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ABSTRACT 

In this study, the homotopy analysis method (HAM) is used to solve the generalized Duffing equation. Both the fre- 
quencies and periodic solutions of the nonlinear Duffing equation can be explicitly and analytically formulated. Accu- 
racy and validity of the proposed techniques are then verified by comparing the numerical results obtained based on the 
HAM and numerical integration method. Numerical simulations are extended for even very strong nonlinearities and 
very good correlations which achieved between the results. Besides, the optimal HAM approach is introduced to acce- 
lerate the convergence of solutions. 
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1. Introduction 

Nonlinear Duffing equation is a simple mathematical 
model which describes the resonance and chaotic phe- 
nomenon. In science and engineering many nonlinear 
vibration problems can be transformed into the Duffing 
equation to research [1]. From a certain point, the real 
significance of the research on nonlinear Duffing system 
attracts a lot of scholars and several ingenious analytical 
methods have been developed for dealing with the non- 
linear Duffing oscillator, such as the modified perturba- 
tion methods [2,3], improved harmonic balance methods 
[4], energy balance method [5,6], the frequency-ampli- 
tude formulation [7,8]. Meanwhile, the homotopy analy- 
sis method (HAM) [9] proposed by Liao has been proved 
to be one of the efficient analytical techniques in solving 
a variety of nonlinear Duffing problems. By the HAM, 
Hoseini et al. [10] study free vibrations of tapered beams 
and give an accurate analytical solution for the third- 
order Duffing equations; Qian et al. [11] obtain accurate 
analytical solutions for the fifth-order Duffing equations 
by considering vibrations of a restrained cantilever beam. 
For the seventh-order Duffing equations Qian et al. [12] 
get accurate analytical solutions by researching vibra- 
tions of an electrostatically actuated microbeam. 

Thus, the prime objective of this paper is to explore 
the utility of the HAM for the generalized Duffing equa- 

tion. All odd-type analytical results can be then involved 
in the generalized solution. In what follows, Section 2 
presents natural frequency of the system obtained as a 
function of the initial amplitude and the general solution 
for any arbitrary odd power of . In addition, the opti- 
mal HAM approach used to accelerate the convergence 
of solutions is also provided and discussed. In Section 3 
two numerical examples are presented to examine the 
accuracy and validity of the proposed technique. In Sec- 
tion 4 the numerical results of the HAM are presented 
and compared with the numerical integration solutions. 
Finally, a conclusion summarizes the research findings in 
Section 5. 

n

2. Solution Methodology 

In this section, we apply the HAM to solve the following 
nonlinear Duffing oscillator: 

3 5 7
3 5 7 0n

nu u a u a u a u a u        ,     (1) 

where is displacement and 3 5 7  (n is the 
odd number) are arbitrary constants. Subject to the fol- 
lowing initial conditions: 

u , , , , na a a a

   0 , 0u A u 0  ,             (2) 

where A is an arbitrary constant. Under the transforma- 
tion t  , Equations (1) and (2) can be rewritten as 
follows: *Corresponding author. 
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2 3 5 7
3 5 7 0n

nu u a u a u a u a u         ,   (3) 

   0 , 0u A u  0,             (4) 

where a dot  denotes differentiation with respect to  
 , and   is the nonlinear frequency.  

It is known that free oscillation of a conservative sys- 
tem without damping is a periodic motion and a har- 
monic function is the simplest type of periodic motion. 
So it can be expressed by the following base functions: 

 cos 2 1 1, 2,3,m m   .         (5) 

Taking into consideration the initial conditions in 
Equation (4), we choose the initial guess of  u   for 
the zeroth-order deformation equation as follows: 

 0 cosu A  .               (6) 

Thus, the auxiliary linear operator of a conservative 
system can be selected as 

     
2

2
0 2

;
; ;

u q
L u q u q


  


 

        


.      (7) 

The auxiliary linear operator L is chosen in such a way 
that all solutions of the corresponding high-order forma- 
tion equations exist and can be expressed by the general 
form of the base function. According to Equation (4), the 
nonlinear operator is written as: 

   

     

   

   

2
2

2

3 5

3 5

7

7

; ,

;
( ) ;

τ

; ;

; ;
n

n

N u q q

u q
q u q

u q u q

u q u q

 


 

   

   

  


 


       

         .



      (8) 

Then considering the homotopy function, we obtain 
the zeroth-order deformation equation as: 

         01 ; ; ,q L u q u q N u q q          ,  (9) 

where  0,1q

 ;u q

 and  are, respectively, embedding 
and convergence-control parameters. As q changes from 
0 to 1,  varies from the initial guess 



 0u   to 
the unknown solution  u  . Similarly,  varies 
from the initial guess frequency 

 q
0  to the physical fre- 

quency  . 
Then we make use of the Taylor series expansion to 

get 

     0
1

; m
m

m

u q u u q  




  ,         (10) 

  0
1

m
m

m

q  




 

   
0

;1

!

m

m m

q

u q
u

m q










,           (12) 

 
0

1

!

m

m m

q

q

m q










,            (13) 

It is known that if is properly chosen, the power 
se

   
atries solutions in Equ ions (10) and (11) can be con- 

verged at 1q  . So Equations (10) and (11) then be- 
come 

     0
1

m
m

u u u  




  ,          (14) 

0
1

m
m

  




  .              (15) 

For the sake of simplicity, we define the following 
vectors: 

      
 

1 2

0 1

, , ,

, , , .

n n

n n

u u u ,  

  









u

ω
       (16) 

By differentiating the zeroth-order deformation equa- 
tio

 

n (9) m times with respect to q, then the resulting 
equation is divided m! and setting 0q  , it can be found 
the mth-order deformation equation

   L u u R        1 1;m m m m m mu ω 1 ,   (17) 

with the initial conditions: 

    0 0 1m 0 0,m mu u   ,        (18) 

in which  

             (19) 
0, if 1

1, if 1m

m

m



  

,

   
   1

1 1 1

0

; ;1
,

1 !

m

m m m m

q

N u q q
R

m q

 

  



   
 

u ω

(2

.  

0) 

Because odd nonlinearity of considered conserv
sy

ative 
stem, mR  can also be written as: 

     1 1 1
1

; cosm m m k m
k

R d
 

2 1k
m

   


 u ω ,   (21) 

where  m  
wing 

is an integer that depends on 
 the lin-

m . 
 anFollo the rule of solution expression d

ear operator L , the terms of cos  should not exist in 

mR  of Equation (17), otherwise the so-called secular 
s such as costerm    will appear in the final solutions. 

Therefore, their c ficients are set to zero as follows: oef
q

in which 

,             (11) 

 2π1 ,     (2
1 10
; cos d 0

π m m mR        u ω 2) 
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The solutions of   in Equ
and (22) can be det vely. Fo
va

 1 1, 2,m m   
ermined successi
, , n  and 

ations (17) 
r the given 

3 5
3 5 0u u a u a u    .           (27) 

The problem is solved and the general solution can be 
obtained based on the HAM in Section 2. 

lues of  3,5i i  A , we have the peri- 
odic solutions by the abovementioned analytical ap- 
proach,  

   

For 1m  , one obtains 0  from Equation (22) as 
follows 

   
  

 
1 cos 2 1m

k m
m

d k
u



1 2 2
20

1 0

1 2 1

cos ,

m m
k

u
k

C C

 
  


 








 

 


 (23) 

where  and can be determined by using the ini- 
tial co  giv n Equation (18). 

e, -o

2
0 3

3 5
1

4 8
a A a A    4

5 .           (28) 

Making use of Equation (23) leads to 

0C
ndition

1C  
en i

Henc the mth rder approximations are 
m

  1,3 1,5 1,3 1,5
1 2 2 2 2

0 0 0 0

cos cos3 cos5 .
8 24 8 24

b b b b
u   

   
 

    
 

   


 (29) 

   
0

, ,i
i

u u t   


           (24) 

in which 

where 

3
1,3 3 5

1 5

4 16
b A a A  5a ,            (30) 

0

m

i
i

 


  .               (25) 

We know there are many opti
which can be able to achieve faster convergent homo- 
to

mal HAM approaches, 

5 5
1,5

1

16
b A a .               (31) 

For 2m  , we substitute the solutions of  0u  , 
 1u   and 0  into Equation (22) to yield py-series solutions [13,14]. In theory, we can define the 

exact residual error of the mth-order of approximation as   
 

2 4
1 1,3 3 53

0

2 4 2
1,5 3 5 0

48 72 75 48
768

16 36 45 16 .

b A a A a
A

b A a A a

2
0 





  

   






 (32) 

0

m

m i ex
i

 


   .            (26) 

From Equation (21),  are derived in the 
following: 

2 1 1,R u ωex  
ve
e f

where is the exact nonlinear fre
(1) deri d by using the numerical integration technique. 

he nonlinear Duffing oscilla- 
 form. So in this section, we 

quency of Equation 

It can b ound ∆m embraces the unknown convergence- 
control parameter  . As ∆m decreases more rapidly to 
zero, the speed of the convergence for the corresponding 
homotopy-series so tion is faster [14]. The correspond- 
ing value of the convergence-control parameter   at the 
given order of approximation m  can be optimized and 
selected by minimizing the residual error ∆m. 

3. Numerical Results 

lu

 2 1 1 2,3 2,5 2,7

2,9

, cos3 cos5 cos 7

cos9 ,

R b b b

b

  



  



u ω
  (33) 

where the coefficients  can be readily 
derived using Equation (21). In addition, 

2, 3,5,7,9ib i  
 2u   is 

given by 

    2,3 2,5 2,7 2,9
2 1 2 2 2 2

0 0 0 0

2,3 2,5 2,7
2 2 2
0 0 0

2,9
2
0

cos τ
8 24 48 80

cos3 cos5 cos 7
8 24 48

cos9 .
80

b b b b
u u

b b b

b

 
   

  
  




 
     

 

  



   

  



(34) It can be obviously found t
tor for 3n   has a simple
research the nonlinear Duffing oscillator for 5n   and 

7n  . 
Firstly the nonlinear Duffing oscillator for 5n   has 

llo For 3m  , we can yield the fo wing form: 
 

 2

1
25  

    

3 2 2 2 4 2
5 1,3 1,3 1,5 1,5 5 1,3 1,5 2,3 2,5 2,7 2,9 05

0

2 2 2 2 2 4 2
3 1,3 1,5 2,3 2,5 2,7 2,9 0 3 1,3 1,3 1,5 1,5 0 1

2
0 2

27 24 7 150 15 9 15 9 5 3
23040

108 20 10 20 10 5 3 15 27 18 5 768

48 30

A a b b b b A a b b b b b b
A

A a b b b b b b A a b b b b

b




  



       

         



 

 

      2 2 2
,3 2,5 2,7 2,9 0 1,3 0 0 1 1,5 0 0 110 5 3 1 30 1 2 10 1 2 ,b b b b b                  

 (35) 



 3 2 2 3,3 3,5 3,7 3,9 3,11 3,13, cos3 cos5 cos 7 cos9 cos11 cos13 ,R b b b b b b         u ω              (36) 
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    3,3 3,5 3,7 3,9 3,11 3,13 3,19 3,3
3 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0

3,5 3,7 3,9 3,11 3,13
2 2 2 2 2
0 0 0 0 0

cos cos3
8 24 48 80 120 168 360 8

cos5 cos 7 cos9 cos11 cos13
24 48 80 120 168

b b b b b b b b
u u

b b b b b

  
       

    
    

 
         

 

    

       

    
,

 


        (37) 

 
where all coefficients can be com- 
puted from Equation (2

According to Equations (24) and (25), the correspond- 
ing third-order analytical approximation for Equation (27) 
is 

 3, 3,5, ,13ib i    
1). 

         0 1 2 3 , ,u u u u u t              (38) 

here 

2

w

0 1           (39) 

The higher-order appro

   .     

ximations for   and  u   
ca

     

can get some approximations for 

n be derived in a similar manner. 
Secondly we consider the nonlinear Duffing oscillator 

for 7n  : 
3 5 7

3 5 7 0u u a u a u a u     ,    (40) 

We   and  u   
according to Section 2 in a similar manner. 

For 1m  , one obtains 

2 4 65
a A ,      (41) 0 3 5 7

3 5 3
1

4 8 64
a A a A    

  1,3 1,5 1,7
1 2 2 2

0 0 0

1,3 1,5 1,7
2 2 2
0 0 0

cos
8 24 48

cos3 cos5 cos7 ,
8 24 48

b b b
u

b b b

 
  

  
  

 
   
 

  

  

  
 (42) 

where 

3 5
1,3 3 5 7

1 5 21

4 16 64
b A a A a A   ,7a         (43) 

5 7
1,5 5 7

1 7

4 64
b A a A  ,a                 (44) 

7 7
1,7

1

64
b A .a                        (45) 

For 2m  , we can yield 
 

 2 4 6
1 1,3 3 5 73

6 32 48 50 49
3

b A a A a A a   

 

2 2 4 6 2
0 1,7 3 5 7

0

2 4
1,5 3 5

32 32 72 100 119 32
072

4 16 36 45 4

b A a A a A a
A

b A a A a 6 2
7 09 16 ,A a

0  


    

    

    


 (46) 

 2 1 1 2,3 2,5 2,7, cos3 cos5 cos 7 cosR b b b 2,9 2,11 2,139 cos11 cos1b b b 3 ,     u ω                         (47) 

    2,3b
u u 2,5 2,7 2,9 2,11 2,5

2 1 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0

2,7 2,9 2,11 2,13
2 2 2 2
0 0 0 0

cos cos5
8 24 48 80 120 168 8 24

cos 7 cos9 cos11 cos13 .
48 80 120 168

b b b b b b

b b b b

2,13 2,3 cos3
b




   
 

  
       

   
   


    

 

   

   

   
          (48) 

For , one arrives at 

 
 

3m 

 2 2
1,7 1,753b 

  


5 2 2
2 7 1,3 1,3 1,5 1,5 1,3 1,7 1,55

0

3 2 2 2 2
5 1,3 1,5 1,5 1,7 1,7 1,3 1,5 1,7

6
7 1,3 1,5 1,7 2,11 2,13 2,3

1
735 504 528 164 228 168

10321920

5600 54 14 13 4 6 8 3

11760 84 56 34 14 10 84

A a b b b b b b b b
A

A a b b b b b b b b

A a b b b b b b




    

     

     




 



2,5 2,7 2,9

4 2
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2
1,3 1,5 1,7 2,11 2,13 2,3 2,5 2,7 2,9 0

2
3 1,3

56 34 21

9600 105 63 35 14 10 105 63 35 21

0 70 35 14 10 140 70 35 216

1680 108

b b b

A a b b b b b b b b b

b b b b b b b b b

A a b

2
36912 14A a

2
0





  

        

       









   


2 2 2 4 2
1,5 1,5 1,7 1,7 1,3 1,5 1,7 0 1

2 2 2
0 1,7 2,11 2,13 2,3 2,5 2,7 2,9 1,7 0 2,11 0

2 2 2 2 2
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1

2 2
1,3 0 0 1 1,5 0 0 1210 1 2 70 1 2 ,b b            
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 3 2 2 3,3 3,5 3,7 3,9 3,11 3,13

3,15 3,17 3,19

, cos3 cos5 cos 7 cos9 cos11 cos13

cos15 cos17 cos19 ,

R b b b b b b

b b b

    

  

     

  

u ω
 


             (50) 

  3,3 3,5 3,7 3,9 3,11 3,13 3,15 3,17 3,19
3 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0

3,3 3,5 3,7 3,9 3,11

2 2 2 2 2
0 0 0 0 0

cos
8 24 48 80 120 168 224 288 360

cos3 cos5 cos 7 cos9 cos
8 24 48 80 120

b b b b b b b b b
u

b b b b b
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11 cos13
168

cos15 cos17 cos19 ,
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u

 


   
  



   



  

     (51) 

 
where all coefficients  and  

can  Equation (21). 
rresp r analytical ap- 

proximation for Equation (40) is 

 2, 3,5, ,13ib i  
 be computed from
onding third-orde

 3, 3,5, ,19ib i    
Similarly, the co

         0 1 2 3 , ,u u u u u t              (52) 

where 

20 1      .              (53) 

The higher-order approximations for   and  u   
can be derived in a similar manner. 

4. Numerical Discussion 

In order to demonstrate the effectiveness of the present- 
ethod, the asymptotic analytical solutions obtained 

ared to th ed ana- 
lytical and numer
pr

ing m
by the HAM are directly comp e publish

ical integration solutions. Tables 1-4 
esent the results of He’s frequency-amplitude formula-

tion FAF  [15], He’s energy balance method EBM  
[15], presents approach HAM  and exact solution ex  
fo parameters amplitudes r various i  and a A . 

arison with t solutions In comp he exact ex  in 
1 and 2, it can be distinctly obse
HAM solutions

Tables 
rved the second-order 

 HAM  for 1   are better than the 
first-order solutions of FAF  and EBM . Moreov
can be checked that the HAM has 

er it 
rformance 

for large amplitudes of motion.  
ect of the convergence- 

 

to optimize  and draw the curve to obtain 
the optimal rgence-control er .  

By Figure 1, we get the optimal convergence-control 
parameters  in Table 3 for Modes 1-6. In Table 3 and 
Table 4, th lts of 

a better pe

In order to illustrate the eff
control parameter  , we can make use of Equation (26) 


 conve

m   
 paramet 


e resu HAM  

timal p
for 

refined in using the op aram
parameter 

the previous cases are 
eters  . Because the 

1   
es, thu

out the aux
e dom


Tabl

th

is al ual to th optimal value 
in the s t very ev t to show the 

wer ab meter t the value of 
is one of actors in  to extend 

its validity and flexibility. This also shows the
formance of investigating the nonlinear Duffing equa-
tions in this paper using the HAM. 

Figures 2 and 3 show the phase portrait diagrams and 
time history responses of Tables 1 and 2 where 

most eq
, it is no

iliary para
inant f

e 
iden
. Bu
e HAM

  
po
  


 th

 good per-

1   
is chosen. We can clearly find th
solutions are in good agreement 

at the third-order HAM 

5. Conclusion 

In this study, the HAM has intensively studied the gener- 
alized Duffing equation. The general frequencies and 
periodic solutions are presented for any arbitrary odd- 
type of nonlinearity. The purposes of this paper are not 
only to formulate the asymptotic approximate solutions 
for the nonlinear Duffing oscillators, but also to furnish a 
guidance to establish the higher-order asymptotic ana- 
lytical approximations if necessary. Moreover, it is found 
that the accuracy of the HAM is affected by the selection  

ies corresponding to various parameters in Equation (27) for 

with the numerical inte- 
gration solutions even if the amplitude is larger. 

 
Table 1. Comparison of the exact and approximate frequenc

1   . 

A  3a  5a  FAF  EBM  HAM  ex  

1 1 1 1.541 1.5275 1.5238 1.5235 

0.5 0 10 1.1 807 1.7998 1.7851 1.7847 

.325 1.3250 1.3200 1.3200 

475 6.2716 6.1699 6.1473 

.81 17.216 16.913 16.841 

1.6 30.615 30.070 29.940 

0.1 100 100 1

5 0.1 0.1 6.

10 0.05 0.05 17

20 0.01 0.01 3
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Table 2. Comparison of the exact pproximate frequenc
1   . 

 and a ies corresponding to various parameters in Equation (40) for 

A  3a  5a  7a  FAF  EBM  HAM  ex  

1 1 1 1 1.7093 1.6739 1.6763 1.6753 

0.5 10 10 10 

0.1 100 100 100 

5 0.1 0.1 0.1 

10 0.05 0.05 0.05 

1.8305 1.8201 1.8064 1.8060 

1.3252 1.3251 1.3200 1.3200 

29.940 27.780 27.692 27.386 

166.31 154.05 153.63 151.87 

592.45 548.57 547.14 540.81 20 0.01 0.01 0.01 

 

    
Mode                           Mode 2  1                

    
Mode 3                     de 4                      Mo

    
Mode 5                                          Mode 6 

Figure 1. The selection of optimal convergenc trol parameters ħ in Table 3 for Modes 1 - 6e-con . 
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n = 5                                          n = 7 

    
(a)                                        (a)    

    
(b)                                             (b) 

           HAM approximate solution             Numerical integration solution 

Figure 2. Comparison of the approx  Phase portra  diagram; (b) 
Time history response. 
 

imate and numerical integration solutions for A = 10. (a) it

n = 5                                          n = 7 

    
(a)                                           (a) 

    
(b)                                             (b) 

           HAM approximate solution             Numerical integration solution 

Figure 3. Comparison of the approximate and numerical integration solutions for A = 20. (a) Phase portrait diagram; (b) 
Time history response. 
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able 3. Comparison of the approximate frequencies using the optimal convergence-control parameter  with the exact 
solution for n = 5. 
T 

A  3a  5a    HAM  ex  

1 1 1 −0.9841 1.52386 1.52359 

0.5 10 10 −0.9961 1.7851 1.78471 

0.1 100 100 −1.0016 1.32006 1.32003 

5 0.1 0.1 −0.9509 6.16916 6.14739 

10 0.05 0.05 −0.9486 16.9103 16.8416 

20 0.01 0657 29.9408 0.01 −0.9480 30.

 
Table 4. Comparison of the approximate frequencies using the optimal convergence-control parameter  with the exact 
solution for n = 7. 



A  3a  5a  7a    HAM  ex  

1 1 1 1 −0.9604 1.67625 1.67534 

0.5 10 10 10 −0.9924 1.80648 1.80602 

0.1 100 100 100 −1.0016 1.32008 1.32005 

5 0.1 0.1 −0.8848 27.6536 27.3865 

10 0.0 153.407 151.874 

20 0.0 540.817 

0.1 

5 

1 0.01 0.01 −0.8821 546.318 

0.05 0.05 −0.8826 

 
of appropriate convergence-control parameter  . To 
further improve the accuracy of solutions, the parameter 
  can be optimized and determined by the minim ion 

he residual error for a  given order ap ima- 
. Besides, illustrativ examples are ap d as 

crucial ev ce to support th e HAM is effective for 
the quan ive analysis of linear problems ally, 
this pap ggests to read o apply the m  for 
solving nonlinear large-amplitude oscillations because of 
its accuracy, reliability and s licity. 
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