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ABSTRACT 

Sufficient conditions to guarantee the existence and global exponential stability of periodic solutions of a Cohen- 
Grossberg-type BAM neural network are established by suitable mathematical transformation. 
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1. Introduction 

Many important results on the existence and global ex-
ponential stability of equilibria of neural networks with 
time delays have been widely investigated and success-
fully applied to signal processing system. However, the 
research of neural networks involves not only the dy-
namic analysis of equilibrium point but also that of peri-
odic oscillatory solution. In practice, the dynamic be-
havior of periodic oscillatory solution is very important 
in learning theory [1,2], which is motivated by the fact 
that learning usually requires repetition, some important 
results for periodic solutions of Hopfield neural networks 
or Cohen-Grossberg neural networks with delays have 
been obtained in Refs. [3-15]. 

The objective of this paper is to study the existence 
and global exponential stability of periodic solutios of a 
class of Cohen-Grossberg-type BAM neural networks 
(CGBAMNNs) with time-varying delays by suitable mathe- 
matical transformation. 

The rest of this paper is organized as follows: prelimi-
naries are given in Section 2. Sufficient conditions which 
guarantee the existence and global exponential stability 
of periodic solutions for the CGBAMNNs are established 
Section 3. An example is given in Section 4 to demon-
strate the main results. 

2. Preliminaries 

Consider the following periodic CGNNs with time- 

varying delays (see Equation (1)): 
For 1 i n 0t   1,2, ,,  and  in   . Z x t  

denote the state variables of the ith neuron,  f j   de-
note the signal functions of the jth neuron at time t; 

 
 i  ait  denote inputs of the ith neuron at time t; I   

represent amplification functions; i  are appropri-
ately behaved functions; ij and ij  and are 
connection weights of the neural networks, respectively; 

 ,b t 
 p t  u t

j  are positive constants which correspond to the neu-
ronal gains associated with the neuronal activations; 

 t
ij

ij  correspond to the finite speed of the axonal signal 
transmission at time t and there exist constants  such 
that  0 tij ij    , ( ),p t u t I tij ij i  and   ,  t

 a 

ij  are 
all continuously periodic functions on [0, +∞) with 
common period T > 0. 

Throughout this paper, we assume for system (1) that 
(H1) Amplification functions i  are continuous 

and there exist constants  ,ia ai such that i i ia a a  
1 i n

 
for  . 

 ,b ti(H2)   are T-periodic about the first argument 
and there exist continuous T-periodic functions  i t  
such that 

      0,

1

i i
i

b t x b t y
t

x y

x y R i n


  

 


     

 jf 

. 

(H3) For activation functions , there exist posi-
tive constants jL

              
1 1

n n

ij j j j ij j j j ij i
j j

 such that 
 
 

  i i i   i ix t p t f x t u t f x t t I t  
 

a x t b t x t
 

      
 

             (1)
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   

sup ,j j
j

x y

f x f y
L x

x y


 


1y R j n    



 

For any continuous function  on S t  0 T , S  

and S  denote     0min t T S t      and  0t T S t 

T
0kR t  

mi , n

respectively. 
For any 

        1 2 kx t x t x t x t    , 

define  

   1

k

ii
x t x t


 

  T k
k

, 

and for any 

     1 2s s s     s R 



, 

0s    , 

define 

 
 

 1
0

k

ii
sup

s
s s 



0

  
  

in which  

  

 

. 

Denote 

    0 0C R        k kR s   

is continuous on  0  . 
Then   0 kC R    is a Banach space with respect 

to  . 
The initial conditions of system (1) are given by  

   
 

1
max

i i

ij
i j n

x s s

 
  

0

1

s

i n

      

   



         (2) 

where  

          0 n
1 2 ns s s s      

     x t x t x t x        

C R   

 T
t 

. 

Le 1 2 n  denotes 
any solution of the system (1) with initial value 

  0 nC R     . 
Definition 1. An solution  x t 

 

 of system (1) is 
said to be globally exponentially stable, for any solutions 
x t   of the system (1), if there exist positive constant 

0   and  such that 0M

    e , 0tx t x t M t         

ij

    (3) 

Lemma 1. Under assumptions (H1)-(H3), system (1) 
has a T-periodic solution which is globally exponentially 
stable, if the following conditions hold. 

(H4) Assume that there exist constants  
    1 i j n  

1 1 1

 such that 
, . 1ij ijt  

(H5) M A C  is a nonsingular M-matrix, where 

   1 1 2 1diag

1

1

n ij n n

ijij j jij
ij

A C c

c Lp u

  








      

 
    





0v

 

Proof. If ijl  , the model (2.1) in [14] reduces to 
the system (1), we know that Lemma 1 holds from 
Theorem 3.1 with r = 1 in [14]. 

3. Periodic Solutions of CGBAMNNs with 
Time Varying Delays 

Consider the following CGBAMNNs with time-varying 
delays: 

            

       

            

       

1

1

1

1

m

i i i i i ij j j j
j

m

ij j j j ij i
j

n

j j j j j ji i ii
i

n

jiji i i ji
i

x t a x t b t x t p t f y t

u t f y t t I t

y t c y t d t y t q t g x t

v t g x t t J t



 



 










   




   


   
   











 

 

1 1i n j m

(4) 

 i    0t  ,  and 1 2 .Z     xfor  t  
and  ig j t  f  denote the state variables, j  and y   
denote the signal functions, iI  and  t  jJ t  denote 
inputs;

  ia  jc  and   represent amplification func- 
tions;  ,ib t  ,jd t  and   are appropriately behaved 
functions;  p tij ,  q t  iju t ji ,  and ji  are the 
connection weights and 

v t

j , i

 t

 are positive constants, 
which correspond to the neuronal gains associated with 
the neuronal activations; Time delays ij  and  ji  
correspond to the finite speed of the axonal signal trans- 
mission at time t and there exist constants 

t

ij  and  ji
0 ij

 
such that ij   0,  ji jit     u t; ij ,  jiv t , 

 p tij ,  q tji ,  i t , j t  t, ij  and I J ji  are 
all continuously periodic functions on 

t
 0 

0T 

 a   

 with com- 
mon period . 

Throughout this paper, we assume for system (4) that 
(H6) Amplification functions i  and jc   are con- 
tinuous and there exist positive constants ,i ia a  and 

,j jc c  such that      i i ii a x t a , a  j j jj c y t cc  
1 , 1i n j m

, 
  

 

.  
 ,b ti  ,d tj(H7)  ,   are T-periodic about the first 

argument and there exist continuous T-periodic functions 
 i t  and  j t  such that 

        

 

0

0, 1 1

j ji i
i

j

d t x d t yb t x b t y
t

x y x y

t x y R i n j m





    
  

 

          

 jf 

 

 ig(H8) For activation functions  and  , there 
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exist constants jL i and L  such that 

       
sup sup

R 1 1

j j i i
i

x y x y

f x f y g x g y
L

x y x y

x y i n j m

 

 
   

 

        



 0

1

j s s

i n j m

    

    



jL

 

The initial conditions of system (4) are given by 

       
 

1 1
max 1

i i j

jiij
i n j m

x s s y s 

  
    

  

   
 

where 

    0 n mC R      , 

             1 .n m1s s s s        s s   

ij

 

Theorem 1. Under assumptions (H6)-(H10), system (4) 
has a T-periodic solution which is globally exponentially 
stable, if the following condition holds. 

(H9) Assume that there exist constants  
  

and ji


 ij t   1ji t    
j 

3

 
such that  and  hold for 

.
1ij  

m
ji


1 1i n   
(H10) The following M is a nonsingular M-matrix, and 

33

33
3

A C
M

AC

 
  

                (5) 

in which 

   

 

 

3 1 2 3

3

3

diag( diag

1

1

1
ˆ ˆ

1

ji ji jijim n
ji

ij ij ijijn m
ij

1 2 ,n m

i i

j j

A

qc c vC L

C Lpc c u

A      











       

 
       

 
      

 

   



  

Proof. Let  

         
     

     
       
     

     
     
       
   

,

,

j n j n j

n j j j

n j i ji i n j ij

i ji i n j ij

i i i i

n j n j j j

n j j n j j

ji i n ji i j

n jn j j j n j

 

j jn j

n j

n j

n j

x t y t a t x t

b t x t d t y t

p t q t p t p

u t v t u t u

S x t g x t

S x t f x t

s s I J t

t t t

t t LL

 

  

  

 

 

   

   

 

 

   

 

  

  

  

  

 

 

 

  

  

 

 

c t y t

t

t

t

   





 ,j

       

    

       

       

    

       

1

1

1

1

i i i i i

m

i n j n j n jn j
j

m

i n j n j n j i n j in j
j

n j n j n j n j n j

n

n j i i ii
i

n

n j i i i n j i n ji
i

t a x t b t x tx

p t S x t

u t S x t t I t

t a x t b t x tx

p t S x t

u t S x t t I t









   


     


    

 


    


  




   


  







   (6) 

It follows that system (4) can be rewrote as 

   





















1 1i n j m

 (7) 

for     . 
Initial conditions are given by  

      0 1 2i ix s s s i n m            

0p u

    (8) 

Hence system (7) is a special case of system (1) in 
mathematical form in which there are n+m neurons and 
connection weights ij ij  1 ,i j n 

1 ,n i j m n
 for  and 

    . Under conditions (H6)-(H10), from 
Lemma 1, we obtain that system (7) has a T-periodic 
solution which is globally exponentially stable, if the 
following matrix   is a M-matrix, and  M

M A C                    (9) 

where  

 1 2diag n mA        

1, 1 1,

, 1

1,1 1,

,1 ,

0 0

0 0

0 0

0 0

n n m

n n n n m

n n n

n m n m n

w w

w w

w w

w w

C

 

  

 

 

  
 
 
 
 

  
 
    

 

 
   

 
 

   
 

 

 

in which 1 .
1

ij jij jij
ij

w p u L
 

 
     




   

 

Then, we know from (6) and (9) that Theorem 1 holds. 

4. An Example 

Consider the following CGBAMNNs with time delays: 

  
   

     
   

1 1

0.0001
1 1

1 1

1 1

1 0 2cos

2 1 2sin π e 1

1 0 2sin

2 1 cosπ 2 4 1

t

x t x t

x t t y t

y t y t

y t t x t

 

   

       

   

       




  (10) 
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Figure 1. Time response of state variables x1, y1 and phase 
plot in space (t, x1, y1) for system (10). 
 

It is easy to verify system (10) satisfies (H6)-(H9). In 
addition, system (10) satisfies (H10) because 

1M
2 1 1

2 2 1

  
    

 

is a nonsingular M-matrix. According to Theorem 1, sys- 
tem (10) has a 2-periodic solution which is globally ex- 
ponentially stable. Figure 1 shows the dynamic behave- 
iors of system (10) with initial conditions (0.8, 0.9). 

Remark 1 The results in [3,15] have more restrictions 
than the results in this paper because conditions for the 
results in [3,15] are relevant to amplification functions. 
In addition, in view of proof of Theorem 1, since 
CGBAMNNs with time-varying delays is a special case 
of CGNNs time-varying delays in form as BAM neural 
networks is a special case of Hopfield neural networks, 
many results of CGBAMNNs can be directly obtained 
from the ones of CGNNs, needing no repetitive discus- 
sions, which coincide with the conclusion in [16,17]. 
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