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ABSTRACT 

Numerical simulations of a two-dimensional laminar forced convection flow adjacent to inclined backward-facing step 
in a rectangular duct are presented to examine effects of baffle on flow, heat transfer and entropy generation distribu-
tions. The main aim of using baffles is to enhance the value of convection coefficient on the bottom wall. But the useful 
energy can be destroyed due to intrinsic irreversibilities in the flow by the baffle. In the present work, the amount of 
energy loss is estimated by the computation of entropy generation. The values of velocity and temperature which are the 
inputs of the entropy generation equation are obtained by the numerical solution of momentum and energy equations 
with blocked-off method using computational fluid dynamic technique. Discretized forms of the governing equations in 
the (x, y) plane are obtained by the control volume method and solved using the SIMPLE algorithm. Numerical expres-
sions, in terms of Nusselt number, entropy generation number, Bejan number and coefficient of friction are derived in 
dimensionless form. Results show that although a baffle mounted onto the upper wall increases the magnitude of Nus-
selts number on the bottom wall, but a considerable increase in the amount of entropy generation number takes place 
because of this technique. For validation, the numerical results for the Nusselt number and entropy generation number 
are compared with theoretical findings by other investigators and reasonable agreement is found. 
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1. Introduction 

Forced convection flows in channels with abrupt expan-
sion or contraction are widely encountered in engineering 
applications, such as cooling passages of turbine blades, 
diffusers, combustors and heat exchangers. These sepa-
rated flows are intrinsically irreversible because of vis-
cous dissipation, reattachment and recirculation. The 
flow over backward facing step (BFS) was studied by 
several investigators both theoretically and experimen-
tally to find the physics of such separated flows. Most of 
research works on BFS has been extensively carried out 
from fluid mechanics and heat transfer perspectives. Ar-
maly et al. [1] analyzed laminar, transition, and turbulent 
isothermal flows over a BFS both experimentally and 
theoretically. Flow over a BFS with force convection 
heat transfer was conducted by other investigators by 
different numerical techniques [2-7]. These results 
showed that the flow separation and subsequent recircu-
lation result in very poor heat transfer performance in the 
region near the backward facing step. A review of re-

search on laminar mixed convection flow over forward- 
and backward-facing steps was done by Mulaweh [8]. 

The compactness of new thermal systems leads the 
importance of finding effective means for enhancing heat 
transfer. Using baffles is one of an effective method for 
this purpose. In a recent study by Nie et al. [9] about 
convection flow over BFS, it was revealed that a baffle 
mounted onto the upper wall increases considerably the 
magnitude of maximum Nusselt number at the stepped 
wall. In that study, the set of governing equations in-
cluding continuity, momentum and energy equations for 
three-dimensional convection laminar flow over BFS in a 
duct were solve numerically by CFD technique. The ef-
fects of baffle location and its height on flow and heat 
transfer distributions were carried out. 

Recently, entropy generation analysis has been exten-
sively applied in many fluid flows with heat transfer in 
different geometries. Entropy generation analysis pro-
vides a useful tool to identify the irreversibilities in any 
thermal system as well as to determine the optimum con-
dition for any process. Heat transfer and viscous dissipa-
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tion are the only sources of entropy generation in force  
convection fluid flow. There are a few studies in which 
the analysis of entropy generation due to forced convec-
tive flow over a BFS has been conducted [10,11]. Re-
cently, investigation of entropy generation in a flow over 
a BFS under bleeding condition was done by Abu-Nada 
[12]. In that work, the set of governing equations were 
solved by the finite volume method and the distributions 
of entropy generation number on solid surfaces at differ-
ent conditions were calculated. Moreover, the effects of 
bleed coefficient for both blowing and suction on the 
entropy generation number and Bejan number were pre-
sented. 

In the present work for the first time, the entropy gen-
eration analysis for convection flow over an inclined 
BFS in a duct with baffle is carried out. Considering in-
clined step makes the problem more general in compari-
son to the researches in all of the above references in 
which the step has right angle. The main aim is to iden-
tify the irreversibilities and entropy generation due to 
baffle against its advantage which is enhancing the con-
vection coefficient in the thermal system. Toward this 
end, the set of governing equations consisting the con-
servation of mass, momentum and energy and also the 
entropy generation equation are solved by CFD method 
in the Cartezian coordinate system using blocked-off 
method. Finally, the effects of baffle location and its 
height on the distributions of Nusselt number, entropy 
generation number and friction coefficient are explored. 

2. Theory 

For calculating the amount of entropy generation in the 
force convection flow indicated in Figure 1, the velocity 
and temperature distributions are primary needed. For 
two-dimensional incompressible, steady and laminar 
flow, the non dimensional forms of the governing equa-
tions which are the conservations of mass, momentum 
and energy can be written as follows: 
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in Equations (1) to (4), the following dimensionless 
groups are used: 
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where Pr and Re are the prandtl and Reynolds numbers, 
respectively and  is the characteristic length which is 
assumed to be the duct height after the step. 

l

2.1. Boundary Conditions 

The boundary conditions for the hydrodynamic problem 
are impermeability and non-sliping on the solid bounda-
ries including the baffle. Besides, at the inlet section, 
uniform flow with velocity V0 is considered and at the 
outlet section, zero axial gradients for velocity compo-
nents are imposed. 

In solving the energy equation, the surfaces of the top 
wall with the baffle and bottom wall including the step 
are considered isotherm with the constant temperatures 

c  and h , respectively. Besides, at the inlet section, a 
uniform temperature iT  is assumed and at the outlet 
section, zero temperature gradient in x-direction is em-
ployed. 

T T

2.2. Regular Grid with Blocked-Off Region 

We now describe the manner in which we treat the ge-
ometry of inclined step using the blocking-off method 
(Patanker [13]). By blocked-off technique, a CFD based 
computer program written for a regular grid can be im-
proved to handle an irregularly shaped computational 
domain. This can be done by rendering inactive some of 
the control volumes of the regular grid so that the re-
maining active control volumes form the desired irregu-
lar domain with complex boundary. Example is shown in 
Figure 2, where the shaded areas denote the inactive 
control volumes. It is obvious that arbitrary geometries 
are approximated by a series of the rectangular grids. It is 
worth mentioning that using fine grids in the interface 
region between active and inactive zones causes to have 
an approximated boundary which is more similar to the 
true boundary.  

p
  

Idea of the blocking-off operation consists of estab-
lishing known values of the relevant dependent variables 
in the inactive control volumes. If the inactive region 
represents a stationary solid zone as in the case, the ve-
locity components in that region must be equal to zero, 
and if the region is regarded as isothermal one, the 
known temperature must be established in the inactive 
control volumes. In the present computations, zero ve-
locity in the inactive zone is employed by use of a very 
large viscosity for grid points in that region with consid-
ering no slip condition on the nominal boundaries. In 
thermal problem, the nominal boundaries are considered 
isotherm and large value for thermal conductivity for the 
grid points inserted in the inactive zone is employed. By   
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Figure 1. Physical model. 
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the following dimensionless quantities are defined: 
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where Ns is the entropy generation number, genS  the 
volume rate of entropy generation, Br the Brinkman 
number and τ is the non-dimensional temperature differ-
ence. 

In Equation (6), the first term represents entropy gen-
eration due to heat transfer ( ), while the second 
term represents the entropy generation due to the fluid 
viscous effect ( ). The Bejan number which is de-
fined as follows is also computed in the present analysis. 

condNs

viscNs
Figure 2. Blocked-off region in a regular grid. 

 
this technique, the grid points in the inactive zone be-
come isotherm such that their temperatures are equal to 
the temperature considered on the nominal boundaries.  
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According to the definition of Bejan number, the irre-
versibilities due to the viscous effect are dominant when 

1 2Be  . When 1 2Be  the heat transfer irreversibili-
ties dominate the process and if Be = 0.5, the entropy 
generation due to the viscous effect and heat transfer are 
equal.  

3. Entropy Generation 

To analyze the entropy generation in forced flow prob-
lems, the analyzer needs to use equations from which the 
entropy generation can be calculated. These equations 
can be derived by identifying the sources of entropy gen-
erations and then applying the second law of thermody-
namics. In the forced convection flow, the entropy gen-
eration is associated to the heat transfer and fluid flow 
friction. Bejan [14] derived the overall general entropy 
generation in Cartesian coordinate system as follows: 

 ,

4. Solution Strategy 
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In this section, a brief overview of the numerical method 
used for the solution of the governing equations is pre-
sented. Finite difference forms of the continuity, mo-
mentum and energy equations are obtained by integrating 
over an elemental cell volume with staggered control 
volumes for the x- and y- velocity components. The dis-
cretized forms of the governing equations are numeri-
cally solved by the SIMPLE Algorithm of Patankar and 
Spalding [15] for the pressure correction in the iteration 
procedure. Numerical solutions of the governing equa-

the non dimensional form of this equation for calculating 
the entropy generation number is given as [12]: 
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tions together with the boundary conditions are obtained 
iteratively by the line-by-line method by utilizing the 
TriDiagonal-Matrix Algorithm (TDMA). Iterations are 
terminated when sum of the absolute residuals becomes 
less than for each equation. As the result of grid 
tests for obtaining the grid-independent solutions, an 
optimum grid of 400   150 with clustering near the 
solid surfaces is determined in x- and y- directions. 

45 10

After calculation of velocity and temperature fields, 
Equation (6) is used to solve for the entropy generation 
number at each grid point in the flow domain. Then, the 
total entropy generation through the flow domain is cal-
culated as: 

 , d
V

Ns Ns X Y V               (8) 

where V is the volume of computational domain. Also, 
the average Bejan number is also calculated by the fol-
lowing equation: 
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Besides, the distributions of friction coefficient and Nus-
selt number on the bottom wall are determined as fol-
lows: 
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5. Validation of Computational Results 

The present numerical implementation is validated by 
reproducing the theoretical results of two other investi-
gators. Along two different test cases, the results of Nus-
selt number in convection flow over BFS with baffle are 
compared with those presented by Nie et al. [9] and the 
results of entropy generation number with that of the Abu 
Nada [12]. In these two works, the BFS was considered 
to be vertical to the stepped wall. It should be noted that 
in solving the governing equations for these two test 
cases, the same values for parameters which were used in 
Refs. [9,12] are considered in the present analysis. Fiure 
3 shows the variation of Nusselt number along the bot-
tom wall. It is seen that the value of maximum Nusselt 
number increases due to baffle effect. For instance, the 
maximum Nusselt number for 1D H   is about three 
times of the one for D H   (without baffle). Also, 
the location of moves downstream as the baffle 
moves along the stream wise direction. For another test 
case in a convection flow over BFS without baffle, the 
variation of entropy generation number Ns along the 
bottom wall is shown in Figure 4. It is seen that the 

minimum value of Ns occurs directly at x = 0 at the bot-
tom step corner, where the fluid has no motion. The 
maximum value of Ns takes place inside the recirculation 
zone and then it drops sharply to a very low value at the 
reattachment point after which Ns increases and ap-
proaches to a constant value far from the step. However 
Figures 3 and 4 show that the general agreements be-
tween the present results with the theoretical findings by 
other investigators are quite good and the values of 
minimum and maximum entropy generation numbers and 
Nusselt numbers and their predicted locations are rea-
sonably closed to each other.  

maxNu

6. Results and Discussion 

The entropy generation in convection laminar air flow 
over an inclined backward step in a duct with a baffle  
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Figure 3. Distribution of Nusselt number on the bottom wall 
at two different baffle locations, Re = 343, θ = 90˚. 
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Figure 4. Variation of entropy generation number along the 
bottom wall Re = 400, θ = 90˚. 
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mounted onto the upper wall is calculated for the purpose 
of determining the amount of irreversibilities due to baf-
fle. Toward this end, the continuity, momentum and en-
ergy equations are solved numerically by CFD method. 
In the present computations for the physical domain 
shown in Figure 1, the expansion ratio ( ER H h ) is 
set equal to 2 in all of the test cases when the distance of 
baffle from the step depicted by D, is considered to be 
varied from 1D H   to D H  . The computed 
domain in the x-direction downstream of the step is re-
stricted by 0 20x H   and the distance between the 
inlet section and step depicted by a set equal to 10H to 
ensure fully developed condition for velocity and tem-
perature distributions before the step.  

First in order to show the flow pattern, the streamlines 
are plotted in Figure 5 for an inclined step with θ = 60˚ 
under the condition of 1D H  , 2b bW h H   and 
Re = 500. The effects of step and baffle on the flow are 
clearly seen from the curvatures of streamlines and sepa-
rated regions. Figure 5 shows that five different recircu-
lation zones are encountered for Re = 500 in the flow 
domain. The primary recirculation region on the bottom 
wall occurs adjacent to the step upstream the baffle and 
the secondary one takes place on the bottom wall down 
stream the baffle, whereas three other recirculation zones 

occur adjacent to the baffle surface. 
Since, the main task of the present study is to investi-

gate the effect of baffle on the entropy generation in 
laminar forced convection flow, the following results 
shown in Figures 6 to 10 are due to air flows over in-
clined step with for three different locations of 
baffle, 

60 
1,2D H  and 3, three different baffle’s height, 

0.2,0.4bh H  and 0.5, when the baffle’s width is equal 
to H/2. In the computations of these figures, the Prandtl 
number is kept constant equal to 0.7 to guarantee con-
stant fluid physical properties for moderate and small 
values of temperature difference  h cT T . The value of 
Reynolds number is equal to 500 except in Figures 9 and 
10 in which the effect of Re on entropy generation and 
Bejan number is studied. Besides, the values of 
non-dimensional temperatures for bottom wall (including 
the step), top wall (including the baffle) and inlet fluid 
are set equal to 1, 0 and 0.7, respectively. 

Variations of entropy generation number along the 
bottom wall at different locations of baffle and also at 
three different baffle’s heights are plotted in Figures 6(a) 
and (b), respectively. Also, the Ns variation in BFS flow 
without baffle is plotted in another coordinate system in 
Figure 6(a) because of different orders in the values of 
Ns. This figure shows that the baffle makes a different 
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Figure 5. Streamlines in flow over inclined step in a duct Re = 500, θ = 60˚, 0.5, 1bh H = D H = . 
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Figure 6. Variation of entropy generation numbers along the bottom wall Re = 500, θ = 60˚. (a) Effect of baffle location, bh H  
; (b) Effect of baffle height, 0.5= 1D H = .   



A. BAHRAMI  ET  AL. 58 

  
trend for Ns distribution along the bottom wall in com-
parison to BFS flow without baffle. In the absence of 
baffle, the value of entropy generation number decreases 
along the step length and reaches to zero on the bottom 
wall at the step corner. After this point, Ns increases and 
the maximum value of Ns occurs inside the recirculation 
zone and then it drops sharply to a very low value at the 
reattachment point after which Ns increases and ap-
proaches to a constant value far from the step. This be-
havior can be explained by noting that after flow separa-
tion, the vortices increase dramatically inside the recir-
culation region that causes to take place maximum value 
of Ns in this zone. Besides, at the reattachment point no 
shear stresses are taking place and the entropy generation 
is totally due to conduction. But the presence of baffle 
causes a different trend for entropy generation number 
such that the baffle effect governs to the other factors in 
variation of entropy generation. According to Figure 
6(a), the maximum entropy generation number occurs on 
the bottom wall just below the baffle with a value which 
is very greater than that of takes place for BFS flow ex-
cluding the baffle. For example in the case of 1D H  , 
the maximum entropy generation number is about 80 
times of the one for D H   (without baffle). This is 
related to the increased temperature and velocity gradi-
ents below the baffle where the flow is pushed toward 
the bottom wall. Also, it is seen from Figure 6(a) that the 
value of max  increases as the baffle moves toward the 
BFS (with the decrease of D). The effect of baffle height 
of the distribution of Ns along the bottom wall is indi-
cated in Figure 6(b). This figure shows that the baffle 
height has an important effect on the variation of entropy 
generation umber such that the value of  increases 

dramatically by a small increase in the height of baffle. It 
is also due to increasing in velocity and temperature gra-
dients on the bottom wall by the baffle. Besides, it is seen 
from Figure 6(b) that the effect of recirculation region 
after the step on the variation of Ns becomes important 
for small value of the baffle height, such that for higher 
values for b , the variation of Ns is only affected by the 
baffle effect instead of flow separation and reattachment. 
It is worth mentioning that in Figure 6 and also in later 
similar figures for inclined step, the region 0 0.29X

Ns

maxNs

h

   
tep projected length after which there is the 

bottom wall.  
is due to the s

Variations of Nusselt number on the bottom wall at 
different locations of the baffle and also at different baf-
fle’s heights are plotted in Figures 7(a) and (b), respec-
tively. For convection flow over BFS excluding the baf-
fle ( D H  ), it is seen from Figure 7(a) that Nu de-
creases along the step projected length and the minimum 
value of Nu occurs on the bottom wall adjacent to step 
corner and the maximum value at the reattachment point 
after witch Nu approaches to a constant value. In the 
presence of baffle, similar trend is seen for the variation 
of Nu on the bottom wall, but the maximum Nusselt 
number takes place just below the baffle with a value 
which is very grater than of the one for D H  . Be-
sides, it is seen from Figures 7(a) and (b) that the maxi-
mum Nusselt number increases as the baffle moves to-
ward the BFS and also by increasing in the baffle height. 

Distributions of friction coefficient along the bottom 
wall at different baffle locations and also at different baf-
fle’s height are illustrated in Figures 8(a) and (b), re-
spectively. It is seen that fc  is negative inside the cir- 
culation zone due to the back flow and the minimum 
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(a)                                                       (b)  

Figure 7. Variation of Nusselt number along the bottom wall. (a) Effect of baffle location, 0.5bh H = ; (b) Effect of baffle 

height, 1D H = .  
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Figure 8. Variation of friction coefficient along the bottom wall Re = 500, θ = 60˚. (a) Effect of baffle location, hb/H = 0.5; (b) 
Effect of baffle height, D/H = 1. 
 
value of friction coefficient takes place in this region 
after which the value of fc  becomes equal to zero at the 
point of reattachment. If one notices to the fc  curves in 
the vicinity of x = 0 in detail, it is seen that the value of 
friction coefficient is negative along the step projected 
length and then becomes zero at the step corner on the 
bottom wall. This is related to the fact that the surface of 
inclined step is exposed to the recirculation flow as 
shown in Figure 5. Increasing in the value of friction 
coefficient because of the baffle is very considerable, 
such that Figure 6(a) shows that for the case of 

1D H  , that the maximum friction coefficient is about 
15 times of the one in the absence of baffle. Comparison 
between the curves plotted in Figure 8 shows that the 
value of maximum friction coefficient which is takes 
place on the bottom wall below the baffle increases 
sharply as the baffle moves toward the BFS and also by 
increasing in the baffle height.  

In the previous section, it was discussed that the 
amount of irreversibility in a fluid flow can be estimated 
by computing the total entropy generation in the flow 
domain. In order to show the effect of baffle on Total , 
Figure 9 shows the variation of total entropy generation 
in the flow domain against the Reynolds number for 
three different baffle locations and also for the convec-
tion flow over BFS without baffle. It is seen that the baf-
fle has a considerable effect on the total entropy genera-
tion, such that the value of this parameter increases 
sharply by the baffle, especially as the baffle moves to-
ward the BFS and at high values of Reynolds number. In 
a similar manner, the variations of average Bejan number 
with Re for three different baffle locations and also for 
he convection flow over BFS without baffle are plotted 
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Figure 9. Total entropy generation v.s Reynolds number, θ 
= 60˚, hb/H = 0.5. 
 
in Figure 10. As it was mentioned before, the Bejan 
number is the ratio of entropy generation due to conduc-
tion to the total entropy generation. Figure 10 shows that 
Be decreases as the baffle moves toward the BFS. Be-
cause under this condition, the value of velocity gradient 
on the bottom wall increases that causes an increase in 
the value visc . Besides it is seen that the average Bejan 
number decreases with increasing in Reynolds number. 
This is in consistent with the theoretical findings by Abu 
Nada [12]. 

Ns

7. Conclusion 

The present research deals the second law analysis of  
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Figure 10. Variation of average Bejan number with Rey-
nolds number, θ = 60˚, hb/H = 0.5. 
 
convection laminar flow over inclined backward-facing 
steps in a duct with a baffle mounted onto the upper wall. 
The set of equations governs to the fluid flow, heattrans-
fer and entropy generation is solved numerically by CFD 
techniques in the Cartesian coordinate system using 
blocked-off method. Results show that although the baf-
fle enhances the convection coefficient on the bottom 
wall, but it causes a considerable increase in the value of 
entropy generation. Such that more irreversibilities take 
place in convection flow over BFS as the baffle moves 
toward the step, especially for high value of the baffle 
height and at high Reynolds number. 
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Nomenclature 

a  distance between inlet section and step (m)  

b

Be  Bejan number  
W   width of baffle (m) 

(x, y)  coordinates (m)  
Br  Brinkman number  
(X,Y) dimensionless coordinates  

f
Greek Symbols 
c   coefficient of friction 

ER  expansion ratio (H/h)  
   thermal diffusivity (m2/s) 
H  channel height (m)  
   step inclined angle 
h  step height (m)  
   dynamic viscosity (N·s·m−2)  

bh   baffle height (m) 
   density (kg·m3)  
k  thermal conductivity (W·m−1·K−1)  
   dimensionless temperature parameter  
L  length of the channel (m) 
   non-dimensional temperature  
   characteristic length (m) 
   kinematic viscosity (m2/s)  

Ns  entropy generation number   
   viscous dissipation number  
Nu  Nusselt number 
Subscripts  
P  dimensionless pressure   
b  baffle 
p  pressure (Pa)    
cond  conduction     
Pr  Prandtl number    
visc  viscous 
Re  Reynolds number   
w  wall 

"
gens   volume rate of entropy generation 

(W·m−3·K−1) 
m  mean bulk value 
T   temperature (K) 

iT
T

  inlet fluid temperature (K) 

c

T
  temperature of cold wall (K) 

h

(u, v) x- and y-velocity components  (U, V)
     dimensionless x- and y-velocity components. 

  temperature of hot wall (K) 
)m/s(

0V   inlet fluid velocity  (m/s)
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