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ABSTRACT 

This paper introduces a Bayesian Markov regime-switching model that allows the cointegration relationship between 
two time series to be switched on and off over time. Unlike classical approaches for testing and modeling cointegration, 
the Bayesian Markov switching method allows for estimation of the regime-specific model parameters via Markov 
Chain Monte Carlo and generates more reliable estimation. Inference of regime switching also provides important in- 
formation for further analysis and decision making. 
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1. Introduction 

Since the development of the concept of cointegration [1], 
there has been a rich literature on testing cointegration 
and applying cointegration approaches to real data analy- 
sis. One of the most illustrative examples in practice is 
the pair trading strategy [2]. The basic idea is that: find 
two securities whose prices have been historically mov- 
ing together. So when the spread between them widens, 
we short the winner and buy the loser. And if we believe 
that the history would repeat itself, prices will converge 
again and the arbitrager will profit. This moving-together 
relationship between two nonstationary time series is 
called cointegration. Mathematically, if two nonstation- 
ary time series  and tV  are cointegrated, then there 
exists a number 

tU
  called the cointegration ratio, such 

that t t tY U V   is stationary. 
Although there have been many statistical studies to 

find cointegrated time series, there are still many un- 
solved problems. First of all, it is often hard simply to 
find cointegration given a specific period of time. There 
are several statistical explanations for failing to reject the 
null of no cointegration including the span of the data set, 
structural breaks [3] and the choice of test model [4]. Se- 
condly, there are few statistical decision-making rules 
after identifying candidate pairs. Taking pair trading as 
an exmple, typically, people simply use the decision rule 
that they open a long-short position when the pair prices 
have diverged by a certain amount (e.g. two standard de- 
viations from the historical mean) and close the position 
when the prices have reverted [5]. 

This paper proposes the Bayesian Markov regime- 
switching model that allows the cointegration relation- 
ship between two time series to be switched on or off 
over time via a discrete-time Markov process. This is an 
improvement to the traditional cointegration tests con- 
sidering that the model flexibly allows local non-cointe- 
gration rather than assuming global cointegration over 
the whole period of time. By using a fully Bayesian mo- 
dels, uncertainty about cointegration ratio is also incor- 
porated into the model and inferred simultaneously with 
all other unknown quantities. Furthermore, inference of 
the hidden regime-switching is also critical to decision 
making and further generic analysis. 

2. Markov Regime-Switching Models for 
Cointegration 

Suppose we have two nonstationary time series t  and 

t  with integration order 1, and t

U
VV t tY U    (  is 

known, typically people propose a   and then test the 
stationary property of t ). If t  is stationary, then we 
say time series t  and tV  are cointegrated. To test for 
stationarity, the Engle-Grange method [6] tests the 

Y Y
U

0   null hypothesis using the ADF unit root test [5] 
based on the Error Correction Model (EVM) with lag 
order K (as compared to 0   in which case it is 
stationary):  

1
1

K

t t i t i
k

Y Y Y t   


              (1) 

where   is a constant, i s are autoregression coeffi- 
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cients and  0,t N  

Y

. 
In comparison, the Markov regime-switching model 

we proposed allows t  to switch between cointegrated 
or non-cointegrated regimes in a Markovian manner, by 
introducing the regime indicator variable tX , regime 
specific parameters and the Markov transition matrix 

. For the simplicity of exposition, we assume that 
, with  denoting that that tY  is sta-

tionary (i.e. t  and tV  are cointegrated) at time t and 
 meaning non-cointegration. Then the model can 

be written as:  

XP

tX

tX

0,1

1

 0tX 
U

 
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10 11
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t
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Xt
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t t
k

X
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

k t iY 


 

 

  

 
  
 



Y U V

       (2) 

where t t t   and thus t tY U Vt    
t

.  
is the Markov transition matrix of 

XP
X , with 

 1Prijp X

0

t tj X i    

and initial value X . 
Clearly, when  the model reduces to model (1) 

with negative 
0tX 

 , while  specifies unit root 
process for t  and thus no cointegration exists for time 
series t  and . By obtaining inference of the under- 
lining regimes t

1tX 
Y

tVU
X , regime-specific parameters and seg- 

mentation of regime-specific data, the model provides 
much information for further generic analysis and deci- 
sion making. 

3. Bayesian Computation 

We propose to use Bayesian analysis for the inference of 
parameters and latent regimes tX , where posterior sam- 
ples of all unknown quantities are drawn using Markov 
Chain Monte Carlo (MCMC). 

Under this model (2), the likelihood function is:  

     
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

 

Conjugate prior distributions are placed on model pa- 
rameters [7]. Specifically, conjugate Dirichlet priors are 
assigned to each row of the transition matrix  and XP

 0 1,q q q , where  0Priq X i  . Conjugate Nor- 
mal-Gamma priors are assigned for all the regression 
coefficients  and the corresponding precisions  tX

k tX
   

     

 
   

1 2

0,

ir

N

  1 2
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, ; , ; , 0,1

; ,
2 2

t t
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i i
ij
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p Dir i j

v SS
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
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 
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q D

 

To obtained the posterior marginal distributions of the 
unknown parameters and the hidden regimes tX , Gibbs 
sampler is constructed to iterate the following steps: 

1) Sample  and  from full conditional distribu- 
tions: 

q XP

      

 

 
 

 
 

 

1ir 

 

 
 

 

0 02 00 010 1

0 0
1 20, 0 0, 11 11 1

10 11

1 1
1 21, 0 1, 11 11 1

, ; ,

,

,

,

X X

X X X Xi i i it t

X X X Xi i i it t

q D I I p p

Dir I I

p p

Dir I I

 

 

 

 

     

     



  
 

    
 

 

 

 


 

2) Sample the regression coefficients   and variance 
from Normal-Inverse Gamma full conditional distribu- 
tions given the conjugacy of the priors. 

3) Sample the whole path of tX . 
Since tX s are highly correlated, Gibbs sampler con-

structed via regular full conditional distribution would be 
extremely inefficient [7]. To overcome this, Forward Fil- 
tering and Backward Sampling algorithm is applied to 
draw block samples of tX . To achieve this, define 

   0 , , ,n nY Y in i P X      , then by recursion: 

   0 0 0 ;ii q P Y X i     

and 

     1n n ji n n
j

i j p P Y X  

 
i   

 
  

With this, the results follow that:  

   
   1 1,

t t

t t t

P X i i

P X j X i j p



 

 

  



 ji

 

By using this algorithm, a sample of TX  is first 
drawn from a bernoulli (multinomial if tX  takes more 
than two values) distribution, and , sam- 
ples of t

0 1t T  
X  are drawn sequentially and backward from 

the conditional bernoulli distribution, with  

   
 1

t ji
t t

t jj

j p
P X j X i

j p


  

 i

, 

until the whole tX  time series are sampled.  
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4. Simulated Time Series Analysis 

4.1. Model Assessment 

To testify the performance of the proposed framework, 
we simulated a Markov regime-switching times series of 
length , which switches between one stationary 
AR(2) process (State 0) and one non-stationary AR(2) 
process (State 1). The two AR(2) models and the corre-
sponding Error Correction Models (ECM) are shown as 
follows: (the (non-)stationary property can be easily 
tested by the Unit Root Test)  

500T 

1 2

1 1

1 2

1

State 0 : 3 0.6 0.28 ,

: 3 0.68 0.28 ;

State1: 4 0.7 0.3 ,

: 4 0.3 .

t t t
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     (3) 

where    0,1 and 0,1t tN    N . The transition ma- 
trix is specified as  
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. 

A simulated data was shown in Figure 1. 
The proposed model was applied to the time series to 

find regime switching, with the priors specified as fol- 
lows:  
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Figure 1. Illutration of a time series stimulated by the mar- 
kov switching model. 

To infer the value of tX  based on posterior samples, 
we use posterior probability  as the cut-off point. 
Shown in Figure 2, the inferred regimes are compared 
with the true values, which shows that our model gives 
good recovery of the latent regimes (with the first 200 
time points shown). Other model parameters are also 
correctly inferred as shown in Table 1, where posterior 
distributions cover the true values well. 

0.5

4.2. Posterior Decision Making 

The importance of inference of regimes when analyzing 
(non)stationary time series lies in the fact that com- 
monly-used stationarity and cointegration tests (e.g. ADF 
unit root test and Engle-Granger cointegration tes [1]) 
may well give misleading results when regime switching 
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Ture States (0: Stationary; 1: Non-Stationary) 

Inferrd Hidden States 

 

Figure 2. Inferred regimes Xt (in green) compared to the 
true values (in blue) show good inference. 
 
Table 1. Posterior estimates of model parameters compared 
to the true values. The parameters are defined as in model 2 
and specified in (3). 

Parameter Mean STD Truth 

  −0.676 0.011 −0.68 

 0

1  0.287 0.013 −0.28 

 0  0.952 0.048 1 

 1

1  −0.323 0.041 −0.3 

 1  0.911 0.093 1 
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should be: we open a position when it is both in the sta- 
tionary state and has diverged from the historical station- 
ary mean. It is apparently risky either to open a position 
when currently we are in a non-stationary state or the 
historical mean calculation involves non-stationary data. 

exists in the process. For illustration, a quick ADF test of 
the previously simulated data concludes that the null hy- 
pothesis with unit root is rejected at 99.9% confidence 
level, indicating the times series is stationary. If this time 
series were generated by the linear combination of two 
nonstationary time series, then the ADF test tells that 
these two are co-integrated, which is clearly wrong. 

Since people care much about the time points where 
values are at least 2 standard deviations away from the 
historical mean, the figure shows that the we pick differ- 
ent time points using our model and decision making 
rules from those obtained using all historical data and 
traditional rules, which we believe are more reasonable 
choices. For example, many spikes in Figure 3 are actu- 
ally not good time points to open the position based on 
our Markov regime-switching model simply because 
those spikes are in the non-stationary (non-cointegrated) 
regime. However in comparison, the traditional approach 
considers them open positions whenever the values are 2 
standard deviations away from the mean, which is a very 
risky decision not considering the regimes. 

In the following part, we will use the context of pair 
trading to illustrate how the Markov regime-switching 
model can potentially help improve decision making in 
practice. Basically people do pair trading based on the 
traditional rule that you open a long-short position when 
the pair prices have diverged by more than two historical 
standard deviations. And you unwind the position when 
it returns to historical mean. 

First of all, the model clearly allows more reasonable 
estimation of the historical mean and standard deviation, 
based soly on data in the stationary (cointegrated) re- 
gimes, rather than including data in the nonstationary 
(non-cointegrated) regimes. This difference can be ob- 
served in Figure 3, where the historical mean using data 
in the stationary regime is different from that using all 
data, and the standard deviation is also smaller. 

5. Cointegrated Price Series Analysis 

An possible example of a pair of cointegrated time series 
is the gold ETF, GLD versus the gold miners ETF, GDX. 
GLD reflects the spot price of gold, and GDX is a basket 
of gold-mining stocks. It makes intuitive sense that their  

Secondly, the identification of stationary (cointegrated) 
and nonstationary (non-cointegrated) regimes also help 
establish more rational decision making rules, which  
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Figure 3. Results comparison between our Bayesian Markov regime-switching model and traditional cointegration test and 
analysis using all historical data. Red lines indicate the mean and mean ±2SD using all historical data, which is a traditional 
way after you have done the ADF test to show the stationary property; Green lines indicate those using only historical data in 
stationary regimes. Red and green dots mark the time points where values at those points are at least 2SD away from the 
historical mean based on traditional and our Markov regime switching model respectively. 
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Figure 4. Distribution of the probability that Xt is in the cointegration regime (t = 1,···,T). 
 
prices may move in tandem. Previous study via the two- 
step Engle-Granger method [1] identified that a portfolio 
with long 1 share of GLD and short 1.6766 share of 
GDX is likely a stationary time series, with lag 1 but the 
conclusion is later questioned by other studies [8]. To test 
the possible co-integration, the two-state Markov regime 
switching model is applied to the 05/23/06-11/30/07 GLD 
and GDX time series. A histogram shown the distribution 
of the probability of the time points being in the cointe- 
gration state is shown in Figure 4. According to the pre- 
vious 0.5 cut-off point, the Markov regime switching 
model indicates that at most of the time, the two time 
series are not cointegrated with the 1.6766 cointegration 
ratio. This may serve as another counterexample (toge- 
ther with the simulation result) that the widely-used ADF 
test might provide misleading results when used to test 
co-integration regardless of possible regime switching.  

6. Conclusions and Future Work 

In this study, we proposed to use the Bayesian Markov 
regime-switching model as a flexible model for cointe- 
gration and stationarity analysis, where the latent regime- 
switching process is modeled via a Markov process. A 
strong message of this study is that, while identifying 
cointegration (or stationarity) is often hard globally, al- 
lowing local non-cointegration (or non-stationarity) and 
inferring the regime switching can provide much infor- 
mation for further analysis and decision making. 

Several extensions of the study are still worth explor- 
ing, including relaxing the hidden Markov transition mo- 
dels and incorporating uncertainty about number of re- 

gimes in the model. Hidden semi-Markov models are na- 
tural extensions of hidden Markov models. While the run- 
length distribution of the hidden Markov models implic- 
ity follows a geometric distribution, hidden semi-Markov 
models allow for more general runlength distributions, 
and thus are more flexible to describe the time spend in a 
given regime. As for the cases with the number of re- 
gimes unknown, Bayesian inference through reversible 
jump MCMC methods [9] could be a viable alternative 
that both explores models with different number of re- 
gimes and estimation of regime-specific parameters. 
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