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Abstract 
 
Existing works on data aggregation in wireless sensor networks (WSNs) usually use a single channel which 
results in a long latency due to high interference, especially in high-density networks. Therefore, data aggre- 
gation is a fundamental yet time-consuming task in WSNs. We present an improved algorithm to reduce data 
aggregation latency. Our algorithm has a latency bound of 16R + Δ – 11, where Δ is the maximum degree 
and R is the network radius. We prove that our algorithm has smaller latency than the algorithm in [1]. The 
simulation results show that our algorithm has much better performance in practice than previous works. 
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1. Introduction 
 
A wireless sensor network (WSN) consists of sensor no- 
des that are capable of sensing, processing, and transmit-
ting. Each node is responsible for covering a certain geo- 
graphical area with the primary functions of monitoring 
changes and reporting them using its radio transmitter to 
the sink(base station) and in cooperation with other no- 
des. Sensory data is sent to the sink in a multi-hop mode. 

WSNs have no infrastructure and nodes are self-or-
ganized arbitrarily. WSNs have proven their success in a 
various applications such as battlefield surveillance, traf-
fic monitoring and forest fire monitoring. In some appli-
cations, e.g. forest fire monitoring and aquiculture sur-
veillance, end users want to extract data aggregation in-
formation from WSNs with low latency. 

However, WSNs usually use a single channel, which 
results in a long latency due to high interference, especi- 
ally in high-density networks. When two or more sensors 
send data to a common neighbor at the same time, data 

collision occurs at the common neighbor, preventing it 
from successfully receiving any data. The data sent by a 
sender should be received by a corresponding receiver 
with no collisions. The receiver aggregates the received 
data with its own data, and stores the aggregated data as 
its new data. The time consumed by a single sending-re- 
ceiving-aggregating-storing is normalized to one, and pa- 
rallel sending-receivings are desirable for reducing net-
work delay. 

In this paper, we focus on reducing the latency of data 
aggregation by constructing a good schedule with low 
latency. Minimum Data Aggregation Latency (MDAL) is 
an important research problem. MDAL is defined as fol-
lows: Given a wireless senor network that consists of a 
number of sensors and a sink, supposing each sensor has 
a piece of data to be aggregated and transmitted to the 
sink, the MDAL problem is to design a transmission 
schedule of data aggregation for all sensors such that 
there is no conflict between any two concurrent trans-
missions and the total number of timeslots for all data to 
reach the sink is minimized. 
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Extensive research has been conducted on the MDAL 
problem, such as [1,2]. Chen et al. [2] prove that the MD- 
AL problem is NP-hard. They designed a (Δ – 1)-appro- 
ximation algorithm named SDA (Shortest Data Aggrega-
tion) based on Shortest Path Tree for data aggregation 
with a latency bound of (Δ – 1)·R, where Δ is the maxi-
mum degree and R is the network radius. Huang et al. [1] 
proposed an algorithm based on Maximal Independent Set 
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which has a latency bound of 23R + Δ – 18. Here Δ con-
tributes to an additive factor instead of a multiplicative one. 
The algorithm is a nearly constant approximation and it 
has a significantly less latency bound than earlier algo-
rithms especially when Δ is large. In this paper, we present 
an algorithm relying on reducing the number of blue nodes 
and finding maximal non-conflicting transmission sched-
ule sets which has a latency bound of 16R + Δ – 11. Our 
algorithm is also a nearly constant approximation and it 
has a significantly less latency bound than the existing best 
known algorithm in [1] when R is large. 

The remainder of this paper is organized as follows. 
The formalized MDAL problem and all related work are 
presented in Section 2. In Section 3, we propose our alg- 
orithm and give details of analysis on performance. In 
Section 4, we evaluate the average performance of the 
proposed algorithm through simulations and compare it 
with the algorithm in [1]. Section 5 concludes this paper. 
 
2. Preliminaries 
 
In this section, we first present some assumptions and 
formalize the MDAL problem, and then we discuss all 
related work in details. 
 
2.1. Problem Description 
 
We consider a wireless sensor network consisting of sta-
tionary nodes along with one sink node distributed over 
an Euclidean plane. All the sensor nodes are homogene-
ous. Each sensor node is equipped with a RF transceiver 
that can be used to send or receive data. We assume that 
each sensor node has omni-directional antenna and the 
transmission coverage of any sensor node is a circle with 
unit radius centered at the sensor. 

We assume that each sensor knows its geometric posi-
tion in the network. The sink has global knowledge of all 
the sensors’ IDs and positions. Transmission is determin- 
istic and proceeds in synchronous time rounds controlled 
by a global clock. 

In each time round, any node cannot send and receive 
data simultaneously, i.e. any node either sends data or 
receives data in a round.  

Definition 1 [Neighbor Set] For a sensor node u, if 
there exists another sensor node v such that v lies in u’s 
transmission area, then v is called u’s neighbor. All of 
u’s neighbors form a set, which is called u’s Neighbor 
Set, denoted by Neighbor(u). 

Data sent by any sender simultaneously reaches all the 
nodes in its neighbor set. 

Definition 2 [Transmission Schedule] u → v is call- ed 
a Transmission Schedule, where u is called sender, v is 
called a receiver. u → v denotes that u transmits data to v. 

If two or more nodes are sending in the same round 

and there exists a node u in their overlapped transmission 
area, then u cannot successfully receive any data since all 
transmissions are interfering with each other. This situa-
tion is called a collision. For example, in Figure 1(a), 
there are two ongoing transmission schedules u → v and 
x → v in the same round. v will not receive anything. In 
Figure 1(b), there are two ongoing transmission sched-
ules u → v and x → y in the same round. v is in x’s 
transmission range, therefore v will not receive anything. 

Definition 3 [Conflicting Transmission Schedules] u 
→ v and x → y are called Conflicting Transmission Sc- 
hedules if and only if v  Neighbor(x) or y  Neigh- 
bor(u). 

The main task of a sensor is to collect data and forw- 
ard aggregated data to the sink, and data can be “aggreg- 
ated” all the way to the sink. In other words, if a node 
has received one packet from its neighbor before its 
scheduled transmission time round, then it can merge this 
packet with its own data packet and simply waits to send 
this merged packet later. The situation where packets 
cannot be merged does exist, and it is called data collec-
tion. In this paper we only focus on data aggregation 
meaning that data can be merged all the way to the sink. 

For simplicity, a wireless sensor network with sink 
node s can be represented as a graph G = (V, E), where V 
denotes all the sensor nodes in the network and s  V, 
An edge (u, v)  E indicates that u lies in v’s transmis- 
sion range and v lies in u’s transmission range. 

A data aggregation schedule is a sequence of transmi- 
ssion schedule sets {S1, S2, …, Sl}, where Si (i = 1,2,…l) 
is a transmission schedule set satisfying the following 
conditions: 

1) Any two transmission schedules u → v, x → y in Si 
(i = 1,2,…l) are non-conflicting transmission schedules, 
i.e. v  Neighbor(x) and y  Neighbor(u). 

2)i  j, Sender (Si) ∩ Sender (Sj) = , where Sender 
(Si) denotes the sender set of transmission schedules in 
Si. 

3) . 
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l is called the data aggregation latency. 
The MDAL problem is defined as follows. Given a 

graph G = (V, E) and the sink node s  V, find a data 
aggregation schedule with the minimum latency. 
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Figure 1. Two types of collisions. 
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2.2. Related Work 
 
Extensive research has been conducted on data aggrega-
tion. One category of existing works focuses on how to 
design an energy efficient data aggregation algorithm. Th- 
ese works of data aggregation focus on energy efficiency. 
Data aggregation is also called convergecast. Convergec- 
ast is about a sensor network with a sink such that all se- 
nsor nodes collect data and report to the sink through mu- 
lti-hop communications. Annamalai et al. [3] designed a 
heuristic algorithm for both broadcast and convergecast. 
The convergecast tree constructed in their algorithm can 
be used for broadcast as well. Upadhyayula et al. [4] de- 
signed another heuristic algorithm for convergecast, aim- 
ing at reducing energy consumption and latency. These 
two works mentioned above both proposed heuristic app- 
roaches and used simulations to verify their results wit- 
hout giving theoretical analysis. In our work, we verified 
our results through both simulations and theoretical ana- 
lysis. 

Another category focuses on how to design a conflict- 
free scheduling. A distributed cross-layer scheduling pro- 
tocol for data aggregation was proposed in [5], in which 
each node negotiates with its parent to decide its times- 
lots for transmission and constructs a schedule for its qu- 
ery processing. Chipara et al. [6] developed a dynamic 
scheduling scheme supporting different kinds of aggreg- 
ation queries, assuming that an aggregation tree has alr- 
eady been constructed. Yu et al. [7] studied the energy- 
latency tradeoff of scheduling for data aggregation. Pract- 
ical issues of data aggregation, especially about the MAC 
layer, have also been studied in the literature. Huang and 
Zhang [8] studied packet loss and focused on reliability 
issues in data aggregation. Zhang et al. [9] addressed the 
issue of bursty convergecast in real-time applications. 
The high-volume burst traffic often arises in event-driven 
applications. These applications require for reliable and 
real-time packet delivery to the sink. The large number 
of packets generated within a short period leads to high 
degree of channel contention and thus a high probability 
of packet collision. Zhang et al. focused on improving 
channel utilization and reducing retransmission incurred 
by channel contention. Krishnamachari et al. [10] studied 
data aggregation from another aspect. They considered 
the case where there is a subset of nodes whose data need 
to be sent to the sink and regard aggregating these data as 
a way to save energy. Intanagonwiwat et al., in a short 
paper [11], evaluated the impact of greedy aggregation to 
increase the amount of path sharing and reduce energy 
consumption. All the above works aimed at minimizing 
the overall energy consumption of sensors subject to the 
latency constraint. 

The most relevant works of the MDAL problem are on 
theoretical side. Kesselman and Kowalski [12] designed 
a randomized, distributed algorithm with latency O(log 
n). In their model, it is assumed each node can vary its 

transmission range to reduce links. Chen et al. [2] de-
signed a (Δ – 1)-approximation algorithm called SDA for 
data aggregation, which has a latency bound of (Δ – 1)·R, 
where Δ is the maximum degree of the network and R is 
the network radius. They also proved that the minimum 
data aggregation time problem is NP-hard. Huang et al. 
[1] designed an algorithm based on maximal independent 
sets which has a latency bound of 23R + Δ – 18. They 
reduced the data aggregation latency from a multiplica-
tive factor of Δ to additive factor. Their algorithm is 
nearly constant and it has a significantly less latency 
bound than the previous algorithms when Δ is large.  

In this paper, we present an algorithm based on reduc-
ing the number of blue nodes and maximal non-confli- 
cting transmission schedule sets which has a latency 
bound of 16R + Δ – 11. Our algorithm is also nearly con-
stant and it has a significantly less latency bound than the 
previous algorithms. 
 
3. Our Data Aggregation Algorithm 
 
In this section, we present our approximation algorithm. 
Our algorithm has a data aggregation latency of 16R + Δ 
– 11, where R is the network radius and Δ is the maxi-
mum degree of the network. This result is better than the 
currently best known algorithm [1] whose latency is 23R 
+ Δ – 18, since if Δ and R are both large, our algorithm 
achieves a smaller latency. Large Δ and R are frequent 
especially in large-scale, dense networks. The key behi- 
nd-the-scene ideas of our algorithm include reducing the 
number of blue nodes and maximal non-conflicting tra- 
nsmission schedule sets in data aggregation scheduling. 
Our algorithm has three phases: 1) Construct MIS Layer 
by Layer; 2) Data Aggregation Tree Construction reduc-
ing the number of blue nodes; 3) Data Aggregation Sch- 
eduling based on maximal non-conflicting transmission 
schedule sets. 

The details of our algorithm are showed in the next fo- 
ur subsections. To better understand our algorithm, some 
examples are given in these four subsections. 
 
3.1. Construct MIS Layer by Layer 
 
This phase is the same as [1]. For a given graph G = (V, 
E) and the sink node s  V, a Breadth First Search Tree 
(BFST) rooted at s for the graph G is firstly constructed. 
In this phase, BFS starts at sink node s, which is the root 
of BFST at layer 0, then BFS explores all the neighbor-
ing nodes which are added into BFST to be the children 
of s at layer 1. Then, the new nodes adjacent to layer 1 
nodes are added into BFST at layer 2 to be the children 
of the nodes at layer 1, and so on. The BFS traversal ter- 
minates when every node in V has been visited. For ex-
ample, Figure 2 shows a topology of G. Node 0 is the 
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sink. Each circle denotes a sensor node. Node ID lies in 
each circle. 

Figure 3 shows the BFST of G in Figure 2. The num-
ber above each node denotes its layer in the BFST. L1 = 
{1, 2, 3, 4, 5} denotes that nodes 1, 2, 3, 4, 5 are at layer 
1. Similarly, nodes 6, 7, 8, 9, 10 are at layer 2 and nodes 
11, 12, 13, 14, 15, 16, 17 are at layer 3. 

In Figure 3 dashed lines denote the edges in G, but 
they are not in BFST of G. 

Algorithm 1 Construct MIS layer by layer 
Input: G = (V, E) and a sink node s  V 
Output: Sequence of MISs BLACK = {BLACK0,…, 
BLACKl} and BFST BT. 
 
1) Convert G = (V, E) into a BFST BT 
2) Divide V into layers L0, L1, L2, …, Ll 
3) BLACK0{s} 
4) BLACK{BLACK0} 
5) FOR i1 to l DO 
6)    Find an MIS BLACKi  Li such that BLACKi 

is independent of BLACK0, BLACK1,…, BLACKi - 1. 
7) BLACK BLACK∪{BLACKi} 
8) ENDFOR 
9) RETURN BLACK and BT 

Based on BFST, all nodes are divided into layers L0, 
L1, L2, …, Ll. We then form a Maximal Independent Set 
(MIS) layer by layer. This procedure begins from layer 0. 
On layer 0, there is only one node, the sink node s, s for- 
ms an MIS BLACK0 = {s}, which is marked as black. We 
then move on to layer 1 and construct an MIS BLACK1 
and mark these nodes black again. Note that BLACKi 
must be independent of the MISs from layer 0 to layer 
i-1. This process is repeated until all the layers have been 
processed. The nodes which are not marked black are ma- 
rked white at last. The pseudocode of layered MIS con- 
struction is given in Algorithm 1 [1]. 

Figure 4 shows an example which constructs an MIS 
based on BFST in Figure 3. 
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Figure 2. Topology of G. 

 

Figure 3. BFST of G. 

 

 

Figure 4. Construct MIS layer by layer. 
 
3.2. Data Aggregation Tree Construction 
 
The data aggregation tree construction has two phases: 1) 
Find a sequence of blue node sets {BLUE1, BLUE2, …, 
BLUEl − 1} that connect black nodes layer by layer, where 
the blue nodes in BLUEi interconnect black nodes in BL- 
ACKi – 1 and BLACKi + 1, at the same time, we also cons- 
truct a data aggregation tree DT; 2) Reduce the number 
of blue nodes layer by layer, meanwhile, we obtain an 
optimized data aggregation tree. The first phase is similar 
with the algorithm in [1]. The second phase is an optim- 
ized procedure which can reduce data aggregation laten- 
cy. Through the second phase some blue nodes are conv- 
erted into white leaves. The latency of data aggregation 
is reduced from 23R + ∆ – 18 to 16R + Δ – 11. The de-
tails of analysis will be presented in Subsection 3.4. 

In the first phase, we find a sequence of blue node sets 
{BLUE1, BLUE2, …, BLUEl − 1} that interconnect black 
nodes layer by layer. To find blue node set BLUE1, we 
look at BLACK2. Each black node in BLACK2 has a par-
ent in BFST BT and this parent must be white since black 
nodes are independent of each other. These white nodes 
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are colored blue and an edge between black node and its 
white parent is added into data aggregation tree DT. Mo- 
reover, the blue node must be connected with the black 
node s in BLACK0. The edge between the blue node and 
the black node s is added into DT. Note that to find blue 
node set BLUEi, we color the parent of each black node 
in BLACKi + 1 blue. The blue node must be connected 
with the black node in BLACKi or BLACKi – 1. This proc-
ess is repeated layer by layer and finally a sequence of 
blue node sets BLUE = {BLUE1, BLUE2, …, BLUEl – 1} 
and a desired data aggregation tree DT are both obtained. 
The pseudo code is presented in Algorithm 2. 

Figure 5 shows an example of finding a sequence of 
blue node sets based on the MIS in Figure 4. 

In the second phase, we reduce the number of blue no- 
des layer by layer and get an optimized data aggregation 
tree. The purpose of reducing the number of blue nodes 
is to reduce data aggregation latency. Recall the algori- 
thm analysis in [1], the data aggregation latency greatly 
depends on how many blue nodes lie inside the transmis- 
sion range of a black node. A small number of blue nodes 
results in a short data aggregation latency. 

Algorithm 2 Finding blue node sets 

Input: G = (V, E); Sink node sV; Sequence of MISs 
BLACK = {BLACK0, …, BLACKl}; BFST BT. 
Output: Sequence of blue node sets BLUE={BLUE1, 
BLUE2, …, BLUEl - 1} and data aggregation tree DT 
 
1) Procedure FindBlueNodeSets(G, s, BLACK, BT) 
2) DT = (VDT,EDT ); VDT V;  EDT ; BLUE; 
3) //Find blue node sets that connect black nodes 
4) FOR i1 to l-1 DO 
5)      FOR each black nodes uBLACKi + 1  DO 
6)          Find u’s parent pBT(u) in BFST BT 
7)          Color pBT(u) blue 
8)          Add pBT(u)  to BLUEi  
9)          Add an edge (u, pBT(u)) to EDT  
10)          Find a black node v which can commu-

nicate with pBT(u) from BLACKi ∪BLACKi - 1 
11)         Add an edge (pBT(u), v) to EDT 
12)     ENDFOR 
13)      BLUE BLUE ∪BLUEi 
14) ENDFOR 
15) //Color  remaining nodes white/ 
16) FOR each remaining node u DO 
17)     Color u white 
18)     Find u’s parent pBT(u)  in BFST BT 
19)     Add an edge (u, pBT(u)) to EDT  
20) ENDFOR 
21) RETURN BLUE and DT 

For a black node u, we only keep those blue nodes that 
can communicate with u’s 2-hop black neighbors. For a 
clear description, some concepts are given as follows. 

Definition 4 [Coverage and Coverage Density] For a 
blue node v  BLUEi + 1, a subset of BLACKi + 2 Cover-
age(v)  BLACKi + 2, is called v’s Coverage if v can 
communicate with each black node in Coverage(v), i.e. v 
can Cover all black nodes in Coverage(v). The cardinal-
ity of Coverage(v) is called v’s Coverage Density. 

For a black node u  BLACKi, we only keep the blue 
nodes in BLUEi + 1 that can cover u’s 2-hop black neig- 
hbors in BLACKi + 2. The following lemma indicates that 
we can keep at most 13 blue nodes which can cover u’s 
2-hop black neighbors in BLACKi + 2. 

Lemma 3.1 For a black node u  BLACKi (i = 0, 1, …, 
l – 2), there are at most 13 blue nodes which can cover 
u’s 2-hop black neighbors in BLACKi + 2. 

Proof: For a black node u  BLACKi (i = 0, 1, …, l – 
2), suppose there are at least 14 blue nodes c1, c2,…,c14 
which can cover u’s 2-hop black neighbors in BLACKi + 2.  

Assume that the transmission radius of a sensor node 
is 1. Consider D2u, a circular of radius 2 centered at the bl- 
ack node u. All u’s 2-hop black neighbors lie inside D2u. 
Since black nodes are mutually independent, for each bl- 
ack node in D2u, we consider a circular of radius 0.5 cen-
tered at this black node, then all of those circulars must 
be disjoint. u’s blue children nodes lie inside D1u, a circ- 
ular of radius 1 centered at the black node u. 

Since we suppose there are at least 14 blue nodes c1, 
c2,…,c14 which can cover u’s 2-hop black neighbors, 
then each of u’s 2-hop black neighbors can be covered at 
least by one blue node of those 14 blue nodes. From u’s 
2-hop black neighbors, we certainly find at least 14 bla- 
ck nodes b1, b2,…,b14 such that bi (i = 1,2,…,14) is cove- 
red only by ci (i = 1,2,…,14) and u’s other 2-hop black 
neighbors besides these 14 black nodes b1, b2,…,b14 are 
covered at least by two blue nodes. (If we can not find at 
least 14 black nodes b1, b2,…,b14, then there are at most 
13 blue nodes which can cover u’s 2-hop black neighbors. 
The lemma is proved.) These 14 black nodes b1, b2,…, 
b14 certainly lie outside the circular D1u and inside the  

 

 

Figure 5. Finding blue node sets. 
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circular D2u centered at the black node u. (Refer to Fig-
ure 6) We equably divide D2u into 13 sectors. According 
to the pigeonhole principle [13], there are two black nod- 
es at least lie inside the same sector, i.e. there are at least 
2 circulars of radius 0.5 centered at black nodes lie inside 
the same sector. Without loss of generality, suppose bla- 
ck nodes b1 and b2 lie inside the same sector, and b1 is fa- 
rther than b2 from u. Since blue node c1 covers b1. Obvi-
ously, c1 covers b2 too. (This fact can be simply validated 
by geometry. Refer to Figure 6.) This is contradictory to 
that b2 is covered only by c2, since b2 is covered by both 
c1 and c2. Therefore, the above assumption is false. This 
lemma is proved. 

Algorithm 3 Reducing the number of blue nodes 

Input: G = (V, E); Sequence of MISs BLACK; BFST 
BT; Sequence of blue node sets BLUE; Data aggrega-
tion tree DT. 
Output: Reduced data aggregation tree based on DT. 
 
1) Procedure ReduceBlueNodes (G, BLACK, BT, 

BLUE, DT) 
2) //Reduce the number of blue nodes layer by layer 
3) FOR i0 to l – 2 DO 
4)   NEWBLUE 
5)   FOR each black nodes u  BLACKi  DO 
6)     Find u’s blue children set BC(u)  BLUEi + 1

7)     Find u’s 2-hop black neighbors set BN(u) 
8)   Descending sort BC(u) on the coverage density
9)      WHILE BN(u)   DO 
10)           Get out a blue node x from BC(u) 
11)           BC(u)BC(u) − {x} 
12)           NEWBLUE NEWBLUE∪{x} 
13)            FOR each wCoverage(x) DO 
14)              Remove edge (w, pDT(w)) from 

EDT  
15)              Add edge (x, w) into EDT 
16)            ENDFOR 
17)           BN(u)BN (u) − Coverage(x) 
18)       ENDWHILE 
19)    ENDFOR 
20)     Color nodes in BLUEi + 1 − NEWBLUE from 

blue to white; 
21)     BLUEi + 1  NEWBLUE 
22) ENDFOR 
23) RETURN DT 

According to Lemma 3.1, we design Algorithm 3 to 
reduce the number of blue nodes. The idea of Algorithm 
3 is based on a greedy strategy. For each black node u  
BLACKi, we find u’s blue children set BC(u)  BLUEi + 1 
and u’s 2-hop black neighbors set BN(u), then we sort 
BC(u) in a decreasing order on the coverage density. In 
the first repetition, we keep the blue node x which has 

the largest coverage density, and remove x from BC(u). 
For each w  Coverage(x), we remove edge (w, p(w)) 
from the data aggregation tree and add edge (x, w) into 
the data aggregation tree. The covered black node set 
Coverage(x) by blue node x is removed from BN(u). This 
process is terminated until BN(u) is an empty set. Algo-
rithm 3 is executed layer by layer. Finally, the rest blue 
nodes are converted from blue to white. 

The pseudo code is presented in Algorithm 3. For 
convenience, the output of Algorithm 3 is called Reduced 
Data Aggregation Tree. Figure 7 shows an example of 
reducing the number of blue nodes based on the result in 
Figure 5. 

To construct a data aggregation tree, we firstly execute 
Algorithm 2 to find a sequence of blue node sets {BLUE1, 
BLUE2, …, BLUEl − 1} that connect black nodes layer by 
layer and construct a data aggregation tree DT; Second, 
Algorithm 3 is executed to reduce the number of blue no- 
des layer by layer, and finally we obtain a data aggrega-
tion tree. The pseudocode of the entire procedure of data 
aggregation tree construction is presented in Algorithm 
4. 

 

 

Figure 6. Proof of lemma 3.1. 

 

 

Figure 7. Reducing the number of blue nodes. 
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Algorithm 4 Data Aggregation tree construction 

Input: G = (V, E); Sink node sV; Sequence of maxi-
mal independent sets BLACK; BFST BT. 
Output: A reduced data aggregation tree RDT 
 
1) Execute FindBlueNodeSets (G, s, BLACK, BT) to 

obtain BLUE and DT; 
2) RDTReduceBlueNodes (G, BLACK, BT, BLUE, 

DT); 
3) RETURN RDT 

 
3.3. Data Aggregation Scheduling 
 
In this section, we generate a data aggregation schedule 
based on the data aggregation tree. The process of gener-
ating a data aggregation schedule is simple and it breaks 
the transmission rule of white nodes sending to black 
nodes, black nodes sending to blue nodes and blue nodes 
sending to black nodes. The process of data aggregation 
scheduling is the process of cutting leaves. 

The process of data aggregation scheduling takes in an 
input of a network topology G = (V, E) and a correspo- 
nding data aggregation tree DT. First, we pick a node u 
from the leaves of DT and generate a transmission sch- 
edule u → pDT(u), where pDT(u) is u’s parent in DT, then 
we check whether u → pDT(u) conflicts with any trans-
mission schedule in the current non-conflicting transmis-
sion schedule set Si (its initial value is null, i = 1,2,…). If 
it does not conflict with any transmission schedule in Si, 
then we add u → pDT(u) to Si. Otherwise, we check the 
next transmission schedule using a leaf of DT as the 
sender. Finding a maximal non-conflicting transmission 
schedule set based on the leaves of DT is similar with 0-1 
knapsack problem and we present an approximate algor- 
ithm in Algorithm 5 due to it is NP-hardness. We do not 
prove the problem of finding a maximal non-conflicting 
transmission schedule set to be NP-hard due to page lim- 
itation. When we obtain a maximal non-conflicting trans- 
mission schedule set from the leaves of DT, we cut these 
leaves and edges associated with these leaves and their 
parents. This process is repeated until there is only one 
sink node s in DT. 

Algorithm 5 Data Aggregation Scheduling 

Input: G = (V, E); Sink sV; Data aggregation tree DT
Output: Data aggregation schedule S 
 
1) i1;  S{}; 
2) WHILE  there exists an edge in DT  DO 
3)     Si 
4)     Leaves{u| u a is leaf of DT} 
5)     WHILE  Leaves   DO 
6)        FOR each leaf  u in Leaves DO 
7)           FOR each x→pDT(x)Si DO 

8)              IF Si= or uNeighbor(x) and 
pDT(x)Neighbor(u) 

9)                    Si  Si ∪{ u→pDT(u)}
10)              ENDIF 
11)           ENDFOR 
12)        ENDFOR 
13)      ENDWHILE 
14)      FOR each schedule u→pDT(u) in Si  DO 
15)           Cut edge (u, pDT(u))from DT 
16)      ENDFOR 
17)       S  S∪Si;  ii + 1; 
18) ENDWHILE 

The pseudo code of data aggregation scheduling is pre- 
sented in Algorithm 5. Note that in Algorithm 5, we con- 
sider two types of collisions discussed in Figure 1, whe- 
reas the transmission rule of FIRSTFIT in [1] only con- 
siders type (a) in Figure 1. 

As an example, given the reduced data aggregation tr- 
ee in Figure 7, the final data aggregation schedule is giv- 
en as follows: S1 = {11 → 10; 13 → 6; 7 → 4; 17 → 8; 5 
→ 0;} S2 = {12 → 10; 14 → 6; 8 → 4; 16 → 9;} S3 = 
{10 → 1; 15 → 6; 9 → 4;} S4 = {1 → 0; 6 → 4;} S5 = {2 
→ 0;} S6 = {3 → 0;} S7 = {4 → 0;}. 

Let L5−RDT denote the data aggregation latency of Al-
gorithm 5. Then for this example we have L5−RDT = 7. 

Lemma 3.2 For a given data aggregation tree DT, the 
data aggregation latency of Algorithm 5 is no more than 
that of Algorithm 4 in [1]. 

Proof: Algorithm 4 in [1] has the aptotic transmission 
rule of white nodes sending to black nodes, black nodes 
sending to blue nodes and blue nodes sending to black no- 
des. Nevertheless, our Algorithm 5 does not follow this 
rule. Algorithm 5 picks nodes from the leaves of the data 
aggregation tree DT and generates transmission schedu- 
les. Furthermore, some black nodes are possibly leaves. 
For example, in Figure 7, node 7 is a black leaf.  

Without loss of generality, for all the leaves of DT, 
there are m white nodes and a black node b. According to 
the transmission rule of FIRSTFIT in [2], the m white 
nodes and the black node b are definitely in different se- 
nder sets Sender(Si),…, Sender(Sj − 1), Sender(Sj )  (i < j) 
such that m white nodes are in Sender(Si),…, Sender(Sj − 1) 
and b is in Sender(Sj), where Si,…, Sj − 1, Sj are transmis-
sion schedule sets. Moreover, according to the transmis-
sion rule of Algorithm 5, m white nodes are in Sender 
(Si) ,…, Sender(Sj − 1 )  and either b is in Sender(Sj)  if b 
→ pDT(u) conflicts with transmission schedules in Si, …, 
Sj − 1 or b is in Sender(Sk) (i  k  j − 1) if b → pDT(u) 
does not conflict with transmission schedules in Si, …, Sj 

− 1. Thus, the data aggregation latency of Algorithm 5 is 
no more than that of Algorithm 4 in [1]. After cutting le- 
aves from the current data aggregation tree, similar proof 
can be applied on the residual data aggregation tree. 

For example, given the reduced data aggregation tree 
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in Figure 7, the final data aggregation schedule based on 
FIRSTFIT in [1] is given as follows: 

WHITE to BLACK 
S1 = {5 → 0; 11 → 10; 13 → 6; 17 → 8;} 
S2 = {16 → 9; 14 → 6; 12 → 10; 3 → 0;} 
S3 = {15 → 6;} 
S4 = {2 → 0;}; 
BLACK to BLUE 
S5 = {10 → 1; 9 → 4;} 
S6 = {6 → 4;}  
S7 = {7 → 4;} 
S8 = {8 → 4;};  
BLUE to BLACK  
S9 = {1 → 0;} 
S10 = {4 → 0;}.  
Let L4[2]−RDT denote the data aggregation latency of Al- 

gorithm 4 in [1] taking in an input of a reduced data ag-
gregation tree, then for this example we have L4[2]−RDT = 
10 > L5−RDT = 7. 
 
3.4. Performance Analysis 
 
In this section we show that Algorithm 5 has a latency 
bound of 16R + Δ – 11. Suppose that DT is a data aggre-
gation tree generated by Algorithm 2 and RDT is a redu- 
ced data aggregation tree generated by Algorithm 3 tak-
ing in an input of DT. Let L4[2]−DT denote the data aggre-
gation latency of Algorithm 4 in [1] taking in an input of 
DT, L4[2]−DT = 23R + Δ – 18; If we could estimate 
L4[2]−RDT = 16R + Δ – 11, according to Lemma 3.2, there 
is L5−RDT  L4[2]−RDT, then L5−RDT  16R + Δ – 11, i.e. Al-
gorithm 5 has a latency bound of 16R + Δ – 11. 

Now, let’s estimate L4[2]−RDT = 16R + Δ – 11. The tran- 
smission rule of Algorithm 4 in [1] has three parts: 1) 
WHITE to BLACK; 2) BLACK to BLUE; 3) BLUE to 
BLACK. 

1) WHITE to BLACK: It takes at most Δ – 1 time slots 
[2] to finish the transmission. 

2) BLACK to BLUE: It takes at most 4 time slots to 
finish the transmission. 

3) BLUE to BLACK: We need to estimate how many 
blue nodes are competing to transmit to the same black 
parent. According to Lemma 3.1, we know that for a 
fixed black node u  BLACKi (i = 0, 1, …, l – 2), there 
are at most 13 blue nodes which can cover u’s 2-hop bla- 
ck neighbors in BLACKi + 2. One of these 13 blue nodes 
must be node u’s parent. Therefore, there are at most 12 
blue nodes which are competing to transmit to the same 
black parent. 

WHITE-to-BLACK needs Δ – 1 time slots. From layer 
R to layer 2, BLACK-to-BLUE and BLUE-to-BLACK 
together need (12 + 4)·(R – 2) time slots. Transmission 
from layer 2 to layer 1 needs 13 + 4 time slots and trans-
mission from layer 1 to the sink needs 5 time slots. Al-
together, 

L4[2]−RDT = (Δ – 1) + (12 + 4)·(R - 2) + 13 + 4 + 5 

= 16R + Δ – 11. 

Therefore, L5−RDT  L4[2]−RDT < L4[2]−DT = 23R + Δ – 18, 
i.e. Algorithm 5 has a latency bound of 16R + Δ – 11. 

Lemma 3.3 If R ≥ Δ – 11, our algorithm has approxi-
mation ratio 17. 

Proof: Given a graph G = (V, E) and the sink node s  
V, let Lopt denote the minimum data aggregation latency. 
Since farthest node has to transmit data to the sink, the- 
refore Lopt ≥ R. L5−RDT / Lopt  (16R + Δ – 11) / R  16 + 
(Δ – 11) / R, when R ≥ Δ – 11, L5−RDT/Lopt  17. 

Lemma 3.4 If R is enough large, our algorithm has 
approximation ratio 16 from an asymptotic point of view. 

Proof: According to the proof of lemma 3.3, when R 
tends to infinite, (Δ – 11)/R tends to zero, therefore our 
algorithm has approximation ratio 16 from an asymptotic 
point of view.  

For example, given a data aggregation tree DT without 
reducing the number of blue nodes in Figure 5, the final 
data aggregation schedule generated by Algorithm 4 in 
[1] is given as follows: 

WHITE to BLACK S1 = {5 → 0; 11 → 10; 13 → 6; 
17 → 8;} S2 = {16 → 9; 14 → 6; 12 → 10;} S3 = {15 → 
6;}; BLACK to BLUE S4 = {10 → 1; 9 → 4;} S5 = {6 → 
2;} S6 = {7 → 3;} S7 = {8 → 4;} BLUE to BLACK S8 = 
{1 → 0;} S9 = {2 → 0;} S10 = {3 → 0;} S11 = {4 → 0;}. 

In this example, we have L4[2]−DT = 11. For the exam- 
ple of the topology shown in Figure 2, we have: L5−RDT = 
7 < L4[2]−RDT = 10 < L4[2]−DT = 11. 
 
4. Simulation Results 
 
In this section, we evaluate our work by conducting exte- 
nsive simulations. We compare our algorithm with Algo-
rithm 4 in [1]. In the following, we first explain the obje- 
ctive of the simulations, the generation of a network and 
performance metric we used. Then we present the simul- 
ation results. There are two main factors that affect the 
data aggregation latency, network radius R and the ma- 
ximum degree of network topology Δ. The objective of 
the simulations is straightforward, that is to investigate 
the effects of R and Δ on the data aggregation latency. 
The performance metric is the number of transmission 
schedule sets in data aggregation schedule {S1, S2, …, Sl}, 
i.e. the value of l. The smaller l means that the better the 
algorithm performance. 

We also implemented a topology simulator that can ra- 
ndomly deploy sensors into a square region of size X × X, 
where X is the width of the square. The topology simu-
lator takes in an input of a network radius R, a maximum 
degree of network topology Δ, a transmission range of 
each sensor node r. R is the length of the longest path in 
data aggregation tree DT from the sink to the leaf nodes 
of DT, i.e. the largest number of hops from the sink to 
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the leaf nodes of DT. The output of this simulator is a 
topology which deploys N sensor nodes randomly into a 
square region of size X × X, where N = (Δ + 1)R2/(2π), 
and X = R·r/sqrt (2.0). The deduction of N and X is based 
on the assumption that the node density ρ is a constant 
such that in each node’s transmission range there are Δ 
neighbors. Therefore, ρ = (Δ + 1)/(π·r2), N = X2ρ = (Δ + 
1)R2/(2π). Simulations are conducted from two points of 
view:  

1) The sink is always the node nearest to the left-up 
corner. We investigate the effects of network radius R 
and the maximum degree Δ on the data aggregation late- 
ncy using the above topology simulator. 

First, Δ is fixed to 20, and the transmission range r is 
set to 30 m. R varies from 7 to 37 with an increment of 5. 
In Figure 8, for each R, we generated 30 random topolo-
gies and computed the average data aggregation latency 
for 30 topologies. The average data aggregation latency 
is proportional to R. The pattern of those curves matched 
our theoretical estimation. Our algorithm has smaller lat- 
ency compared with Algorithm 4 in [1] (denoted as Hu- 
ang’s algorithm). 

Second, R is fixed to 8, and the transmission range r is 
set to 30 m. Δ varies from 18 to 63 with an increment of 
5. As shown in Figure 9, for each fixed Δ, we generated 
30 random topologies and computed the average data 
aggregation latency for 30 topologies. The average data 
aggregation latency is also proportional to Δ. Our algo-
rithm has smaller latency compared with Huang’s algo-
rithm. Since R is fixed, the gap between the two curves 
almost does not change. This is true according to our 
theoretical analysis. 

2) The sink is always the node with ID 0. Its position 
is random. We randomly deployed sensors into a fixed 
region of size 400 m × 400 m. We investigated the ef-
fects of the number of nodes N and the transmission 
range r on the data aggregation latency. 

 

 

Figure 8. The effect of R. 

First, the transmission range r is set to 30 m. N varies 
from 180 to 980 with an increment of 100. In Figure 10, 
for each N, we generated 30 random topologies and co- 
mputed the average data aggregation latency for 30 top- 
ologies. When N increases, R and Δ both increase. N is 
proportional to (Δ + 1)R2. Our algorithm has smaller 
latency compared with Huang’s algorithm. 

Second, the number of sensor nodes N is fixed to 200. 
r varies from 27 to 57 with an increment of 5. In Figure 
11, for each r, we randomly deployed 200 sensors for 30 
times and computed the average data aggregation latency 
for 30 topologies. In this simulation, the node density ρ is 
a constant since a in fixed region there is a fixed number 
of sensor nodes. R = sqrt(2.0)·X/r, and Δ = π·r2·ρ – 1. Ob-
viously, when r increases, R decreases with 1/r and Δ in- 
creases with r2. Therefore, the two curves are nearly lin- 
ear. Our algorithm has smaller latency compared with 
Huang’s algorithm. 

 

 

Figure 9. The effect of Δ. 

 

 

Figure 10. The effect of N. 
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Figure 11. The effect of r. 

5. Conclusions 
 
The Existing works on data aggregation in WSNs usually 
use a single channel which results in a long latency due 
to high interference, especially in high-density networks. 
Therefore, data aggregation is a fundamental yet time- 
consuming task in WSNs. In this paper, we investigate 
the minimum data aggregation latency problem. We used 
the techniques of reducing the number of blue nodes and 
finding maximal non-conflicting transmission schedule 
set based on leaves and designed an algorithm with a 
latency bound of 16R + Δ – 11, where Δ is the maximum 
degree and R is the network radius. We prove that our al- 
gorithm has smaller latency than other algorithms. Sim- 
ulation results show that our algorithm has much better 
performance in practice than previous works. 
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