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ABSTRACT 

Gravitational search algorithm (GSA) is a recent introduced global convergence guaranteed algorithm. In this paper, a 
quantum-behaved gravitational search algorithm, namely called as QGSA, is proposed. In the proposed QGSA each 
individual mass moves in a Delta potential well in feasible search space with a center which is weighted average of all 
kbests. The QGSA is tested on several benchmark functions and compared with the GSA. It is shown that the quan-
tum-behaved gravitational search algorithm has faster convergence speed with good precision, and thus generating a 
better performance. 
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1. Introduction 

The objective of global optimization is to find the glob- 
ally best solution of (possibly nonlinear) models, in the 
search space. Formally, global optimization seeks global 
solution of a constrained optimization model. Nonlinear 
models are ubiquitous in many applications, e.g., in ad- 
vanced engineering design, data analysis, financial plan- 
ning, scientific modeling, and others. These solutions of- 
ten require a global search approach. 

The field of swarm intelligence is an emerging re- 
search area that presents features of self-organization and 
cooperation principles among group members bio-in- 
spired on social societies. Swarm Intelligence (SI) is the 
property of a system whereby the collective behaviours 
of agents interacting locally with their environment cause 
coherent functional global patterns to emerge. 

Gravitational search algorithm (GSA), is a population 
based swarm optimization technique which was intro- 
duced by Rashedi et al. in 2009 [1], is a population based 
evolutionary optimization inspired by law of gravity. 
Similarly to genetic algorithms [2], GSA is an optimiza- 
tion tool based on a population, where each member is 
seen as a mass, and each mass is a potential solution to 
the problem under analysis. It has already been shown 
that GSA is comparable in performance with other evo- 
lutionary algorithms such as particle swarm optimization 
(PSO) [3] and Genetic Algorithm (GA) [2]. 

The basic idea of the GSA is to mimic the physical at- 
traction between masses. Agents are considered as ob- 
jects and their performance is measured by their masses. 
All these objects attract each other by the gravity force, 
and this force causes a global movement of all objects 

towards the objects with heavier masses. 
At the end of the 19th century, classical mechanics 

encountered major difficulties in describing motions of 
microscopic particles with extremely light masses and 
extremely high velocities, and the physical phenomena 
related to such motions. These aspects forced scientists to 
rethink the applicability of classical mechanics and lead 
to fundamental changes in their traditional understanding 
of the nature of motions of microscopic objects [4]. The 
studies of Bohr, de Broglie, Schrödinger, Heisenberg and 
Bohn in 1920s inspire the conception of a new area, the 
quantum mechanics [5]. 

Recently, the concepts of quantum mechanics and phy- 
sics have motivated the generation of optimization me- 
thods. Inspired by the GSA and quantum mechanics 
theories, this work presents a new Quantum-behaved 
GSA (QGSA) approach with outstanding result for uni- 
modal functions. 

The rest of the paper is organized as follows: Section 2 
describes the features of classical GSA for continuous 
optimization, while Sections 3 explains the QGSA. Sec- 
tion 4 presents the results of the optimization. Lastly, 
some conclusion remarks are given in Section 5. 

2. Classical Gravitational Search Algorithm 

GSA is a global search strategy that can handle effi-
ciently arbitrary optimization problems. Inspired by law 
of gravity, Rashedi et al. introduced the GSA method 
which is based on the Newtonian gravity. In the GSA, 
agents are considered as objects and their performance is 
measured by their masses. All these objects attract each 
other by the gravity force, and this force causes a global 
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movement of all objects towards the objects with heavier 
masses. 

The procedure for implementing the classical version 
of GSA is given by the following steps: 

Step 1. Initialization of agent positions: Initialize a 
population (array) of agents with random positions in the 
D-dimensional problem space using uniform probability 
distribution function. To this aim, the GSA consider a 
system with  agents (masses), the position of the  
th agent is defined as follows: 

N i

1,2, , 1, , , , ,   d n
i i i iX x x x   i N 

d

      (1) 

where ix is the position of  th mass in the th di-
mension and  is dimension of the search space. 

i d



D
Step 2. Evaluation of agent’s fitness: Evaluate each 

agent’s fitness value. 
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Based on [1], the mass of each agent is calculated after 
computing current population’s fitness as follows: 
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where iM t and fi i  represent the mass and the fit-
ness value of the agent  at , and, 
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t t  are defined as follows (for a maximization 
problem): 

 best             (5) 

 worst            (6) 

Step 4. Calculation of the total force in different direc- 
tions: The total forces from a set of heavier masses that 
apply on agent  is calculated based on law of gravity 
as follow: 

       
      d d

j i
best,

rand j id
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where j  is a uniform random in the interval  0,1
 

, 
ε is a small value, and ijR t

i
 is the Euclidian distance 

between two agents  and j  defined as 
     

2ij i j . ,X tR t  X t bestk is the set of first K  
agents with the best fitness value and biggest mass. 

bestk is a function of time, initialized to 0K  at the be- 

ginning and decreasing with time. Here, 0K  is set to 
 (total number of agents) and is decreased linearly to 

1. 
N

 

Step 5. Calculation of acceleration and velocity: Agent 
acceleration is calculated by using law of motion as fol- 
low: 
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 where  is a uniform random in the interval i . 0,1
Then, the next velocity of an agent is calculated as a 

fraction of its current velocity added to its acceleration. 

     1 randd d d
i i i iv t v t a t   

i

         (9) 

Step 6. Updating agents’ position: Change the agent’s 
position, x , according to Equation (10). 

     1 1d d d
i i ix t x t v t             (10) 

Step 7. Repeating the evolutionary cycle: Repeat steps 
2 to 6 until the stop criteria is reached, usually a suffi- 
ciently good fitness or a maximum number of iterations 
(generations). 

3. Quantum Formulation of the Agent  
Dynamics 

As per classical mechanics, an individual is depicted by 
its position vector ix  and velocity vector i , which 
determine the trajectory of the individual. The individual 
moves along a determined trajectory in Newtonian me- 
chanics, but this is not the case in quantum mechanics. In 
quantum world, the term trajectory is meaningless, be- 
cause i

v

x  and i  of an individual cannot be determined 
simultaneously according to uncertainty principle. There- 
fore, if individual agent in a GSA system has quantum 
behavior, the GSA algorithm is bound to work in a dif- 
ferent fashion. 

v

In quantum time-space framework, the quantum state 
of an individual is depicted by wave function    in- 
stead of position.  is the probability that measurement 
of the individual’s position finds it about the point 
whereby 

Q

2
Q  . 

In quantum mechanics, the governing equation is the 
general time-dependent Schrödinger equation, 

     , ,j r t H r r t
t
 



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 is a time-independent Hamiltonian opera- 
tor given by, 
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where  is Planck’s constant, m is the mass of the indi-
vidual, and  is the potential energy distribution. Its 
amplitude squared is the probability that measurement of 
the individual’s position at the time  finds it in the 
volume element about the desired point. By imposing the 
following normalization condition we can justify such a 
measure, 


V r

t



2



 d d 1r Q r





 

 

             (13) 

Now, we hypothesize that the GSA system is a quan-
tum system, each mass of which is of quantum state for-
mulated by wave function. Inspired by analysis of con-
vergence of the classical GSA in [1], we assume that an 
individual mass moves in a Delta potential well in feasi-
ble search space, of which the center is weighted average 
of all kbest. For simplicity, we consider an agent in 
one-dimensional space, the potential energy of the mass 
in one-dimensional Delta potential well is represented as: 

 V r r                 (14) 

where   is a positive number proportional to the 
“depth” of the potential well. The depth is infinite at the 
origin and zero elsewhere. 

The Schrodinger equation for the model is, 
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For the equation can be written as, 
2

dr


2 2

d 2
0

m
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In order to prevent diverging of agents the following 
boundary conditions is applied 

0 r              (17) 

To satisfy the bound condition, Equation (16) is cal-
culated as follow: 
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2mE
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QGSA is the integration of quantum computing and 
GSA. The QGSA is based on the representation of the 
quantum state vector. 

To evaluate the fitness value, we need to learn of pre-
cise information of position of the agent. However, the 
quantum wave function can only give the probability 
density function that the mass appears at the desired 
position. So we have to gauge the position of the indi-
vidual, which is called collapsing the quantum state to 
the classical state. According to Monte Carlo Method of 
uncertainty, it is possible to simulate the process of 
measurement. The procedure of simulation is described 

as follows. 
To this aim, a random variable  is generated un- 

iformly distributed between 0 and 1, so Equation (18) 
can be simplified with substituting a random number 
instead of it, 

2 2
2
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mE
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        (19) 

where  is a random number uniformly distributed 
on  0,1 . 

 best ln rand
2 2

r x
mE
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


      (20) 

Thus, the position of agent accurately is measured as 
follows, 

 best ln rand
2 2

x
mE
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


         (21) 

where 
2 2mE


 is the only parameter of the algorithm. 

The procedure for implementing the QGSA is given 
by the following steps: 

Step 1. Initialization of mass positions: Initialize a 
population (array) of masses with random positions in 
the D-dimensional problem space using a uniform prob-
ability distribution function. 

Step 2. Evaluation of particle’s fitness: Evaluate the 
fitness value of each agent. 

Step 3. Selecting bestk  and update bestP : bestk  is 
the set of first K agents with the best fitness value and 
biggest mass. In order to updating bestP , compare each 
agent’s fitness with the agent’s bestP . If the current value 
is better than bestP , then set the bestP  value equal to 
the current value and the bestP  location equal to the cur- 
rent location in D-dimensional space. 

Step 4: Updating the best iM  using Equation (23): 

,distance besti l i lX k             (22) 
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Step 5. Updating of masses’ position: Change the po-
sition of the mass where 1c  and 2  are two random 
numbers generated using a uniform probability distribu-
tion in the range . 

1 2

1 2

best best
Best

d d
d i i
i

c M c P

c c





        (24) 

Employing the Monte Carlo method, the masses move 
according to the following iterative equation: 
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where   is a design parameter called contraction-ex- 
pansion coefficient, and  are values generated 
according to a uniform probability distribution in range 

rand S

 0,1

D

. 

Step 6. Repeating the evolutionary cycle: Loop to Step 
2 until a stop criterion is met, usually a sufficiently good 
fitness or a maximum number of iterations (generations). 

4. Numerical Results 

In this study, to evaluate the performance of the QGSA, 
7 minimization benchmark functions [1,4] listed in Table 
1 are used for comparison with classical GSA. In Table 1, 

 is the dimension of search space (function), optf  is 
the minimum value of the function. The minimum value 
( optf ) of the functions of Table 1 are zero. The test func-
tions are unimodal high-dimensional functions which 
make them suitable for evaluating performance of the 
algorithm in point of view convergence rate. 

We evaluate the unimodal optimization algorithm in 
two aspects: quality, and precision of solutions. 

Quantity: Number of needed fitness function evalua-
tions to reach the global optimum. It means the conver-
gence rate of search algorithm. 

Precision or accuracy: The difference between the glo- 
bal minimum and one but lowest minimum determines 
the possibility to detect the global minimum point. 
 

Table 1. Benchmark functions used in this study. 

Test functions 
Feasible 
spaces 

D 

Table 2. Minimization result of functions in table 1. Results 
are averaged over 30 runs and the average best-so-far and 
standard deviation of best solution obtained at last iteration 
are given. 

  
Classical 

GSA 
Quantum GSA

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

7.3e−11 
7.1e−11 
4.4e−25 

0 
0 
0 

1f

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

4.03e−5 
4.07e−5 

1.38e−013 

0 
0 
0 

f2

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

0.16e+3 
0.15e+3 
1.05e+4 

0 
0 
0 

f3

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

3.7e−6 
3.7e−6 
1.4e−4 

0 
0 
0 

f4

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

25.27 
25.17 

181.83 

1.112 
0 

33.156 
f5

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

8.3e−11 
7.7e−11 

2.41e−32 

1.176e−3 
0 

7.87e−3 
f6

The average 
best-so-far solution 
median of the best 

solution 
the standard deviation

0.018 
0.015 

1.02e−4 

0 
0 
0 

f7
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In unimodal functions, the convergence rate of search 
algorithm is more important than the final results because 
there are other methods which are specifically designed 
to optimize unimodal functions. 
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
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The results are averaged over 30 runs and the average 
best-so-far solution, median of the best solution and the 
standard deviation in the last iteration are reported for 
unimodal functions in Table 2. As this table illustrates 
QGSA provides better results than GSA for all functions. 
In these function QGSA tends to find the global optimum 
faster than classical GSA and hence has a higher con-
vergence rate. 

The numerical results in Table 2 show that almost the 
QGSA could hit the optimal solution with high precision.  

There are two exception test functions which QGSA 
cannot tune itself and have not a good performance. 

In Rosenbrock function, the global optimum is inside a 
long, narrow, parabolic shaped flat valley. To find the 
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valley is trivial, so converging to the global minimum, 
however, is difficult. Hence QGSA could not tune itself. 

Also, the good convergence rate of QGSA could be 
concluded from Figures 1 to 7. According to these fig-
ures, QGSA tends to find the global optimum in an ac-
ceptable time hence has a high convergence rate. 
 

 

Figure 1. Comparison of performance of QGSA and GSA 
for minimization of .  1f x
 

 

Figure 2. Comparison of performance of QGSA and GSA 
for minimization of .  2f x

 

 

Figure 3. Comparison of performance of QGSA and GSA 
for minimization of 

 

Figure 4. Comparison of performance of QGSA and GSA 
for minimization of  4f x . 

 

 

Figure 5. Comparison of performance of QGSA and GSA 
for minimization of  5 x . f

 

 

Figure 6. Comparison of performance of QGSA and GSA 
for minimization of  6f x . 

 
The reported results for dimension 30 by for different 

test functions are summarized in Table 2. According to 
Figures 1 to 7, we can see that QGSA provides better 
solutions except for  3  6

x . f x . f
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Figure 7. Comparison of performance of QGSA and GSA 
for minimization of .  7f x

5. Conclusion 

In this paper, a quantum version of gravitational search 
algorithm is introduced called as QGSA. It is tasted on 
different benchmark functions to investigate the effi- 
ciency of QGSA. The results show that QGSA is per- 
forming much better than GSA in finding the optimum 
result. Although the used functions are unimodal func- 
tions but it could expand it to multimodal functions. 
Currently, the authors are working on the improvement 

of the proposed QGSA. 
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