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ABSTRACT

Fritz John and Karush-Kuhn-Tucker type optimality conditions for a nondifferentiable multiobjective variational prob-
lem are derived. As an application of Karush-Kuhn-Tucker type optimality conditions, Mond-weir type second-order
nondifferentiable multiobjective dual variational problems is constructed. Various duality results for the pair of
Mond-Weir type second-order dual variational problems are proved under second-order pseudoinvexity and sec-
ond-order quasi-invexity. A pair of Mond-Weir type dual variational problems with natural boundary values is formu-
lated to derive various duality results. Finally, it is pointed out that our results can be considered as dynamic generaliza-

tions of their static counterparts existing in the literature.

Keywords: Nondifferentiable Multiobjective Programming; Second-Order Invexity; Second-Order Pseudoinvexity;
Second-Order Quasi-Invexity; Second-Order Duality; Nonlinear Multiobjective Programming

1. Introduction

Second-order duality in mathematical programming has
been extensively investigated in the literature. In [1],
Chen formulated second order dual for a constrained
variational problem and established various duality re-
sults under an involved invexity-like assumptions. Sub-
sequently, Husain ef al. [2], have presented Mond-Weir
type second order duality for the problem of [1], by in-
troducing continuous-time version of second-order in-
vexity and generalized second-order invexity. Husain and
Masoodi [3] formulated a Wolfe type dual for a nondif-
ferentiable variational problem and proved usual duality
theorems under second-order pseudoinvexity condition
while Husain and Srivastav [4] presented a Mond- Weir
type dual to the problem of [2] to study duality under
second-order pseudo-invexity and second-order quasi-
invexity.

The purpose of this research is to present multiobjec-
tive version of the nondifferentiable variational problems
considered in [2,4] and study various duality in terms of
efficient solutions. The relationship between these mul-
tiobjective variational problems and their static counter-
parts is established through problems with natural bound-
ary values.

"Corresponding authors.
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2. Definitions and Related Pre-Requisites

Let I:[a,b] be a real interval, @¢:IxR"xR" >R
and y:IxR"xR" — R" be twice continuously differ-
entiable functions. In order to consider ¢(t,x(t),5c(t))
where x:I — R" is differentiable with derivative x ,
denoted by ¢ and ¢, the first order derivatives of ¢
with respect to x(t) and x(t) , respectively, that is,

b(22.. 2

4 _(%%.. ﬂ
*o\ad e Tax

Further denote by ¢, and w,_ the nxn Hessian
and mxn Jacobian matrices respectively.

The symbols ¢.,4. .4, and w,_ have analogous
representations.

Designate by X the space of piecewise smooth func-
tions x:7—R" with the norm |x|=|x], +|Dx|, ,
where the differentiation operator D is given by

t
u=Dx < x(t) = Iu(s)ds,

a

d . L
Thus o =D except at discontinuities.
t

We incorporate the following definitions which are
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required for the derivation of the duality results.
Definition 1. (Second-order Invex): If there exists a

vector function 7 =7(¢,x,x)€R" where

n:IxR"xR" —>R" andwith =0 at t=a and

t =b such that for a scalar function ¢(t,x, x) , the func-

tional Iqﬁ(t,x,fc)dt where ¢:IxR"xR" — R satisfies
I

f¢(r,x,x)dt—j{qﬁ(t,)‘c,fj—%ﬂ(zf Gﬁ(z)}dt

> Hry% [tffj +(Dn)" ¢, [t,f, )‘cj + nTGﬂ(t)} dt

then _[gé(t, x,x)dt is second-order invex with respect to
I

n where G=¢_-2Dg_ + D2¢ﬁ —D3¢)& and
pPe C(I ,R”) the space of n-dimensional continuous
vector functions.

Definition 2. (Second-order Pseudoinvex): 1f the func-

tional I ¢(1,x,%)dt satisfies
I

[{n7 8. +(Dn) 6, +77Gp(1)}di >0

= J;¢(r,x,fc)dt > H¢(z,f,f)—%’g(ty Gﬂ(t)}dt

then j¢(t,x,5c)dt is said to be second-order pseudo-
1

invex with respectto 7.
Definition 3. (Second-order strict-pseudoinvex): If

the functional 'f(/ﬁ (¢,x,%)dr satisfies
1

[{n76.+(Dn)" 6. +07Gp(1)} a0

1

= [§(t.x.%)dt >j{¢(z,f,§)—%ﬁ(t)f Gﬂ(t)}dt

then J'¢(t,x,5c)dt is said to be second-order pseudo-
1

invex with respectto 7.
Definition 4. (Second-order Quasi-invex): 1f the func-

tional I ¢(1,x,%)dt satisfies
I

1

l¢(r,x,x)dtquﬁ(t,)‘c,?c)—Eﬁ(t)T Gﬂ(z)}dt
= J‘{’?% +(Dn)" 4, +77TG/3(1)} dr<0

then _[¢(t, x,x)dt is said to be second-order quasi-in-
1

vex with respect to 77.
Remark 1. If ¢ does not depend explicitly on ¢, then
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the above definitions reduce to those for static cases.

The following inequality will also be required in the
forthcoming analysis of the research:

Lemma: 1 (Schwartz inequality): It states that

x(6) B(1)z(1) < (x(0) B(t)x(t))% (=() B(t)z(t))%

with equality in (1) if B(r)x(t)—q(1)z(t)=0 for
some g(t)eR,tel.
Throughout the analysis of this research, the following
conventions for the inequalities will be used:
If a,feR" with a= al,az,---,a") and
ﬂ :(ﬁl’ﬂz’...’ﬂ”)’ then
azfea zp(i=1,2,,n)
azf<oazfanda=pf

a>pfea >pL(i=1,2,,n).

3. Statement of the Problem and Necessary
Optimality Conditions

Consider the following nondifferentiable Multiobjective
variational problem:
(VCP): Minimize

[I{f‘ (I,X(t),ic(t))+(x(t)T B (l)X(Z));}dt,---,

1

1

f{f” (6x(0), (1)) + (x(2) B (t)x(t))zldt]

1

subject to
x(a)=a,x(b)=p 1))
g(t.x(r),%(z))0,0el )
xeC(LR")

where 1) C(I,R") denote the space of piecewise
smooth functions x with norm ||x|| = ||x||oo +||Dx _» where
differentiation operator D already defined.

2) fTiIXR"xR" > RieK ={1,2,---,p},

g:IxR"xR" > R"

are assumed to be continuously differentiable functions,
and 3) for each rel,ieK={1,2,...,p},B' (1) is an
nxn positive semi definite (symmetric) matrix, with
B(.) continuous on .

In this section we will derive Fritz John and Ka-
rush-Kuhn-Tucker type necessary optimality conditions
for (VCP).

Definition: A point X € X is said to be efficient so-
lution of (VCP) if there exist x(t) € X such that
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.][((f (’ax,fc))+(x(t)r B’ (t)x(t));Jdt

< }[[(fr [l,f, ED + (f(t)T B (t))?(t));]dt,

for some reK={1,2,---,p} and

] [(f (e, xnx))+(x(t)T B (t)x(t));Jdt

1

< !([f" (r,f, JTD + ()_c(t)T B (z)f(z));]dt,

for rek, =K—{r}.

The following result which is a recast of a result of
Chankong and Haimes [5] giving a linkage between an
efficient solution of (VCP) and an optimal solution of
p-single objective variational problem:

Proposition 1. (Chankong and Haimes [5]): A point
f(t) € X is an efficient solution of (VCP) if and only if
)_c(t) is an optimal solution of (B) foreach r e K.

(P.): Minimize

! ((f (X)) (<) Bf(t)x(t))ijdt

1

subject to

x(a) =a, x(b) =4, g(t,x,)'c) <0,tel

![f" (t,x,%)+ (x(t)T B (t)x(t));]dt

1

![( (e33))+ ()_c(t)TBf(t)f(t))zjdt, ick,

for obtaining the optimal conditions for (VCP) we will
use the optimal conditions obtained by Chandra et al. [6]
for a single-objective variational problem which does not
contain integral inequality constraints of (B) .

The validity of the following proposition is quite es-
sential in obtaining the optimality conditions for (VCP),

Proposition 2. If x(¢) e X is an efficient solution of
(VCP), then Xx(¢) is an optimal solution of the follow-
ing problem (I%j for each re K.

(é ) : Minimize

I(f" (¢,x,%)+ (x(t)T B’ (t)x(t));jdt

1

A

subject to
x(a) =a, x(b) = ﬂ, g(t,x,)'c) <0,tel

Copyright © 2012 SciRes.

(7 x (s 5 @xto)

1

<j( £ (173 (7 () B ()7 (0 ))l/zjdt,ieKr,teI

Proof: Let x(¢#) be an efficient solution of (VCP).
Suppose that X(¢) is not optimal solution of (13, , for
some re K. Then there existsan x’(¢)e.X such that

g(t,x,)'c) <0,tel

!(fi (t’xoaxo)Jr(xO (1) B'(1)x" (t))l/2 ]dt
Sj[fi (t’f’);c)+(7(f)T B (f)f(t))l/z )dt,i ek . tel

; (3)
J(( (203 + (2 (1) B (1) (t));]dt
< l (r (t,)‘c,x*))+(f(t)r B’ (t)f(t));jdt,
The inequality (3) for ie K,
[ fi(t,xo,x°)+(x°(t)TBi(t)xO(t))zjdl
’ , ()
< j (f/(£%.%))+(F(0) B ()% (o) jdt

The inequalities (3) along with (4) contradicts the fact
that x(¢) is an efficient solution of (VCP)
Hence X(¢) is an optimal solution of

rek.

Theorem 1. (Fritz John Type necessary optimality
condition): Let x(#) be an efficient solution of (VCP).
Then there exist ' eR,ie K and piecewise smooth
functions y:I1—R" and z':1—R",ieK, such that

, for some

LA (A (63 ()3 (0))+ B ()Z (1)
-Df! ((t,)_c(t ,x‘(t)))ﬂ‘z(t)fgx(t,)?(t),)‘c(t)) 5)
—Dy(1)" g, (t.%(1).% (1)) =0t €1
(1) g(t.x(1).%(1)) =0t el ©
(1) B'(1)Z' (1) = (R (1) B (t))?(t))% ik
() B'(1)Z'(t)<LieK ®)
(2.7(1))z0,te1 ©

Proof: Since X(¢) is an efficient solution of (VCP),
by Proposition 2, X(¢) is an efficient solution of (R
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for each r e K. and hence in particular (ﬁl) . So by the
results of [6] there exist A’ € R,ie K and piecewise
smooth functions ¥:1—>R" and z':1>R",iekK
such that

1

(1) B ()7 (1)=(3(0) B ()F (1)) ieKrel
Z'(t) B (1)Z (1) SlLieK,tel
(Zl,Zz,~--,Z",y(1))zo,t el

The above conditions yield the relations (5) to (9).

Theorem 2 (Kuhn-Tucker type necessary optimal-
ity condition):

Let Xx(¢) be an efficient solution of (VCP) and let for
each r ek, the conditions of (é) satisfy Slaters or
Robinson condition [6] at X(¢) . Then there exist Ae¢R”
and piecewise smooth functions y:/—>R" and
z':I > R",ie K suchthat

zz (£ (6% (). 5 (1)) + B (1)Z (1)

|
S
=
—_
—_
~
=
—~
~
N—
|
—_~
~
N—
=
SN—
+
<
—_~
~
N—
<
oQ
—
\TA
=
—_~
~
N—
=|
—_~
~
N—
=

-D(7(e) g (1.7 (r).%(r))) =0, e 1 (10)
(1) g(tx(1).% (1)) =0t (11)

f(t)TBi(t)?(t)=(f(t)TB"(f)7(’))%’ (12)

i=1,2,,ptel

Z'(t) B'()Z (1) Sleel (13)
y(1)=0,tel (14)
A>0 (15)

Proof: Since x(¢) is an efficient solution of (VCP)
by Proposition 2, Xx(¢) is an optimal solution of (13,)
for each r ek . Since for each r € K, the contradicts of
(Isr ), satisfy Slaters or Robinson conditions [6] at Xx(¢),
by Kuhn-Tucker necessary condition of [6], for each
reK={1,2,...,p} , there exist v'eR,(iekK,) and
piecewise smooth function 4/ (¢)e R,ie K such that
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FL(£X@0.%@)+ B (0Z' () - Df] (.x(1),X(1))
+ 25 (£ (6X0,50)+ B (0)F' () - Df; (£, %(2), X))

iek,

{uﬁ ) gl (t,f(r),x‘(r))}
=0,tel

NgE

+

~Dg! (6, X(),X(1))

Jj=1

éﬂf(f)r g’ (1.3(r).%(1))=0,0e1

1

(1) B(0F (0)=(3() B ()F () sieK, te1
w(t)z0,0el,jefl,2,---,m}
vi>0,ieKk,

Summing over e K we obtain
[H6%@0),3@0)+ B (0)Z' (1)
~Df{ (,X(6),%(1)) J+

i=1

P
—i | =i —i
Z(v1 +, +...+vp)[

o | (1 O+ 1O+ 4 ) (1)) ! (8,50, % (1))

S =D (4 (O)+ (Ot 1) (1)) gL (630, 5(0))
tel
Yl ()t (1) o+ 1) (1)) & (.7 (0). 5 (1)) =0,
tel

where v/ =1 foreach ieK.
These can be written as,

{ FHL30.50)+ B (0)Z' (t)]

-Df (6,X(),X(1))

=1

j=1

r (g (6,%(0), %))~ ]

Dy’ (1) gl (6.%(0),% (1))

M=

w(t)g’ (tf(t))‘c(t)) =0,tel

V=14 Y V>0

rek,

j=1

-
I

where

and ()= (1) 20, jell, 2, m)
j=1

Setting

—i 7
A= pv ,ie K and y’(t):ﬂ (_tl_),je{l,Z,u-,m}

> 27

i=
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4. Mond-Weir Type Second Order Duality

In this section, we present the following Mond-Weir type
second-order dual to (VCP) and validate duality results:
(M-WD): Maximize

U[fl (t,x,%)+x(t)" B'(1)z(t)-

LB 1B () i

j( 17 ) e(e) B ()20~ g0y e ,B(t)jdtj

subject to

x(a)za,x(b):ﬂ (16)

S (f+B (1) (6)- D} +H'B(1) (
= 17)

+y(1) g ~Dy(t) g +GB(1)=0,c€l

Copyright © 2012 SciRes.

.[(y(t)rg(t,x,fc)—%ﬂ(t)rG,B(t)}‘tz0 (1)

1

A>0,y(6)20, 2 (1) B'(1)2 (1) <1, 19)
iceK,itel
where
G=(»"g.),-20(x"e.),
+D*(y'g;) -D'(v"g.),
and
H'=f! -2Dfl +D*fl,-Dfltel,

ieK={12,p}.

We denote by Cp and Cp, the sets of feasible solutions
to (VCP) and (M-WD) respectively.

Theorem 3. (Weak Duality): Assume that

(A} X(t)eC, and

(x(t),y(t),z' (t),m,z” (t),ﬂ(t)) eC,.

(Ay) Z/i J [ "Bz ( )Jdt is second-order
pseudoinvex.
(A3) _[ y(t) g(t,.,.)dt is second-order quasi-invex.
I

Then

<j[ tx,5)+x(t) B (1) (1) (20)

—Eﬂ(t)T H’ﬂ(t)}dt, for some r e K

and

<[[ £ (b i)+ () B (1)2 (1) Q1)

Lay H‘ﬁ'(t)}dt, ick,

cannot hold.

Proof. Suppose to the contrary, that (20) and (21)
hold.

Since A >0, we have
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Since ¥(1) B (1)2' (1)< (¥ (1) B ()% (1) st e 1,

we have

,Z:‘J.ﬂi {f" (t,)_c,)?(t))+()_c(t)r B (t)f(t))ﬂdr
x(e) B'(1)2'(7)
Lpey ﬁ(t)}u

Now, by the constraints (2), (18) and (19), we have

A
M=
—

&2
[ —

| (X)) +

jy txx dt

<j{ g(t,x,%) —%ﬁ(t)r Gﬂ(t)}dt
This by (As), yields
|EEORNES)
+(Dn) (w(1) g (1:x.5%)) +’7TG,3(t)Jdt <0

By integration by parts, we have

0= [[#" (»(0) &.)-n"D(x() &)+ 7 GB(1) |ae

0z [|n" (v(t) & )-n"D(v(t) &)+ GA(r) |ar
This, by using (4) gives
fz"jyf (fi+B'Z (t)-Dfl +H'B(1))dt 20 (22)

0< Y2 [[n" (£ +B(6)2 () =n"Dff +0" H'B(r) |de

Y 7) f,é]dt

i=1

l_ [nT( [+ B0z 0)+(D
1| +n"H' (1)

P -
i=1 -

Copyright © 2012 SciRes.

0= 34 [ (11+5()2 ()

+(D 77) fi +77THiﬂ(t)}dt
By hypothesis (A,), it implies

[Z::/ii.[(f" (£.%.%)+x(1) B (t)zi(t))dt
> izp]:/l’.]f(fi(t,x,x)+x(t) B (1)2 (1)
—%,B(t)r H’ﬁ’(r))dt |

Lpyu ,b’(t)jdt

This contradicts (20) and (21). Hence the result.

Theorem 4 (Strong duality): Let x(¢) be normal
and is an efficient solution of (VP). Then there exist
A e R, a piecewise smooth function y:7 — R™ such
that (f(t), (£), 4,2 (£),++,2" (¢). B(t)=0) is feasi-
ble for (M-WD) and the two objective functions are
equal. Furthermore, if the hypotheses of Theorem 3 hold
for all feasible solutions of (VCP) and (M-WD) ,then
(%), 7(6), 2,2 (1), 2" (), B(¢)) is an efficient solution
of (M-WD).

Proof: Since X(¢) is normal and an efficient solution
of (VP), by Proposition 2, there exist A€ R” and
piecewise smooth y:/ — R" and
w il —>R",i=12,--,n satisfying

2/1'( (x,%)+ B (1) 2 (1)~ Df: (1,%.%)
+(y(t)T gx)—D(y(t)T gi)):O,teI

y(t) g(tx.x)=0tel (24)

(23)

(
(1) B 1)z (1) =(F(0) B/ ()F ()] el 25

Z(t) B (1) (1)< leel (26)
220,9(1)= 0t €l 7
From (24) along with B(¢)=0,r €I, we have

j(y(t)r g(t,x,fc)—%ﬂ(t)T G,B(t))dt =

I
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Hence

(F(0):3(e). 22" (1),++,2" (1), B (1) = 0)

satisfies the constraints of (M-WD) and
1
j( /1 (6x5)+(3(0) B ()7 (1)) Jdt
1

([ nt 0 B 02 ()-p0) 110 e

That is, the two objective functionals have the same

value.
(£(1). (1), .2 (1), (1), (1) =)

Suppose that
is not the efficient solution of (M-WD). Then there exists

(A £),5(1),2" (£),,27 (1), B ))ec such that
( '(6,%,%) + 2(0) B' (02 (1) - —ﬂ(t) Hﬂ(t)jdt, -

2

( FP(,R,%)+R(0) BP ()27 (1) —— ﬁ(t)THpﬁ(t)jdt

~ —

( 1,%,%)+ %) B ()2 (1) L /7(z)TH1 B(r)) dt,...,

—

[f"(t x,x)+x(0)" B"(t)é"(t)——/?(t) Hpﬁ(t)jdt

L7

As /3( )=0, we have

| ( (655 +x(0) B' ()2 (1) —% B H' /;’(t)]dt,...,

| (f" (1,55 + 20 B (02 (0 —%ﬁ(r)TH”ﬁ(r)jdr
j[ S (65,5 +(x0)" B (0% () )% ] dr,...,
- | [ fP %% +(30" B (0F(0) );Jdt

This contradicts the conclusion of Theorem 3. Hence
()—c(t),y(t)j,zl(z),---,zp(t),ﬁ(t)) is an efficient solu-
tion of (M-WD).

Theorem 5 (Converse duallty)

(A1): Assume that (x A V2 e
cient solution of (M-WD)

(A,): The vectors H G, teliek, ]—1 2,
are linearly 1ndependent where H; i the " row of 18
H' and G, isthe ™ row of G,

(A))  fi(t.x.%)+B (1) (1)
-Df{ (t.X.%)+H'B(t).tel.ieK

,z”,ﬂ) is an effi-

are linearly independent and
(Ay) for tel either

2) }fﬂ(z)T(G+(y(t)Tgx)x)ﬁ(t)dt>0

Copyright © 2012 SciRes.

and [5(0)" (5" (1)g.)20

orb) J.ﬂ(t)(GJr(y(,)T gx)

and [B@) (1" (1)g,)<0

)ﬁ(t)dt<0

X

Then X is feasible for (VCP) and the two objective
functionals have the same value. Also, if Theorem 3
holds for all feasible solutions of (CP) and (M-WD), the
x is an efficient solution of (VCP).

Proof: Since (f,z,f,zl,---,z”,ﬂ) is an efficient
solution of (M-WD), there exist 7€ R”, a e R” and
reR, and piecewise smooth #:1 > R", @' :1 >R,
i=12,---,n and p:I—> R" such that the following
Fritz John optimality conditions (Theorem 1)

[+ B0z ()~ D! —%(ﬁ(f)rH B0),

S| 43 DB H ), -3 D (B0 H'BW),

+%D3 (B H B®)), ——D“(ﬂ(t)TH‘ﬂ(t)).x.
H'+(H'p)) -D(H'A®)),
7| (H'BW®), D (H'p@)), +D* (H'B®)),

i=1 +G+(Gﬂ(t)) —D(Gﬂ(f)) +D2(Gﬂ(l))x‘
-D*(GA®)), +D* (GA®)),

o(t)

(y(t)’gx)—D(y(r)fgx)——(ﬂ(t)TH‘ﬂ(r))x
7|+ D(ﬁ(t) H'BW)), ——Dz(ﬂ(t) H'BW®), |=0tel
+5 LD (pay B©)), ——D“ (B H'p®)).,
(28)
0(t) (fi+B (1)2 (t)+ H'B(t))-a' =0, 29

tel,iekK

H(I)T (g),{ +ngxﬂ(t))_7(gj —%ﬂ(t)r girﬂ(t)j

4 (1)=0,t€l,j=12m

(30)

S H (1) +0(1) (z AH GJ+ yGB(t)=
i=1 i=1
tel,j=12,---,m

23" () B (1) +0(t)
iek.

0,
3D

B (1)-24 (1) B ()2 (1) =0, 13,

7]( ) g—— )Gﬂ(t)jdtzo (33)
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u(t) y()=0,e1 (34)
() () B (1) (1)-1)=0,i=12n (35
a'l=0 (36)

(r.7.u(t).a.4'.9") 20 (37)
(7.0(t).7.1(t), .8, 8%+ 4" ) % 0 (38)
From (31), we have
lzi;H’ (z'B(t)+ A'0())+(0(1)+1B(¢))G =0 (39)
This, by the hypothesis (A,) gives
TB(t)+A0(t)=0,te1 (40)
and O(t)+yB(t)=0,tel (41)
Using (40), (41) and (17), we have
Y@ =yA)(fi+B 0z ()-Df + H'p(1))
(P H'pw), +1D(ﬂ(t)TH"ﬁ(t))k
> __02 (BO"H BO)) += D3 (B0 H' ),
‘5D4 (B HB®)
(1), ~D(H'p®),+D* (H"ﬂ(t))x
—i I -D* (H' ﬂ(t)) +D'(H'®0)), +

+(GA®), -D(GAW)), +D2(Gﬂ(f));r-
—D3(Gﬂ(t)) +D*(GB®)..

Y ﬂ(t) H'B(t)
2 x

o(t)

+7|+ 3 DB H p0), -2 D (B0 H ), |=0.
+= D3(ﬂ(t) H'B(®)). ——D“(ﬂ(r) H'B(®)),

tel
(42)

Let y=0. Then (41) gives #(¢)=0 and (40) gives
TB(1)=0, tel
Using 0(¢)=0 and 7'S(r)=0, (42) implies

(e =) (S + B (1)< (1) - Dri + H'B (1)) = 0
This, because of (Aj) yields
=y =0 (43)

The relation (43) with =0 gives 7' =0
Since >0, (36) gives a=0. The relation (30)
yields u(t)=0,tel we have ¢'(¢)B'(t)z'(1)=0,
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ieK from (32) and ¢ (r)z'(¢ )TBi(t)zi(t):qzii(t),

tel, ieK from (35). These yield ¢' (t =0, tel,
iek.
Consequently
(7.0(0),7- (1), 2.8 8- 8" ) = Ot €1

contradicting (38).

Hence y >0 and from (43) 7' >0.

Multiplying (30) by »’(¢), summing over j, and then
using (34) and (41), we have

Jpa) {6+ () g.) )ploa

2] p(0) (»(1) g, )dar=0
1
In view of the hypothesis (Ay), this gives S(1)=0
j
tel, The relation (30) implies g’ :—”—(t)go,
r

je{l,2,---,m} yielding the feasibility of x(¢) for
(VCP).
The relation (32) with 6(7)=0 and 7' >0 gives
x(t) B (t)=2¢'(1)B'(1)2'(t)/c' ste Lic K (44)
This by Schwartz inequality gives
x(1) B ()2 (1)
I L (45)
(+(0) B () (0 B (0 (1))
If ¢'(¢)>0,ieK, then(35) give
4 (t)T B'(1)z'(t)=1, i€ K .andso (45 ) implies

x(e) B/ (1)2 (6) = (x(0)" B (1)) x(0) e e Liek.
If ¢ (t)=0, (44) gives B'(1)x(¢t)=0. So we still

get
1

x(0) B (1) ()= (x(e) B'())x(0) e Lie k
Now suppose that ( ) is not an efficient of (VCP).
Then, there exists %(7 ) € X such that
1
#(0))? }dt

INESEEE

fr(6%%)+ (X0 B (t)f(t));}dt

<!

and

A
~—, ~—
—_—— —— —
~
—_—
N o
Rak
. [OR
~——
+
—_—
=
—_
~
S—"
@
Sy
—_
~
~—~
—_
~
—_
-
o,
~
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Using S(t)=0,rel and

a0y Hrﬂ(t)}dt

for some re K, and

0 Hfﬁ(t)}df,ielg

This contradicts Theorem 3. Hence x(¢) is an effi-
cient solution for (VCP).
Theorem 6 (Strict converse duality): Assume that

ii’j(f" (6 +() B0 0))dr

is second order strictly pseudoinvex, and

j y(t t,.,. dt is second-order quasi-invex with re-

spect to same 77. Assume also that (VCP) has an optimal
solution X(¢) which is normal [6]. If
(l,ﬁ(r),ﬁ(t),él (t),---,27 (t),ﬂ(t)) is an optimal solu-
tion of (M-WD), then z2(t) is an efficient solution of
(VCP) with x(r)=1i(t),tel.

Proof: We assume that X(¢)#1(¢),r € and exhibit
a contradiction. Since X(7) is an efficient solution, it
follows from Theorem, that there exist A'e R, ie K,
y:I—>R", Z2eR", i=1,2,---,n, tel and
B(t)€R" such that

(¥(2).5(1). B(t) = 0.2" -,
ﬁ,p,ﬁ(t),j)(t),él (t),...’gp (t))

is an efficient solution of (M-WD). Since

(ﬁ(r),ﬁ(l),él (t),---,27 (t),ﬂ(t),/l) is an optimal solu-
tion of (M-WD), it follows that

Copyright © 2012 SciRes.

This, because of second-order strict-pseudoinvexity of

ZM( ) B (1) (1)) dr,

forz'(1)e R",i e P.
![”Tg” (/7 +B'(1)2 () +(Dn)' (iﬂf j
w E 0o

Also from the constraint of (VCP) and (M-WD), we
have
j y(t) g(t.x.%)dt

< (y(t)r g(t,ﬁ,ﬁ)—%ﬁ(l)r Gﬁ(t)jdt

Because of second-order quasi-invexity of

(46)

J' y(t t,.,.)dt , this implies

] ['iT (y(f Y &.)+(Dn) (v(0) & )+0" GB(1) [ar <0

1
(47)
Combining (46) and (47), we have

e (B ()2 ()+x(1) g,
0> | ! {21 [+H"ﬂ(f) ]} dr

+(Dn) [iﬂif; +y(t) gx-]+'7TG/3(f)

Fg (fi-Dfi+B'(1)z ()+Hlﬁ(t))]
:f dt
, "g.-D(¥(1) g )+GA(1)

t=a

t=b

o (T2 (1) &)

(By integrating by parts)
This, by using # =0, at t = @ and ¢ = b, implies

[ {g/wf -Df} +B (t)2 (1) + H'B(1))
+3(t) &, -D(v(t) g£)+Gﬂ(t)Jdt <0,

contradicting the feasibility of

((£). 2. 5(¢). B(¢).2" (¢). -+, 27 (¢)) for (M-WD).

5. Problems with Natural Boundary Values

In this section, we formulate a pair of nondifferentiable
Mond-Weir type dual variational problems with natural
boundary values rather than fixed end points given bel-
low
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(VCR) ) : Minimize

[ (6, 0)+ (7 () B ()7 (o) deees

!( (1.x,%))+ (f(t)TBp(t)f(t));dt]

Subject to
x(a)=0,x(b)=0 g(t,x,%)<0,rel
(VCD,) : Maximize

[ i) +a” (1) B (t)z(t)—%ﬂ(t)TH]ﬂ(t)jdt
() ()=t L5 17500 Jr

Subject to

i
;

u(a) = O,M(b) =0
S (S4B () ()+H 1)) g,

~Dy(1) g, +Gp(1))=0rel
l((y(t)Tg(t,u,u))—%ﬁ(t)T Gﬂ(t))dtgo,
2 () B (1)2 (1) <1,
A"f,=0 and y(t)' g, =0,at r=a and t=h.

/1>0,y(t)§0,tel.

We shall not repeat the proofs of Theorems 3-6 for the
above problems, as these follow on the lines of the analy-
sis of the preceding section with slight modifications.

6. Non-Linear Multiobjective Programming
Problem

If the time dependency of (VR)) and (M —WD,) is
ignored, then these problems reduce to the following
nondifferentiable second-order nonlinear problems al-

ready studied in the literature:
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(VPy): Minimize

[f%xﬁ{fB%ﬁ,gfpﬁﬁ{fB%ﬁJ

subject to
g(x) <0
(VD)): Maximize
[f()+u ﬁVfﬁ S ()

+u" B z” -3 ﬂTV2 fr ﬁj
subject to

YA (S +BZ =D +V [ B)+y g, +V (V' g) =0

yTg—%ﬂT<yTgw)ﬂ§0, 2Bz <1, ieK,A>0,y>0.
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