components 
in x-z plane  

    3,13

32 ,

u u

u

1,11

2
1 1

2

u u

1,33 ,1u     



  

 

 

   
      (6) 

    1,13

12 ,

u u

u

3,33

2
3 3

2

u u

3,11 ,3u     



  



 

   

 

      (7) 

The heat conduction Equation (1) is written in x-z 
plane as 

 2 2
,EK c u

2 2

,1


1 ,33  0t t

  


  1,1T 3, 3u   (8) 

and, the Equation (5) becomes,  

 ,11 ,33 

1u
q

.a              (9) 

The displacement components  and  are wri- 
tten in terms of potentials  and 

3u
  as  

1

q
u u3, .

q  
x z z x

 
 


 

   
          (10) 

Using Equations (9)-(10) in Equations (6)-(8), we 
obtain 

 
2 2

2
2 2

q
x z

  
  

2     
  

             (11) 

 

 

2 2 2

x

  
 

2

z2 2 2

2 2 ,

q q

x z

q q



 

   
           

   

2
2 

 

a




 

  (12) 
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2 2 2

2 2 2

2 2 2 2 2 2

02 2 2 2 2 2
,
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t x z t x z
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     
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



 (13) 

Solutions of Equations (11)-(13) are now sought in the 
form of harmonic travelling wave  

     , , , , exp sin cos ,q A B C ik x z V      t



 (14) 

in which  is the phase speed,  is the wave number 
and 

V
 , c

k
sin os   denotes the projection of wave nor- 

mal onto x-z plane. Making use of Equation (14) into the 
Equations (11)-(13), we obtain a homogenous system of 
equations in A, B and C, which admits the non-trivial 
solution if  

6 4 2 0,V AV BV C              (15) 

where 
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2 2
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2
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a
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TK
K
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The three roots of the cubic Equation (15) are complex. 
Using the relation , we 
obtain three real values 1 2  of the speeds of 
three plane waves, namely,  waves, respec- 
tively.  

 1 1 1 , 1, 2,3j j jV v i q j    
3, andv v v

1 2 3, andP P P

4. Limiting Cases 

4.1. In Absence of Rotation Parameters 

In absence of rotation parameters, we have 0


  and 

the velocity Equation (15) reduces to 

   2 2 4 2 2 2
2 1 1 0,a aV c V K c V K c            (16) 

which gives the speeds of P, thermal and SV waves in an 
isotropic two-temperature thermoelastic medium without 

energy dissipation. 

4.2. In Absence of Rotation and Thermal 
Parameters 

In absence of rotation and thermal parameters, we have 
 and the Equation (15) reduces to 0, 0aK   

  2 2 2 2
1 2 0,V c V c              (17) 

which gives the speeds of P and SV waves in an isotropic 
elastic media. 

5. Boundary Conditions 

We consider the incidence of 1  wave. The boundary 
conditions at the stress-free thermally insulated surface 

P

0z   are satisfied, if the incident 1  wave gives rise to 
a reflected 1 2 3  waves. The required boundary 
conditions at free surface  are as 

P
, andP P P

0z 
(i) Vanishing of the normal stress component  

0,zz                     (18) 

(ii) Vanishing of the tangential stress component  

0,zx                     (19) 

(iii) Vanishing of the normal heat flux component  

0,
z





                   (20) 

where 

2 2 2

2 2

2 2

2 2

2

2 ,

zz

q q

x zx z

q
a

z x

  

  

    
         

2

2z





     
    


       

      (21) 

2 2 2

2 2
2 .zx

q

x z z x

  
   

       
          (22) 

The appropriate displacement and temperature poten- 
tials , ,q   are taken in the following form  

  
  
  
  

0 1 0 0 1

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

exp sin cos

exp sin cos

exp sin cos

exp sin cos ,

q A ik x z V t

A ik x z V t

A ik x z V t

A ik x z V t

 

 

 

 

 

 

 

 









     (23) 

  
  
  
  

1 0 1 0 0 1

1 1 1 1 1 1
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 
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
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
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   (25) 

where the wave normal to the incident 1  wave makes 
angle 0

P
  with the positive direction of z-axis and those 

of reflected 1 2 3  waves make angles , andP P P 1 2,   
and 3 , respectively with the same direction, and 
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6. Reflection Coefficients 

The ratios of the amplitudes of the reflected waves to the  

amplitude of incident  wave, namely 1P 1 2

0 0

,
A A

A A
 and 

3

0

A

A
 are the reflection coefficients (amplitude ratios) of  

reflected  wave, respectively. The wave 
numbers 1 2 3  and the angles 

1 2 3, andP P P
, ,k k k 0 1 2 3, , ,     are con- 

nected by the relation 

1 0 1 1 2 2 3 3sin sin sin sin ,k k k k           (26) 

at surface z = 0. In order to satisfy the boundary condi-
tions (18)-(20), the relation (26) is also written as  

0 31 2

1 1 2

sin sinsin sin

v v v v3

  
              (27) 

with the help of the potentials given by Equations (23)- 
(25) and the Snell’s law Equations (26) and (27), the 
boundary conditions (18)-(20) results into a system of 
following three non-homogeneous equations 
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Figure 1. Geometry of the problem. 
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7. Numerical Results and Discussion 

To study the effects of two-temperature and rotation pa- 
rameters on the speeds of propagation and reflection co- 
efficients of plane waves, we consider the following 
physical constants of aluminium as an isotropic thermo- 
elastic solid half space 

1V   

3 3 10

10 2

0

2.7 10 kg m , 7.59 10 N m ,

1.89 10 N m

237 W m deg, 24.2  J kg deg,

296K.
eK C

T

 


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   


2
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Using the relation  in  1 1 1 , 1, ,3j j jV v i q j     
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Equation (15), the real values of the propagation speeds 
of  waves are computed for the range 

 of two-temperature parameter, when  
1 2 3, andP P P

0 1a 
5,10 and 20 

a

. The speeds of 1 2 3  waves 
are shown graphically versus the two-temperature pa- 
rameter  in Figure 2. The speed of 1  wave de- 
creases with an increase in two-temperature parameter, 
whereas the speeds of 2  and 3  wave are affected 
less due to the change in two-temperature parameter. It is 
also observed from Figure 2 that the speed of each plane 
wave decreases with the increase in value of rotation 
parameter. 

, andP P P

P

0 

P

, an

nd

P

With the help of Equation (28), the reflection coeffi-
cients of reflected 1 2 3  waves are computed for 
the incidence of 1  wave. For the range 0  
of the angle of incidence of 1  wave, the reflection co-
efficients of the 1 2 3  waves are shown graphi- 
cally in Figure 3, when the rotation parameter 

dP P P

P
, aP P P

90

value one at 0 . For each value of 90    , the re- 
flection coefficient of 2  wave first increases slightly 
and then decreases to its minimum value zero at 

0 . For all value of 

P

90    , the reflection coeffi- 
cient of 3  wave decreases from its maximum value at 

0

P
1    to its minimum value zero at 0 . From 

Figure 3, it is also observed that the effect of rotation pa- 
rameter 

90  

  on reflection coefficients of 1  is maxi- 
mum near 0 , whereas it is maximum at 0  
for 2  wave. There is no effect of rotation parameter on 
these reflected waves at grazing incidence. The reflection 
coefficients of 1  and 2  waves decrease with the in- 
crease in value of rotation parameter at each angle of in- 
cidence except the grazing incidence, whereas the reflec- 
tion coefficient of  wave increases. 

P
52 

P

3P
0 

 42 

P

P

 
 P

For the range 0  of the angle of incidence 
of P1 wave, the reflection coefficients of the 1 2 3  
waves are shown graphically in Figure 4, when two- 
temperature parameter  and rotation para- 
meter 

90

, andP P P

0,a  0.5,1
10  . For all values of , the reflection co- 

efficient of 1  wave increases from its minimum value 
at 0

a

P
1    to its maximum value one at 0 . For all 

values of 
90 

a , the reflection coefficient of 2  wave first 
increases and then decreases to its minimum value zero 

P

5,10, 20   and two-temperature parameter . 
For 

0.5a

5 and  10 , the reflection coefficient of 1  
wave increases from its minimum value at 

P

0 1    to its 
maximum value one at 0  and for 90  20  , its 
reflection coefficient first decreases to its minimum value 
zero at  and then increases to its maximum 52 

0
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Figure 2. Variations of the speeds of plane waves versus two-temperature parameter a*. 
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Figure 3. Variations of the reflection coefficients versus angle of incidence when two-temperature parameter a* = 0.5. 
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Figure 4. Variations of the reflection coefficients versus angle of incidence when rotation parameter / = 10. 

 
at 0 . The reflection coefficient of 3  wave de- 
creases from its maximum value at 0  to its mini- 
mum value zero at 0 . From Figure 4, it is also 
observed that the effect of two-temperature parameter 

 on all reflected waves is maximum near normal in-
cidence. For grazing incidence, there is no effect of two- 
temperature parameter on all the reflected waves. The re- 
flection coefficients of 1  wave increases with the in- 
crease in value of two-temperature parameter at each 
angle of incidence except grazing incidence, whereas the 
reflection coefficient of 3  wave decreases. For the 
range 0  of the angle of incidence of 1  
wave, the reflection coefficients of the 2  decreases 
with an increase in two-temperature parameter. Beyond 

0 , there is little effect of two-temperature pa- 
rameter on the reflection coefficients of the  wave. 
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8. Conclusion 

Two-dimensional solution of the governing equations of 
an isotropic two-temperature thermoelastic medium with- 
out energy dissipation indicates the existence of three 
plane waves, namely, 1 2 3  waves. The appro- 
priate solutions in the half-space satisfy the required 
boundary conditions at thermally insulated free surface 
and the relations between reflection coefficients of re- 
flected  waves are obtained for the inci- 
dence of 1  wave. The speeds and reflection coefficients 
of plane waves are computed for a particular material 
representing the model. From theory and numerical re- 
sults, it is observed that the speeds and reflection coeffi- 
cients of plane waves are significantly affected by the 
two-temperature and rotation parameters. 

, andP P P

1 2 3, andP P P
P
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