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ABSTRACT 

In this paper, we consider a tandem of two head-of-line (HOL) non-preemptive priority queuing systems, each with a 
single server and a deterministic service-time. Two classes of traffic are considered, namely high priority and low prior- 
ity traffic. By means of a generating function approach, we present a technique to derive closed-form expressions for 
the mean buffer occupancy at each node and mean delay. Finally, we illustrate our solution technique with some nu- 
merical examples, whereby we illustrate the starvation impact of the HOL priority scheduling discipline on the per- 
formance of the low-priority traffic stream. Our research highlights the important fact that the unfairness of the HOL 
priority scheduling becomes even more noticeable at the network level. Thus this priority mechanism should be used 
with caution. 
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1. Introduction 

In this contribution, we consider two discrete-time prior- 
ity queuing systems (hereafter referred to as PQS1 and 
PQS2) in tandem. Each PQS implements a non-preemp- 
tive head-of-line (HOL) priority scheduling with a single 
server. We consider two types of priority customers, 
namely high-priority and low priority customers (hereaf- 
ter referred to as class-1 and class-2, respectively). The 
number of class-1 and class-2 arrivals within a slot can 
be correlated random variables. 

The main thrust behind our interest to explore the per- 
formance of tandem priority queues is that previous 
studies have focused on an isolated priority queuing sys- 
tem. However, it is well known that in a typical (store 
and forward) network environment, customers go through 
a number of switching nodes before reaching their final 
destinations. For instance, customers belonging to a vir- 
tual connection are stored and forwarded through a num- 
ber of queues in tandem. Similarly, in many manufactur- 
ing and service applications (including health-care and 
banking), customers (or jobs) need to go through a num- 
ber of prioritized service facilities before completing a 
single transaction. At the same time, none of the previous 
studies on tandem queues have considered multi-class 
priority scheduling schemes. It is well known however 
that next generation telecommunications networks are 
being built around the inspiration of having a single cost- 
effective packet-based network that is capable of sup- 

porting diverse classes of services, each with its own 
Quality of Service (QoS) requirement. For instance, real- 
time traffic is delay and delay-jitter sensitive, while non- 
real-time applications are mainly loss sensitive. To achieve 
this goal, various packet service disciplines that deter- 
mine the order by which customers are served have been 
proposed. Among the simplest time-priority scheduling 
schemes, the non-preemptive head-of-line (HOL) priority 
scheduling discipline has been proposed to provide dif- 
ferentiated services to the high-priority traffic class. Un- 
der this scheme, the server always schedules the delay- 
sensitive traffic first (if present). Many previous studies 
(see for example [1-4]) have analyzed the performance of 
discrete-time HOL-priority queuing systems (in terms of 
system content and/or customer delay) under various 
assumptions regarding the arrival and service time dis- 
tributions. In particular, Walraevens et al. [5] analyzed a 
single server discrete-time HOL priority queuing system 
in steady-state. The corresponding transient results were 
reported in [6], while the case of multi-server HOL prior- 
ity queue is treated in [7]. In [8], Walraevens et al. ana- 
lyzed the busy periods and the output characteristics of a 
HOL priority queue. Kamoun [9] analyzed a HOL prior- 
ity queuing system which is subjected to a Markovian 
interruption process. However, to our best knowledge, 
none of the previous contributions addressed the case 
where customers have to go through more than one pri- 
ority queuing stage. 

The contribution of this paper consists of the practical  
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queuing model being considered, the solution technique 
being developed to extract explicit expressions for the 
various performance measures, and the new insights pro- 
vided on the performance of HOL priority queuing sys- 
tems in a small “network” environment: 

First, we add to the existing literature on non-preemp- 
tive priority models by considering two priority-based 
queuing systems in tandem. This tandem configuration of 
two PQS stages makes the resulting model more practical 
and flexible in studying more realistic priority-based 
queuing systems. 

Second, we demonstrate how a generating function 
can be used to derive closed-form expressions for the 
mean buffer occupancies and mean delays. The closed- 
form expressions of these performance measures make it 
very convenient to understand the effect of various sys- 
tem parameters on the performance of both traffic types. 
In particular, this research demonstrates how the starva- 
tion of the low-priority traffic, due to the HOL priority 
scheduling discipline, is particularly accentuated at the 
second stage. Our approach also bypasses the need to 
characterize or approximate the output process of the 
first PQS stage. Last, the exact expressions for some key 
performance measures can also be used as baselines to 
validate the accuracy of potential approximation tech- 
niques. 

The remainder of this paper is organized as follows: In 
Sections 2 and 3, we describe the queuing model and 
derive an expression for the Joint Probability Generating 
Function (JPGF) of the system state vector. In Section 4, 
we derive explicit expressions for some boundary terms 
appearing in the JPGF. From this JPGF, the marginal 
PGFs of the system contents at three of the four nodes, as 
well as several other JPGFs are derived, as illustrated in 
Section 5. Closed-form expressions for the first moments 
of the system contents and customer delay are presented 
in Section 6. Numerical results that provide insights into 
the behavior of the queuing model are provided in Sec- 
tion 7. In particular, we wanted to further explore the 
impact of the HOL priority scheduling discipline in a 
tandem configuration on the performance of class-1 and 
class-2 customers. Finally, a summary of the main find- 
ings of the papers and some suggestions for further re- 
search are provided in Section 8. 

2. Analytical Model Description 

We consider two discrete-time priority queuing systems 
(PQS) in a tandem configuration. Each PQS has an 
infinite storage capacity and a single (FCFS) server. The 
time axis is divided into equal length slots and customer 
service completion is synchronized to occur at the slot 
boundaries. Here a slot is the time period required to 
transmit exactly one customer from the system. It is  

assumed that a customer which arrives during a slot 
cannot be served before the beginning of the next slot. A 
“conceptual” diagram for our queuing model is depicted 
in Figure 1. 

As shown in Figure 1, in each PQS, customers are 
served based on a HOL time-priority scheme, whereby 
type-1 customers have absolute non-preemptive priority 
over type-2 customers. Under this priority scheme, the 
server will always serve type-1 customers (if any). If 
there are no type-1 customers, then type-2 customers (if 
any) will be served. The model shown in Figure 1 can be 
viewed as two HOL priority queuing systems cascaded in 
tandem (PQS1 and PQS 2), or as two parallel tandem 
queuing systems, which are coupled. In the latter case, 
the first tandem system consist of two high-priority 
queues (nodes 1 and 3), while the second system consists 
of the two low-priority queues (nodes 2 and 4). We also 
note that the input to the high/low priority queues (node 
3/4 in PQS 2) consists of new type 1/2 customers joining 
the network (exogenous arrivals), as well as type 1/2 cus- 
tomers which completed service at the first PQS. It is 
also clear from the model description that the high-pri- 
ority traffic stream, traversing nodes 1 and 3, is not in- 
terrupted by the HOL priority scheduling mechanism. 
The low-priority traffic stream, on the other hand, is 
subjected to two interruptions, at nodes 2 and 4. It is also 
assumed that inter-stage departures are not allowed.  

In the sequel, we denote the number of arrivals of 
class-j customers to PQS 1 during slot k by  ,j k . 
These arrivals constitute a series of i.i.d. random vari- 
ables with the common joint probability generating func- 
tion 1 2 1 2

1,2a j 

  1, 2,, k ka aA z z E z z    , independent of k. We 
define the marginal pgfs of the arrivals to PQS 1 from 
class-1 and class-2 customers during a slot by  

  1,
1 1 1

kaA z E z      2,
2 2 2

kaA z E z   

 1A 

 and 
 

respectively.  
The marginal arrival rates of class-j (j = 1, 2) to PQS 1 

are denoted by j j
 . We further denote the total 

number of arriving customers to PQS 1 during slot kby 

1 , 1, 2,T k k k  a a a  , with corresponding pgf TA z

 1 1 21T TA

. The 
total arrival rate to PQS 1 is denoted  

     . Similarly, we denote the number  
 

 

Figure 1. Conceptual diagram of the tandem queuing model 
with HOL priority. 
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of “exogenous” arrivals of class-j customers to PQS 2 
during slot k by ,j k . These arrivals constitute 
a series of i.i.d. random variables with the common joint 
probability generating function 3 4  , 
independent of k. We define the marginal pgfs of the 
exogenous arrivals to PQS 2 from class-1 and class-2 
customers during a slot by  and 

 respectively. 

 1,2b j 

1, 2,k kb bE z z 

1,
3

kbE z 
 

   1 3,4B j 

b

 3 4,B z z 

 3 3B z 
  2,

4 4 4
kbB z E z  

The marginal exogenous arrival rates of class-j (j = 1, 
2) to PQS 2 are denoted by j j . We 
further denote the total number of exogenous arrivals to 
PQS 2 during slot k by 2 , 1, 2,T k k k , with corre- 
sponding pgf 

 

b b 
 TB z

 2 31T TB
. The total arrival rate to PQS 2 is 

denoted by 4     . The total arrival rate 
to the whole system is denoted by  

   1 1T T TA B 1 2 3 4      

 , , ,u u
u

    . 

In the sequel, we assume that the system is stable and 
that a stochastic equilibrium exists. 

Our model allows for the number of class-1 and 
class-2 arrivals to each PQS, within a slot, to be corre- 
lated random variables. This type of correlation can oc- 
cur for instance when an incoming job (customer) can be 
split into two parts, an urgent and a non-urgent part, 
where the urgent part is of class-1, while the non-urgent 
part is of class-2. Taking into account this correlation in 
the arrival process leads to more accurate performance 
results [10]. In the next sections, we will demonstrate 
that an analysis based on probability generating functions 
approach can be used to derive some relevant perform- 
ance measures for the queuing system under considera- 
tion. 

3. Mathematical Model 

The queuing model, shown in Figure 1, can be formu- 
lated as a discrete-time multidimensional Markov chain. 
The state of the system is defined by 1, 2, 3, 4,k k k k  
where ,i k  is the system content of node i (i = 1 - 4) at 
the end of the kth slot. The evolution of the system con- 
tents is described by the following system equations: 

u u

2, 1,

2, 1,

1, 1 1, 1, 1

2, 2, 1
2, 1

2, 2, 1

3, 1 3, 1, 1 1,

4, 2, 1 0 0

4, 1

4, 2, 1 2, 1 0 0

1

1

1 1
k k

k k

k k k

k k
k

k k

k k k k

k k u

k

k k k u u

u u a

u a
u

u a

u u b u

u b
u

u b b



 








 

 



  



   

    
    


         

    


  






1,

1,

3,

1 if 0

if 0

if 0

1 if

k

k

u k

u

u

u





 



3, 0ku 

 

(1) 

where x


 is a binary-valued random variable which 
takes the value 1 if x > 0 and 0 otherwise, while 1 x  

is  

the indicator function which takes the value 1 if x is true 
and 0 otherwise.  

The first two expressions in (1) follow from the fact 
that high priority customers are not in influenced by 
low-priority customers, while a low priority customer 
can only be served, if there are no high priority custom- 
ers in PQS1 (which leads to the second equation). The 
last two expressions in (1) follow from similar arguments, 
in addition to taking into account the fact that the output 
of high/low priority queue in PQS1 (if any) will also 
constitute an input to the high/low priority queue in 
PQS2. We also took into account the fact that the low- 
priority node (2) can only forward a customer to the 
downstream low-priority node (3) if it is not empty and if 
the there are no high priority customers in PQS1. 

Next, define the JPGF of system contents at the end of 
the kth slot as follows: 

 

 

1, 2, 3, 4,
1 2 3 4 1 2 3 4

1 2 3 4
0 0 0 0

, , ,

, , ,

k k k ku u u u
k

i j k l
k

i j k l

Q z z z z E z z z z

z z z z p i j k l
   

   

   

 
(2) 

where 

  1, 2, 3, 4,, , , , , ,k k k k kp i j k l pr u i u j u k u l      

  1, 1 2, 1 3, 1 4, 1
1 1 2 3 4 1 2 3 4, , , .k k k ku u u u

kQ z z z z E z z z z   


 

is the joint distribution of the system state vector at the 
end of the kth slot.  

It follows that: 

    

Taking the z-transform of the system Equations (1), 
and by considering the nine cases depicted in Figure 2, 
we derive, by means of some standard z-transform ma- 
nipulations, the following relationship between  

 1 1 2 3 4, , ,kQ z z z z  1 2 3 4, , ,kQ z z z z ,  and 

 

 

Figure 2. The nine cases used in the derivation of Equation 
(3). 
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 1 2 3 4, , ,Q z z z z

 0, ,0,Q z z

4, 0k z 

3 0z and then  in Equation (3). Then: as illustrated in Equation (3) (below). 
Next, we define the steady-state JPGF of the system 

contents: 
     1 2 1 2, ,0,0 , 0,0Q z z A z z B        (5) 

where:    1 2 3 4, , , lim k
k

Q Q z z z z


 z  

 
Applying the above limit to Equation (3) yields (see 

Equation (4) below):    
Although it was not possible to determine all the seven 

boundary functions appearing in (4), as one of the 2 un-
known boundary terms (  or 2 4 ) 
could not be determined, we were able to derive the 
relevant performance measures related to mean system 
contents at each node and mean delays. It should be 
noted that the strong coupling between node 4 and the 
remaining nodes made the direct application of standard 
pgf techniques to extract all the boundary terms, appear-
ing in (4), an intricate task. 

 3 40,0, ,Q z z

4. Determination of Relevant Boundary 
Terms 

In this section, we show how to progressively determine 
some unknown boundary terms in order to extract rele-
vant performance measures for the queuing model under 
consideration. 

4.1. Determination of Q (z1, z2, 0, 0), Q (0, z2, 0, 0) 
and Q (0,0,0,0) 

First, to determine Q z , let    1 2, ,0,0z

4 3
4 3

34

0 0

0,0,0,0

0,0, ,00,0,0,

z z

Q

Q zQ z

z z
 

 


 

 



  (6) 

Next, to determine the constant , we set z1=z2=1 in 
Equation (5), which yields: 

 
 

1,1,0,0

0,0

Q

B
 

z z z z z

               (7) 

The boundary constant Q (1,1,0,0) is readily obtained 
from the normalization condition Q (1,1,1,1) = 1. In fact 
by setting 1 2 3 4   

 

 in Equation (4), it is 
easy to derive the following expression for the PGF of 
the total system content: 

      
   

1 , ,0,0T T
T

T T

A z B z z Q z z
Q z

z A z B z








     (8) 

1 1TQ  leads to The normalization condition 
 1,1,0,0 1Q T  . By substituting this result back into 

Equation (7) and then into Equation (5), we immediately 
obtain the first unknown boundary function: 

     1 2 1 2, ,0,0 1 ,TQ z z A z z         (9) 

 

 

             

       

2, 1 3, 1 4, 1
2 4

1 2 3 4 4 3 4 4
4 3

4
2 2 4 4 2

2 2

3

1 1
, , 0,0,0,0 0,0,0, 0,0,0,0 0,0, , 0,0,0,

1
0, ,0,0 0,0,0,0 0, ,0, 0,0,0, 0, ,0

k k k ku u u u

k k k k k

k k k k k

z z z

A z z B z z Q Q z Q Q z z Q z
z z

z
Q z Q Q z z Q z Q z

z z

    
 


          



          

1, 1
1 1 2 3 4 1, , ,kQ z z z z E z 

       

       

       

4
4 3 4 2 4 4

2 3

1 2 3 4 2 3 4 1 2 4 2 4
1

3 3
1 2 2 1 2 4 2 4 1

1 1 4

,0 0,0,0,0

0, 0,0, , 0, ,0, 0,0,0,

1
, , , 0, , , , ,0, 0, ,0,

, ,0,0 0, ,0,0 , ,0, 0, ,0,

k

k k k k

k k k k

k k k k k

Q

z
Q z z Q z z Q z z Q z

z z

Q z z z z Q z z z Q z z z Q z z
z

z z
Q z z Q z Q z z z Q z z Q z

z z z

  

     

     

          2 2, ,0,0 0, ,0,0kz Q z




 (3) 

2 3, ,z

  


    

       



        
        
         

4 1 4 2 3 2 3 4 2 3 3 4 1 2 4

2
3 4 1 4 2 3 2 4 2 3 4 1 2

1 3 4 2 4 4 1 4 2 4 3 4

3 4 1 4 2 3 2 1 3 4 2 4
4

2 3 4

0, , , , ,0,

0, ,0, 1 , ,0,0

0,0,0, 0,0, ,

1 0, ,0,0 1 0,0,0,0

z z z z z Q z z z z z z z Q z z z

z z z z z z Q z z z z z Q z z

z z z z z Q z z z z z Q z z

z z z z z z Q z z z z z z Q
Q A z

z z z z

  

    

    

     
 z

   1 2 3, ,z z B z
1 1 2 3 4, ,A z z B z z  

     (4) 
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The other two related boundary terms are readily de- 

rived from Equation (9): 

 20, ,0,0 1Q z     20,T A z

   1 0T TA 

 0,0,0,0 0 1T

       (10) 

 0,0,0,0Q          (11) 

and therefore for the system to be stable, we require that 
 or equivalently, Q  



. 

4.2. Relationship between Q (z1, z2, 0, z4) and  
Q (0, z2, 0, z4) 

In this subsection, we determine 1 2 4  up to 
the boundary term 

, ,0,Q z z z
 2 40, ,0,Q z z

 , 0,A z z B

. For this purpose, let 

 and  in Equation (3). Then: k  3 0z 

 , ,0,Q z z z    4 2 4,z z z 1 2 4 1 2    (12) 

where: 

    

 



   

   

   

 

3

2 4

4
4

3 4 4
2

3 20

2 3 4 3 44

2 3

2 4 4
2

( , )

1
0,0,0,0 0,0,0, 0,0,0

0,0, ,
0, ,0,0

0, , , 0,0, ,

1
0, ,0, 0,0,0, 0,

0,0,0,0

z

z z

Q Q z
z

Q z z z
Q z

z z

Q z z z Q zz

z z z

Q z z Q z Q
z

Q





  


 



 
 

 

 

 

 

3 3
30 0

2

,0

0,0,0,0

,0,0

z z

Q

Q

z

z

 



  

 
 





 

is independent of z1. Substituting z1 = 0 in Equation (12), 
we get: 

   
   

2 4

2 4

0, ,0,

0,

Q z z
2 4,

0,
z z

A z B z
   

and therefore: 

   
   2 40, ,0,Q z z



1 2
1 2 4

2

,
, ,0,

0,

A z z
Q z z z

A z
    (13) 

Thus 

4.3. Determination of Q (0, 0, z, z) and Q (0, z, 0, z) 

1 2 4, ,0,Q z z z
  

is determined up to the bound- 
ary term 2 40, ,0,Q z z



. 

To determine the boundary term 0,0, ,Q z z

   

, we pro- 
ceed as follows: 

First by setting z1 = z2 = x and z3 = z4 = z in Equation 
(4), we obtain (see Equation (14) below): 

From (9), we note that , ,0,0 1Q x x A x  T T . 
Also since  , , ,Q x x z z is analytic inside the polydisk 
(  1, 1x z  ), then the numerator must be zero when- 
ever the denominator is zero. It follows that: 

 

         
0,0, ,

0
1 1 T z z T

T
z

Q z z

zA Y Y z A
z

z Y


    (15)  
     

where zY  is the unique solution for x in the unit disk 
      0T Tx A x B z1z    .  of the equation 

Next, we determine 0, ,0,Q z z

   

 by proceedings as 
follows:  

First by setting z1 = z3 = x and z2 = z4 = z in Equation 
(4), we obtain (see Equation (16) below): 

From (9), we note that , ,0,0 1 T TQ x x A x 

 

. 
Also from (13): 

 
   

,
, ,0, 0, ,0,

0,

A x z
Q x z z Q z z

A z
       (17) 

Substituting for , ,0,0Q x x  , ,0,Q x z z
 
and 

 
in (16) 

and since  , , ,z x zQ x  is analytic inside the polydisk 
 1, 1x z 

      

, then from Rouche’s theorem, we get: 

0, ,0, 1 1 0, z
T

z

R
Q z z z A z

z R
  


   (18) 

where zR  is the unique solution for x of the equation 
   , ,x A x z B x z  in the unit circle 1x  . 

5. Joint and Marginal PGFs 

Having determined some relevant boundary terms, we 
can now easily derive the marginal PGFs of the system 
contents at nodes 1, 2, and 3, as well as several other 
JPGFs. This is illustrated below. 

5.1. Joint and Marginal PGFs of High-Priority 
(Class-1) System Contents 

  Let 13 1 3 1 3, ,1, ,1P z z Q z z

                
   

 
denote the JPGF of the 

 

 
0,0, , 1 , ,0,0 1 0,0,0,0

, , ,
T T

x z Q z z z z Q x x z x z Q
Q x x z z z

z x A x B z

      
   

    
T TA x B       (14) 

             
   

, ,0, 1 , ,0,0
, , , , ,

, ,

x z Q x z z x z Q x z
Q x z x z A x z B x z

z x A x z B x z

   
   

   
               (16) 

 
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   

   

 

system contents of the high-priority queues at nodes 1 
and 3. By setting z2 = z4 = 1 in Equation (4), we get (see 
Equation (19) below): 

To determine the boundary terms  13 1  
and  ,0P z

 13 0,0P

 

, appearing in (19), we first set z2 = z4 = 1 in (13): 

     1 1
13 0,0

0
P z P

A
13 1

1

,0
A z

         (20) 

Next, from (19), the normalization condition P13 (1, 1) 
= 1

 
yields  13 1,0P 1 31     1 1z. Therefore setting   

in (20), we get: 

 

 

13 1

13 1 1

0,0 1

,0 1P z

 

 

   

   

3 1

3 1 1

0P A

A z

 

 







       (21) 

The remaining boundary term 13 30,P z


 

is readily 
obtained by substituting (20) and (21) into (19) and by 
invoking the analytical property of 13 30,P z

 
inside the 

polydisk  1;z z

  

1 . It follows from Rouche’s 
theorem that: 

3 1

 

  
  3 3

3

3 1 0

z

z A 

13 3

3 1

1 3 3
3

0,

1 1
z z

P z

z A X X
z

z X
     



(22) 

where for a given  1z z 
33 3 , zX

 
is the unique solu- 

tion for z1 of the equation   1 1 1 3 3z A z B z
 

in the unit 
circle 3 1z  . 

Substituting (21) and (22) back into (19), we obtain 
after few algebraic manipulations: 

 

       

   
 

   
 

3

3 3

3

3

1 3 1

3

1

z

z z

z

z X

z A X

z





  

   
 

13 1 3

1 3 1 1 3 3

3 1 1

1 1 1 3

,

1

P z z

A z B z

z X A z z

z A z B

   

 




   (23) 

From the above, we can obtain expressions for the 
following: 
 Marginal PGF of the number of class-1 customers 

in queue 1: 

      1 1 1

1 1 1

1z A z

z A z


1 1 13 1 1,1 1P z P z        (24) 

 Marginal PGF of the number of class-1 customers 
in queue 3: 

   
 

3 3

3

3 3 13 3

1 3 3 3

3 3 13

3 3 3

1,

1

11

1

z z

z

P z P z

B z

z X z A Xz

z X B z

 



      (25) 

     
 

          
   

 PGF of the total number of class-1 customers in 
the system: 

2

1 3 1 3
13, 13

1 3

1 1
,T

z A z B z
P z P z z

z A z B z

   
 





(26) 

It should be noted that since the high-priority traffic 
(traversing nodes 1 and 3) is not influenced by the 
low-priority traffic (traversing nodes 2 and 4), then the 
above results for the JPGF 1,3 1 3P ,z z

 
could have been 

derived by analyzing the performance of the two tandem 
queues 1 and 3, independently from the rest of the system. 
We carried this analysis and confirmed that the resulting 
JPGF of the system contents matches the one derived in 
Equation (23). 

5.2. Joint PGFs of the System Contents in PQS1 

  Let , , ,1,1P z z Q z z12 1 2 1 2  
denote the JPGF of the 

system contents of the first priority queuing system(PQS 
1). Then from Equation (4): 

 

         
 

12 1 2

1 2 12 2 1 2 12
1 2

2 1 1 2

,

0, 1 0,0
,

,

P z z

z z P z z z P
A z z

z z A z z

  
 

  



(27) 

The boundary constant 12  
is readily obtained 

from the normalization condition 12 , yielding 
0,0P

 1,1 1P 
 0,0 1P12 1 2  0,12 2P    . The boundary term z

   

 is 
readily obtained from (27) by applying Rouche’s theo-
rem: 

2

2

2
12 2 1 2

2

1
0, 1 z

z

z
P z W

z W
 


  


     (28) 

where for a given  1z z2 2  , z2
W

  1 1 2,z A z z
is the unique solu-

tion for z1 of the equation  in the unit cir-
cle 2 1z  . 

 12 20,  P z  and Next, by substituting for 12 0,0P  
back into (27), we get: 

 

     
2

2

12 1 2

12
1 2 1 2

2 1 1 2

,

1
1 ,

,
z

z

P z z

z Wz
A z z

z W z A z z
 


   

 

              
   

  (29) 

 

    3 3 13 1 1 3 13 3 3 1 3 13

3 1 1 1 3 3

1 ,0 0, 1 0,0z z P z z z P z z z z P
z

z z A z B z

      
   

    
13 1 3 1 1 3 3,P z z A z B        (19) 
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From the above, we can obtain expressions for the 

following: 
 

           
   

 Marginal PGF of the number of class-1 customers 
in queue 1: 

         
 

1 1 1

1 1 1

1z A z

z A z


1 1 12 1 1,1 1P z P z       (30) 

 Marginal PGF of the number of class-2 customers 
in queue 2: 

   

     
2

22 2 2

1

1
z

z

W

A z



 

   
 

2 2 1,2 2

2
1 2 2 2

1,

1
1

P z P z

z
A z

z W
 




  

  

 (31) 

 PGF of the total number of class-1 customers in 
PQS1 

     1 2
12, 12 ,TP z P z z

z A

  
 


1 1 T

T

z A z

z



  , 1,1, ,

  (32) 

We also observe that the JPGF of the system contents 
of PQS 1 could have also been be derived by considering 
PQS 1 as an isolated priority queuing system. Such an 
analysis of a single stage PQS has been presented in [5] 
and our expressions (31-32) match those derived therein. 

5.3. PGFs of Total Number of Customers in PQS2 

Let   34, 34TP z P z z Q z z   denote the JPGF 
of the total number if customers in the second priority 
queuing system (PQS 2). Then from (4): 

 
   

    
 

  

34,

1

1,1,0,0 0,0, , 1

1

T

T

T

P z

z B z

zQ Q z z z

z B z

 

 


  

0,0,0,0Q

   


 (33) 

Using (9), (11) and (15), we can determine the un-
known boundary terms appearing in the above equation, 
yielding: 

 
    

   

34,

1 1

1

T

T T z

z T

P z

z B z z Y

z Y B z

  


 

1 T zz A Y      (34) 

where, as defined earlier, for a given  1z z 

    0T Tx B z

, Yz is the 
unique solution for x of the equation  

 in the unit circle x A  1x 

  , 1, ,1,

. 

5.4. PGF of the Total Number of Class-2  
Customers in the System 

Let   24, 24TP z P z z Q z z   denote the PGF of 
the total number of class-2 customers in the system. Then 
from Equation (4): 

24,

2
2 4

2 4

1 1, ,0,
1

1

T

T

P z

A z Q z z
z A z B z

z A z B z

 
 

  
 1, ,0,Q z z

        
   

 (35) 

The unknown boundary term  can be de-
termined from (13) and (18), which yields: 

2

2 4
24,

2 4

1 1 1

1
T z

T

z A z B z R
P z

zA z B z z R

  
 

 
  (36) 

where zR  is the unique solution for x of the equation 
   , ,x A x z B x z  inside the unit circle 1x  . 

5.5. PGF of the Total System Contents 

   , , ,TPLet z Q z z z z

        
   

 denote the PGF of the total 
system contents. Then using (4) and (9) we get: 

2

1 1 T T
T T

T T

A z B z
P z z

z A z B z
  


    (37) 

6. Calculation of the Moments 

To compute the various moments of system contents, we 
introduce and recall the following notations: 

       

       

1 2

3 4

2
1 2

1

2
3 4

1

,
, 1, 2 1,2

,
, 3, 4 3, 4

i j

i j

z z

ij

z z

A z z
i j

z z

B z z
i j

z z


 

 


 

  
    

 

 

 

   
1 1 1 2

2 1 3 4

d
1

d
d

1
d

T
T T z

T
T T z

A z
A

z
B z

B
z

  

  





   

   

 

 

 

   

2

1 11 22 122

2

1 33 44 342

d
1 2

d

d
1 2

d

T
T z

T
T z

A z
A

z

B z
B

z

  

  





    

    

, , ,

    (38) 

Next, we observe that the functions 
3 2z z z zX W Y R

1iz

, 
appearing in the various pgfs of the system contents, can 
only be explicitly defined under simple arrival processes. 
Fortunately, the derivation of the first and higher mo-
ments of the system contents involves evaluating these 
functions and their first and higher order derivatives at 

 . These can be readily computed in closed-form.  
From the corresponding pgfs (24 - 26, 30 - 32, and 34, 

36 - 37), the mean system content of class-j customers (j 
= 1, 2) and the mean total system contents are readily 
obtained: 
 Mean system content of class-1 customers at node 

1: 
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   
11

1
12 1


1 1 1N P


  


         (39) 

 Mean system content of class-1 customers at node 
3: 

 
 

 
11 3311

3 1 2 1 2 1
N 3 3

1 1 3

2 1   
  







 

  
 

   (40) 

 Total mean system contents of class-1 customers: 

   
11

13, 13, 1 31 2T TN P 1 3 33

1 3

2

2 1

   
 

 


 
      (41) 

 Mean system content of class-2 customers at node 
2: 

      
12 22

2 2 2

2
1

2 1 2 1
N P

 
 2 11

1 1 11T T

 
  
   
 

 (42) 

 Total mean system contents of class-2 customers: 

       
 

 
 

24,

24, 2

3 3 11 33

1 3

1 1
1 2

2 1

2 1

2 1

T

T T
T

T

N

A B
P 



   
 

    


  


 

2 22 1T T 
 (43) 

 Mean system content of class-2 customers at node 
4: 

The mean number of class-2 customers at node 4 can 
be derived by subtracting the mean system content of 
class-2 customers at node 2 from the total mean system 
contents of class-2 customer. Hence, using (42) and (43), 
we get: 

    
 



 
    

4 24, 2

2 2
2

1

3 3 11 33

1 3 1

1 1 2 1

2 1

2 1

2 1 2 1

T

T T T

T

T

N N N

A B 12 22

1 2

1

2

1

T   



 






     
  

 

   
 



  
 

  

(44) 

 Total mean system contents at PQS1: 

   
 12, 12, 11T T TN P 

1

1

2 1
T

T

A







         (45) 

 Total mean system content at PQS2: 

 
   

 
 

 

34, 34,

2 1

1

1 1 2

2 1

T T

T T T
T

N P

A B  






  
 

 1

1

2 1
T T

T T

A







  (46) 

 Total mean system content 

    

It can be easily verified that Equations (39-47) satisfy 
the expected results: 

12, 1 2

34, 3 4

13, 1 3

1 2 3 4

T

T

T

T

N N N

N N N

N N N

N N N N N

 

 

 
        (48) 

   

By using Little’s law, the following mean customer 
delays are readily obtained: 
 Mean delay at each node: 

i
i

i

N
d                 (49) 



 Mean delay cjd  of an arbitrary class-j customer 
(j = 1, 2): 

13,31
1 1 3

1 3 1 3 1 3

24,2 4
2 2 4

2 3 2 4 2 4

T
c

T
c

N
d d d

N
d d d


     

 


 

1 21 1 2 T T

T
11

2 1
T T

T T T T

A B
N P

 


 


 
 

     (47) 

     

  
  

  

    (50) 

  

 Total average delay  in the system: Td

4

1
i

i T
T

T T

N
N

d
 
 


 

             (51) 

7. Numerical Examples and Discussions 

In this section, we illustrate our approach through some 
numerical examples. In particular, we will further probe 
into the influence of HOL priority on the performance of 
low-priority traffic stream. For this purpose, we consider 
two-dimensional Binomial exogenous arrival processes 
with JPGFs: 

   1 2
1 2 1 2, 1 1 1

N

A z z z z
N N

       
 

 

 

   3 3
3, 4 3 41 1 1

N

B z z z z
N N

       
 

 

Further, we define i i T    (i = 1, 2, 3) as the 
fraction of arrivals to node i among the total arrivals. For 
the numerical calculations, we have set N = 16 and 
   1 2 3

In Figure 3, the mean customer delay at each node as 
well as the total average delay, are plotted as a function 
of the total arrival rate T

, , 0.45,0.25,0.20    . 

 . The mean delay i  at each 
node and the total average delay 

d

T  were computed by 
substituting for 

d

i  as given in Equations (39), (40), 
(42), and (44) into (49) and (51), respectively. 

N

Figure 4 shows the mean delay of an arbitrary class-j  
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Figure 3. Mean delays versus total arrival rate T . 

 

 

Figure 4. Mean delay of a class-j customer (j = 1, 2). 
 

customer (j = 1, 2) and the total average delay as a func-
tion of the total arrival rate T . In this case, the mean 
delay T  for each class j customer was computed by 
substituting for 13,T  and N 24,TN , as given in Equations 
(41) and (43), into (50). 

As may be seen from the above figures, the HOL pri-
ority scheduling has a significant influence on the mean 
delay of the low-priority (class-2) customers. This star-
vation effect is even more significant at node 4. To this 
regards, recall that class-2 customers arriving at the ac-
cess node (2) are subjected to two consecutive HOL in-
terruption processes due to the potential presence of 
higher priority customers at nodes 1 and 3. The above 
results not only echo but also amplify previous concerns 
related to the unfairness of the static HOL priority 
scheduling mechanism for low-priority traffic. Therefore 
HOL scheduling should be used with caution.  

Our research also suggests that more research is 
needed to come-up with efficient priority mechanisms 
that exhibit better fairness and that can be easily imple-
mented in real-time. Earlier contributions in this regards 
focused on a class of dynamic priority schemes that are 

based on the queue-length-threshold scheduling disci-
pline. Under this scheme, the priority scheduling can 
dynamically change, based on the queue lengths (see for 
example [11-15]) [16]. Some More recent contributions 
include the work of Maertens et al. [17-19] on priority 
jumping mechanisms and the contribution of De Vuyst et 
al. [20,21] on reservation-based priority disciplines. 

8. Conclusions and Future Research 

In this paper, we presented an exact analysis of a two 
HOL priority queuing systems in a tandem configuration. 
For each PQS, our model allows for possible correlation 
between the numbers of arrivals of the two classes of 
customers during a slot. We showed how a generating 
function approach can be used to derive closed-form ex-
pressions for several performance measures. Finally we 
have demonstrated, via numerical examples, the negative 
impact the HOL priority scheduling on performance of 
the low-priority traffic.  

This work can be further explored in many directions. 
For instance, it would be interesting to derive expressions 
for the pgf of customer delay and characterize the end- 
to-end delay of a tagged customer. The characterization 
of the asymptotic behavior of the tail distributions of the 
various system contents is still an open research issue.  

Finally, our analysis can also be extended to handle 
the case where customers leaving the first PQS stage are 
allowed to leave the system with a pre-assigned probabil-
ity. These are left for future research. 
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