# Some Results on (1,2n-1)-Odd Factors 

Man Liu ${ }^{1}$, Qingzhi $\mathbf{Y u}^{1}$, Shuling Wang ${ }^{1}$, Changhua Huang ${ }^{2}$<br>${ }^{1}$ Department of Basic Course, Air Force Logistics College, Xuzhou, China<br>${ }^{2}$ Aerial Four Station Department, Air Force Logistics College, Xuzhou, China<br>Email: liuman8866@163.com

Received September 4, 2012; revised November 1, 2012; accepted November 8, 2012


#### Abstract

Let $G$ be a graph. If there exists a spanning subgraph $F$ such that $d_{F}(x) \in\{1,3, \cdots, 2 n-1\}$, then $F$ is called to be $(1,2 n-1)$-odd factor of $G$. Some sufficient and necessary conditions are given for $G-U$ to have $(1,2 n-1)$-odd factor where $U$ is any subset of $V(G)$ such that $|U|=k$.


Keywords: Claw Free Graphs; (1,2n-1)-Odd Factor; Factor-Criticality

## 1. Introduction

We consider finite undirected graph without loops and multiple edges .Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. Given $x \in V(G)$, the set of vertexes adjacent to $x$ is said to be the neighborhood of $x$, denoted by $N_{G}(x)$, and $d_{G}(x)=\left|N_{G}(x)\right|$ is called the degree of $x$, If there exists a spanning subgraph $F$ such that $d_{F}(x) \in\{1,3,5, \cdots, f(x)\}$, then $F$ is called a ( $1, f$ ) -odd factor of $G$, especially, if for every $x \in V(G)$ such that $f(x)=2 n-1$, then it is called $(1,2 n-1)$-odd factor. especially, $(1,2 n-1)$-odd factor is 1 -factor when $n=1$. For a subset $S \subset V(G)$, let $G-S$ denote the subgraph obtained from $G$ by deleting all the vertexes of $S$ together with the edges incident with the vertexes of $S \cdot o(G-S)$ denotes the number of odd components of $G-S$. The sufficient and necessary condition for graph to have $(1, f)$-odd factor was given in paper [1] Ryjacek [2] introduced one kind of new closure operation: let $G$ be a graph, $x \in V(G)$, if the subgraph induced by $N_{G}(x)$ is not complete graph, we consider the following operation: jointing every pair of nonadjacent vertex in $N_{G}(x)$ makes $G\left[N_{G}(x)\right]$ to be a complete graph. The operation is called local completely at point $x$. If the subgraph induced by $N_{G}(x)$ is $k$-vertex connected, then vertex $x$ is called local $k$-vertex connected graph $G$.
Favaron gave the concept of $k$-factor critical in paper [3]. If $|V(G)| \geq k+2$, and for any $T \subseteq V(G),|T|=k$, $G-T$ is perfect matching, then we call the graph $G$ to be $k$-factor critical. Of course, 0 -factor critical graph is perfect matching. Favaron popularized a series of the properties of perfect matching to $k$-factor critical, at the
same time the sufficient and necessary conditions were given for the graph to be $k$-factor critical, more results in factor critical graphs were referred to $[4,5]$.

For ( $1, f$ )-odd factor, Chen Ci-ping [6] gave a sufficient condition for a matching with exactly $k$ edges extended to $(1,2 n-1)$-odd factor. Teng Cong generalized some results on $k$ - to $(1, f)$-odd factor, and proved that the connected graph $G$ exists $(1, f)$-odd factor with $k$-extended, then for the any edge $e$ of $G, G-e$ exists ( $1, f$ ) -odd factor [7] with $(k-1)$-extended. If there exists $(1, f)$-odd factor of $G$ with $k$-extended, then there exists $(1, f)$-odd factor with $(k-1)$-extended, and $G$ is $(k+1)$-connected [8]. We will popularize some results of $k$-factor critical to $(1,2 n-1)$-odd factor, and gain several sufficient and necessary conditions for $G-U$ to have $(1,2 n-1)$-odd factor for any subset $U$ of $V(G)$ such that $|U|=k$.

## 2. Main Results

We start with some lemmas as following.
Lemma 1 The sufficient and necessary condition for a graph $G$ to have $(1,2 n-1)$-odd factor after cutting off any $k$ vertexes is

$$
o(G-B) \leq(2 n-1)(|B|-k)(\forall|B| \geq k)
$$

Proof For set $U$ with any $k$ vertexes, $G^{\prime}=G-U$ has $(1,2 n-1)$-odd factor, next we will prove

$$
o(G-B) \leq(2 n-1)(|B|-k)(\forall|B| \geq k)
$$

For any $B \subseteq V(G)$ and $|B| \geq k$, let $B=U \bigcup B^{\prime}$, where $|U|=k$. Since $G^{\prime}=G-U$ has a $(1,2 n-1)$-odd factor, by the sufficient and necessary condition for
graph with $(1,2 n-1)$-odd factor we have

$$
o\left(G^{\prime}-B^{\prime}\right) \leq(2 n-1)\left|B^{\prime}\right|
$$

Noting that $G^{\prime}-B^{\prime}=G-B$,
Therefore

$$
\begin{aligned}
o(G-B) & =o\left(G^{\prime}-B^{\prime}\right) \leq(2 n-1)\left|B^{\prime}\right| \\
& =(2 n-1)(|B|-k)
\end{aligned}
$$

For any $B \subseteq V(G)$ and $|B| \geq k$ we have

$$
o(G-B) \leq(2 n-1)(|B|-k),
$$

the following that the set $U$ with any $k$ vertexes, $G^{\prime}=G-U$ has $(1,2 n-1)$-odd factor, i.e., for any $B^{\prime} \subseteq V\left(G^{\prime}\right)$, there $o\left(G^{\prime}-B^{\prime}\right) \leq(2 n-1)\left|B^{\prime}\right|$.
Noting that $B=U \cup B^{\prime}$, of course $|B| \geq k$.
By

$$
o(G-B) \leq(2 n-1)(|B|-k),
$$

and $G^{\prime}-B^{\prime}=G-B$, we have

$$
\begin{aligned}
o\left(G^{\prime}-B^{\prime}\right) & =o(G-B) \leq(2 n-1)(|B|-k) \\
& =(2 n-1)\left|B^{\prime}\right| .
\end{aligned}
$$

Lemma 2 [9] Connected claw free graphs of even order have 1-factor.

Lemma 3 Connected claw free graphs of even order have $(1,2 n-1)$-odd factor.

Proof If $n=1$, by lemma 2, the conclusion is proved. Assume that $n \geq 2$.

By contradiction, we assume that $G$ has no $(1,2 n-1)$-odd factor, i.e., $\exists S \subseteq V(G)$ such that

$$
o(G-S)>(2 n-1)|S| \geq 3|S|(n \geq 2)
$$

then there exists $x \in S$ such that $x$ connecting with three components of $G-S$ at least. If not, for $\forall x \in S$, $x$ connects with two components of $G-S$ at most, consequently $o(G-S) \leq 2|S|$, contradiction.

Theorem 1 Let $G$ be graph with $p$ order, $x, y$ are a couple of nonadjacent vertexes and satisfy

$$
d_{G}(x)+d_{G}(y) \geq p+k-1
$$

then the sufficient and necessary condition for $G$ removing any $k$ vertexes with $(1,2 n-1)$-odd factor is that $G+x y$ getting rid of any $k$ vertexes with $(1,2 n-1)$-odd factor.

Proof The necessary condition is obvious, next we prove the sufficient condition.
By contradiction, let $G+x y$ remove any $k$ vertexes with $(1,2 n-1)$-odd factor, but there exist $k$ vertexes after getting rid of the $k$ vertexes of $G$ without $(1,2 n-1)$-odd factor. By lemma 1 , there exists

$$
B \subseteq V(G),|B| \geq k
$$

such that

$$
o(G-B)>(2 n-1)(|B|-k),
$$

and

$$
o(G+x y-B) \leq(2 n-1)(|B|-k) .
$$

at the same time, by $o(G-B)+|B| \equiv p(\bmod 2)$ and $p \equiv k(\bmod 2)$,

Thereby $o(G-B) \geq(2 n-1)(|B|-k)+2$.
Furthermore, by $o(G+x y-B) \geq o(G-B)-2$,
Consequently

$$
\begin{aligned}
(2 n-1)(|B|-k) & \geq o(G+x y-B) \geq o(G-B)-2 \\
& \geq(2 n-1)(|B|-k)+2-2
\end{aligned}
$$

Accordingly

$$
o(G-B)=(2 n-1)(|B|-k)+2
$$

and

$$
o(G+x y-B)=(2 n-1)(|B|-k) .
$$

It shows that $x, y$ are part of two odd components $C_{1}, C_{2}$ of $G-B$ respectively.

Thus

$$
d_{G}(x)+d_{G}(y) \leq\left|V\left(C_{1}\right)\right|-1+\left|V\left(C_{2}\right)\right|-1+2|B| .
$$

On the other hand, by hypothesis

$$
\begin{aligned}
d_{G}(x) & +d_{G}(y) \geq p+k-1 \geq|B|+\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right| \\
& +(2 n-1)(|B|-k)+k-1 .
\end{aligned}
$$

But

$$
(2 n-2)|B|>(2 n-2) k-1
$$

Contradiction.
Theorem 2 Let $t(\leq k+1)$ connected graph $G$ be $p$ order, $x, y$ are a couple of any nonadjacent vertexes of $G$, and satisfy

$$
\left|N_{G}(x) N_{G}(y)\right| \geq p-t+k-1
$$

then the sufficient and necessary condition for $G$ removing any $k$ vertexes with $(1,2 n-1)$-odd factor is $G+x y$ getting rid of any $k$ vertexes with $(1,2 n-1)$-odd factor.

Proof $G$ is a spanning subgraph of $G+x y$, so the necessary condition is obvious.

Next we prove the sufficient condition. We suppose $G+x y$ getting rid of any $k$ vertexes with $(1,2 n-1)$ odd factor, but $G$ is not, i.e. there exist

$$
B \subseteq V(G),|B| \geq k
$$

such that

$$
o(G-B)>(2 n-1)(|B|-k) .
$$

Be similar to the discussion of theorem 1

$$
o(G-B)>(2 n-1)(|B|-k)+2
$$

and

$$
o(G+x y-B)=(2 n-1)(|B|-k) .
$$

thereby $x, y$ are part of two odd components $C_{1}, C_{2}$ of $G-B$ respectively.
Noting that

$$
\begin{equation*}
\left|N_{G}(x) \cup N_{G}(y)\right| \leq\left|V\left(C_{1}\right)\right|-1+\left|V\left(C_{2}\right)\right|-1+|B| \tag{1}
\end{equation*}
$$

By hypothesis

$$
\begin{align*}
& \left|N_{G}(x) \cup N_{G}(y)\right| \\
& \geq p-t+k-1 \geq\left|V\left(C_{1}\right)\right|+\left|V\left(C_{2}\right)\right|+|B|  \tag{2}\\
& +(2 n-1)(|B|-k)-t+k-1
\end{align*}
$$

Combining (1) with (2)

$$
-2 \geq(2 n-1)(|B|-k)-t+k-1
$$

Consequently

$$
\frac{t-k-1}{2 n-1}+k \geq|B| \geq k,
$$

but $t \leq k+1$.

## Contradiction.

Theorem 3 Let $G$ be claw free graphs, $x$ be partial $k$ connection point. $G^{\prime}$ be graph obtained by locally fully on $G$ in $x$ point, then for $U \subseteq V(G),|U|=k$, the sufficient and necessary condition for $G-U$ with $(1,2 n-1)$-odd factor is $G^{\prime}-U$ with $(1,2 n-1)$-odd factor.

Proof $G$ is a spanning subgraph of $G^{\prime}$, so the necessary condition is obvious.

Next we prove the sufficient condition. Let $G^{\prime}-U$ have $(1,2 n-1)$-odd factor, $G-U$ have no $(1,2 n-1)$ odd factor. $G^{\prime}-U$ has $(1,2 n-1)$-odd factor, $\left|V\left(G^{\prime}\right)\right| \equiv k(\bmod 2)$, so $|V(G)| \equiv k(\bmod 2)$.
On the other hand, $G$ is claw free, so $G-U$ is claw free.

By lemma 2, lemma 3, $G-U$ has two odd components at least.

If $x \notin U$, let $x \in C_{0} \quad\left(C_{0}\right.$ is branch of $\left.G-U\right)$. Now, $G-U$ has the same odd components as $G^{\prime}-U$, therefore, $G-U$ has $(1,2 n-1)$-odd factor. which is
contradiction.
Next let $x \in U$, since $G^{\prime}-U$ has not odd components, for any odd components of $G-U$,

$$
N_{G}(x) \cap V(C) \neq \Phi
$$

is complete.
Let $x_{1}, x_{2}$ be adjacent vertexes of $x$ in two odd components of $G-U$ respectively.

Then $x_{1}, x_{2}$ is nonadjacent in the induced subgraph of $N_{G}(x)-(U-\{x\})$, which is contradiction to the fact that $x$ is a locally $k$ connected vertex, since

$$
|U-\{x\}| \leq k-1
$$

The proof is complete.

## REFERENCES

[1] Y. Cui and M Cano, "Some Results on Odd Factors of Graphs," Journal of Graph Theory, Vol. 12, No. 3, 1988, pp. 327-333. doi:10.1002/jgt.3190120305
[2] Z. Ryjáček, "On a Closure Concept in Claw-Free Graphs," Journal of Combinatorial Theory, Series B, Vol. 70, No. 2, 1997, pp. 217-224.
[3] O. Favaron, "On n-Factor-Critical Graphs," Discussiones Mathematicae Graph Theory, Vol. 16, 1996, pp. 41-51.
[4] N. Ananchuen and A. Daito, "Factor Criticality and Complete Closure of Graphs," Discrete Mathematics, Vol. 265, No. 1-3, 2003, pp. 13-21.
[5] G. Z. Liu and Q. L. Yu, "Toughness and Perfect Matchings in Graphs," Ars combinatorial, Vol. 48, 1998, pp. 129-134.
[6] C. P. Chen, "The Extendability of Matchings," Journal of Beijing Agricultural Engineering University, Vol. 12, No. 4, 1992, pp. 36-39.
[7] C. Teng, "Some New Results on ( $1, f$ ) -Odd Factor of Graphs," Journal of Shandong University, Vol. 31, No. 2, 1996, pp. 160-163.
[8] C. Teng, "Some New Results on $(1, f)$-Odd Factor of Graphs," Pure and Applied Mathematics, Vol. 10, 1994, pp. 188-192.
[9] D. P. Sumner, "Graphs with 1-Factors," Proceedings of the American Mathematical Society, Vol. 42, No. 1, 1974, pp. 8-12.

