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ABSTRACT

In this study, the homotopy analysis method (HAM) is used to solve the generalized Duffing equation. Both the fre-
quencies and periodic solutions of the nonlinear Duffing equation can be explicitly and analytically formulated. Accu-
racy and validity of the proposed techniques are then verified by comparing the numerical results obtained based on the
HAM and numerical integration method. Numerical simulations are extended for even very strong nonlinearities and
very good correlations which achieved between the results. Besides, the optimal HAM approach is introduced to acce-

lerate the convergence of solutions.
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1. Introduction

Nonlinear Duffing equation is a simple mathematical
model which describes the resonance and chaotic phe-
nomenon. In science and engineering many nonlinear
vibration problems can be transformed into the Duffing
equation to research [1]. From a certain point, the real
significance of the research on nonlinear Duffing system
attracts a lot of scholars and several ingenious analytical
methods have been developed for dealing with the non-
linear Duffing oscillator, such as the modified perturba-
tion methods [2,3], improved harmonic balance methods
[4], energy balance method [5,6], the frequency-ampli-
tude formulation [7,8]. Meanwhile, the homotopy analy-
sis method (HAM) [9] proposed by Liao has been proved
to be one of the efficient analytical techniques in solving
a variety of nonlinear Duffing problems. By the HAM,
Hoseini et al. [10] study free vibrations of tapered beams
and give an accurate analytical solution for the third-
order Duffing equations; Qian et al. [11] obtain accurate
analytical solutions for the fifth-order Duffing equations
by considering vibrations of a restrained cantilever beam.
For the seventh-order Duffing equations Qian et al. [12]
get accurate analytical solutions by researching vibra-
tions of an electrostatically actuated microbeam.

Thus, the prime objective of this paper is to explore
the utility of the HAM for the generalized Duffing equa-
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tion. All odd-type analytical results can be then involved
in the generalized solution. In what follows, Section 2
presents natural frequency of the system obtained as a
function of the initial amplitude and the general solution
for any arbitrary odd power of n. In addition, the opti-
mal HAM approach used to accelerate the convergence
of solutions is also provided and discussed. In Section 3
two numerical examples are presented to examine the
accuracy and validity of the proposed technique. In Sec-
tion 4 the numerical results of the HAM are presented
and compared with the numerical integration solutions.
Finally, a conclusion summarizes the research findings in
Section 5.

2. Solution Methodology

In this section, we apply the HAM to solve the following
nonlinear Duffing oscillator:

o 3 5 7 n
U+u-+au” +au’ +a,u’ +---+au =0, (1)

where Uis displacement and a,,as,a,,---,a, (n is the
odd number) are arbitrary constants. Subject to the fol-
lowing initial conditions:

u(0)=A,u(0)=0, 2)

where A is an arbitrary constant. Under the transforma-
tion 7=wt, Equations (1) and (2) can be rewritten as
follows:
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o’i+u+au’ +au’ +au’ +--+au"=0, (3)

where a dot (-) denotes differentiation with respect to
7,and ® is the nonlinear frequency.

It is known that free oscillation of a conservative sys-
tem without damping is a periodic motion and a har-
monic function is the simplest type of periodic motion.
So it can be expressed by the following base functions:

{cos(2m-1)7|m=1,2,3,---}. (5)

Taking into consideration the initial conditions in
Equation (4), we choose the initial guess of u(z') for
the zeroth-order deformation equation as follows:

U, (7)=Acosz. ©6)

Thus, the auxiliary linear operator of a conservative
system can be selected as

o(ea))-of| "5 uima) | 0

o7’

The auxiliary linear operator L is chosen in such a way
that all solutions of the corresponding high-order forma-
tion equations exist and can be expressed by the general
form of the base function. According to Equation (4), the
nonlinear operator is written as:

N[u(7:q),o(q)]

B 2 azu(TQQ) )
=[o(q)] —F +u(73q) ®

+a, [u(z';q)]3 +ay [u(z';q)}5
+a, [u(r;q)]7 +ota, [u(r;q)]n.

Then considering the homotopy function, we obtain
the zeroth-order deformation equation as:

(1-g)L[u(7:9)-u,(z)]=aiN[u(z:0).0(a)]. (9

where qe[0,1] and 7 are, respectively, embedding
and convergence-control parameters. As ( changes from
0 to 1, u(z;q) varies from the initial guess U,(z) to
the unknown solution u(7). Similarly, @(q) varies
from the initial guess frequency @, to the physical fre-
quency @ .

Then we make use of the Taylor series expansion to
get

~+00

u(z:0) =y () + 2 un (7)a" (10)
w(q)=w0++zwa)mqm, (11)

m=1

in which
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Uy, (1)—La U(Z;q) ; (12)
m! oq 40
wmzlm ) (13)
m! oq" 0o

It is known that if % is properly chosen, the power
series solutions in Equations (10) and (11) can be con-
verged at q=1. So Equations (10) and (11) then be-
come

u(r):u0 (T)+2Um (‘[) , (14)

+00

o=w,+ Y o, . (15)

m=1

For the sake of simplicity, we define the following
vectors:

uy ={U, (7),U, (7)., (7))},
o, ={0,, 0, 0,}.

(16)

By differentiating the zeroth-order deformation equa-
tion (9) m times with respect to g, then the resulting
equation is divided m! and setting q =0, it can be found
the mth-order deformation equation

LI:Um (T)_Zmum—l(z-)]:hRm (um—l;wm—l)ﬂ (17)

with the initial conditions:

U, (0)=0, u;, (0)=0 (m=1), (18)
in which
[0, ifm<1 (19)
=1 iems 1
1 d"'N[u(r0);0(q)]|
Rm (um—l’wm—l): (m_1)| 6qm_1 |
q=0

(20)

Because odd nonlinearity of considered conservative
system, R can also be written as:

S
=

m)
d (@ )cos(2k-1)z, (21)

1

Rm (”m—l;wm—l ) =

=
I

where @(m) is an integer that depends on m.
Following the rule of solution expression and the lin-
ear operator L, the terms of cosz should not exist in
R, of Equation (17), otherwise the so-called secular
terms such as 7cosz will appear in the final solutions.

Therefore, their coefficients are set to zero as follows:

%fozn[hRm (#y 0, ) |costdr =0, (22)
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The solutions of @, (m=1,2,---) in Equations (17)
and (22) can be determined successively. For the given
values of ¢;(i=3,5,---,n) and A, we have the peri-
odic solutions by the abovementioned analytical ap-
proach,

1) €08 (2k —1)7
(1-(k-17) @3

fi #(m) d (o
U (7) = ZnUns (7)+— Al
@y k=2

+C,cost+C,

where C, and C, can be determined by using the ini-
tial condition given in Equation (18).
Hence, the mth-order approximations are

u(0)=3u,(c), r=at, (24)
i=0
in which

w=) o . (25)
i=0

We know there are many optimal HAM approaches,
which can be able to achieve faster convergent homo-
topy-series solutions [13,14]. In theory, we can define the
exact residual error of the mth-order of approximation as

A, = . (26)

ex

m
W, — o,
=0

where @, is the exact nonlinear frequency of Equation
(1) derived by using the numerical integration technique.
It can be found A, embraces the unknown convergence-
control parameter 7. As Ay decreases more rapidly to
zero, the speed of the convergence for the corresponding
homotopy-series solution is faster [14]. The correspond-
ing value of the convergence-control parameter 7 at the
given order of approximation m can be optimized and
selected by minimizing the residual error A,

3. Numerical Results

It can be obviously found the nonlinear Duffing oscilla-
tor for n=3 has a simple form. So in this section, we
research the nonlinear Duffing oscillator for n=5 and
n="7.

Firstly the nonlinear Duffing oscillator for n=35 has
the following form:

1
0,=—
23040 A0,
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U+u+au’ +au’=0. (27)

The problem is solved and the general solution can be
obtained based on the HAM in Section 2.

For m=1, one obtains @, from Equation (22) as
follows

@, :\/l+%a3A2 JrgasA4 : (28)

Making use of Equation (23) leads to

b,h Db b ;7 b, sh
ul(r)z 1’32 . 5 |cosT— 1’32 cos 37 ——2 - €08 57.

8wy, 24w, 8w, 24w,
(29)

where
1 5
b1.3 :ZA3a3 "rg Asas N (30)
1 5,45

b,=—A%". (€1))]

716
For m=2, we substitute the solutions of u,(7),
u(7) and @, into Equation (22)to yield

_h 2 4 2
o, _m(bl’3(48+72A a,+75A'a; — 48] ) )

+by5(16+36A%, +45A%a, - 164 ).

From Equation (21), R,(u,,®,) are derived in the
following:
R, (#,,0,)=b,;cos37+b, cos5r+b,, cos7r (33)
+b,,cos9z,
where the coefficients b,; (i=3,5,7,9) can be readily
derived using Equation (21). In addition, u,(7) is
given by

b,,h b, b.i bk
UZ(T):UI(T)+( 22—y 25y 2T 2P jcosr

8w 24w, 48w, 80w

b, ;7 b b, .7
- 2’32 cos37 ——= > C0S 57 — 27 —cos7r  (34)
8w, 4w, 48w,
b, 7
-2 5 €0s97
80w,

For m=3, we can yield

(25A%8 (2707, + 24, b, 5 + Tb7 ) 1” +150 Aa (15D, +9b, s +15b, , +9b, s+ 5b, ; +3b,, ) ey

+108A%a, (20D, +10b, 5 +20b, ; +10b, 5 +5b, ; +3b,, ) e, +15A(a, (270 +18b, b, +5b ) 1* 7680507 ) (35)

—48h? ((30b2,3 +10b, 5 +5b, , +3b,, ) (=14 @] ) + 300, (~1+ @] + 20,0, ) +10b, 5 (~1+ ] + 2a)0a)1))),

R; (u,,0,)=b;;cos37+b, cos5r+b,; cos 7z +by, cos 97 +b, |, cosl1z +b; ; cos13z, (36)

Copyright © 2012 SciRes.
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b,h by b bk by by by h
I 3,32 n 3.5 —+ 3,7 —+ 3,9 —+ 3,11 —+ 3,13 —+ 3,19 ~ |cosz— ,2 cos3r
8wy 24w, Mo, 80w, 120w, 168w, 360w, 8wy

h h b, b, .7
-2 5 €08 57 — £ 5C0s 77— >0 5€0897 — 211 5 cosllz — 213 5 cos 13z,
4, 48w, 80w, 120w, 168w,
where all coefficients by; (i=3,5,--,13) can be com- 3, 5 ., 35
puted from Equation (21). 1+4a A +8a A"+ 4 —a,A’,
According to Equations (24) and (25), the correspond-
ing third-order analytical approximation for Equation (27) b, h b, sh b1 h
i u (7 coST
is (7)= 8] 24a)0 48a)O
u(z)=u,(z)+u, (z)+u,(7)+u,(7), 7 =t, (38) b,/ b, .7 ;
——=€0837 ——>—c0857 — 5 cos 7T,
where 8w, 24w, 48wy
0=0,+0+0,. 39) where
The higher-order approximations for @ and u (r) 1 5 s ;
can be derived in a similar manner. by, = 2 Aay+—— 16 A'a +a Aa;,
Secondly we consider the nonlinear Duffing oscillator
for n=7: b1’5=%A5a5+67—4A7a7,
U+u+au’+au’+au’ =0, (40)
We can get some approximations for @ and U (r) b, = o A’a’.
according to Section 2 in a similar manner.
For m=1, one obtains For m=2, we can yield
h 2 4 6 2 2 4 6 2
o, :W(&’” (32+48A%, +50A%a, +49A%, —320) | +D;, (32+72A%, +100A 3, +119A%, — 3205 )

+4b,5(16-+36 A%, +45A%, + 49A°a, ~1643 ),

R, (#,0,)=b,;cos37+b, cos5c+b,, cos7r+h,, cos9r +h, , cosllr +b,,; cos13z,

b23h b,sh b,h b by bk b, ;7
u,(7)=u,(7)+ < - ’2 = |cosT — 0837 ——=c0s 57
8} 24(00 48w, 80w, 120w, 168w 8(00 24y
b, , h b b, .7
cos7z'— 29 0897 — 211 >cosllz— 213 >-cosl3z.
48600 80w, 1200, 168w,
For m =3, one arrives at
1
w, =m(735A5a7 (5o4bf3 +528b, ;b 5 +164b’; +228b; b, ; +168b; b, +53bf7)h2

+5600A°a (54b, +14b7; +13b, b ; +4b, +6b,, (85, s +3b;,))#*

+11760A%a, (84D, , +56b, 5 +34b; ; +14b,,, +10b, ; +84b, ; +56b, ; +34b,, +21b,, )iy
+9600A*a (103b; , + 630, s +35b; , +14b, , +10b,,, +105b, ; +63b, s +35b, ; +21b, , ) her;
+6912A%a, (1400, ; +70b, ; +35b, ; +14b,,, +10b, ; +140b, , +70b,  +35b, , +216b,, ) hes;
+ 1680A(a3 (1082, + 200 +16b, by, +3b, +24by (30, +b, )} 7° —3072@;‘@5)
~3072ha; (35, , —14b,,, ~10b, ; —210b,  ~ 70b, ; —35b, , —21b, , +35b, ,a0; +14b,
+10b, 3007 +210b, 0 +70b, 0 +35b, ;) +21b, y00; +70b, ;0,0

+210b, (~1+; +2a,0,)+ 708, (-1 + +2a)0a)1))),

Copyright © 2012 SciRes.

(37

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(43)

49)
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R, (u,,0,)=h,; cos3r+b, ; cos5z +b,, cos 77 +by, cos 97 +b; |, cos11z +b; 5 cos137

ET AL. 171

(350)
+b; 5 cos15z+b; ; cos17z +b; , cos19r,
_ b3,3h b},Sh b3,7h b3,9h b},llh b3,13h b3,15h b3,17h b3,19h
Us (T) - 2 2 2 2 2 2 2 2 7 |COST
8wy 24wy 48w, 80w, 120w, 168w, 224w; 288w, 360w,
b, i b, 7 b, ,h b, 7 b,
- 3’32 cos 37 ——2 5 €08 57 — 27 o877 — > 5 cos9‘[—L12cosll - 2B -cosl3r (51)
8wy 24 48, 80w, 120a; 8wy
b, s7 b, .7 b, o7
— 2 cos157 ——=—cos17r ————cos197 +U, (),
24w, 88w, 60w,

where all coefficients b, (i=3,5,---,13) and

b,; (i=3,5,---,19) can be computed from Equation (21).
Similarly, the corresponding third-order analytical ap-

proximation for Equation (40) is

u(z)

where

Uy (7)+u, (7)+u,(7)+U;(7), 7 =mt,  (52)

0=0,+0+0,. (53)

The higher-order approximations for @ and u(r)
can be derived in a similar manner.

4. Numerical Discussion

In order to demonstrate the effectiveness of the present-
ing method, the asymptotic analytical solutions obtained
by the HAM are directly compared to the published ana-
lytical and numerical integration solutions. Tables 1-4
present the results of He’s frequency-amplitude formula-
tion g, [15], He’s energy balance method g,
[15], presents approach @,,, and exact solution @,
for various parameters @; and amplitudes A.

In comparison with the exact solutions ,, in Tables
1 and 2, it can be distinctly observed the second-order
HAM solutions @, for 7=-1 are better than the
first-order solutions of g, and g, . Moreover it
can be checked that the HAM has a better performance
for large amplitudes of motion.

In order to illustrate the effect of the convergence-
control parameter 7, we can make use of Equation (26)

to optimize # and draw the A, U7 curve to obtain
the optimal convergence-control parameter 7 .

By Figure 1, we get the optimal convergence-control
parameters 7 in Table 3 for Modes 1-6. In Table 3 and
Table 4, the results of @,,, for the previous cases are
refined in using the optimal parameters 7% . Because the
parameter 7 =-1 is almost equal to the optimal value
h in the Tables, thus, it is not very evident to show the
power about the auxiliary parameter 7 . But the value of
7 is one of the dominant factors in the HAM to extend
its validity and flexibility. This also shows the good per-
formance of investigating the nonlinear Duffing equa-
tions in this paper using the HAM.

Figures 2 and 3 show the phase portrait diagrams and
time history responses of Tables 1 and 2 where 7 =-1
is chosen. We can clearly find that the third-order HAM
solutions are in good agreement with the numerical inte-
gration solutions even if the amplitude is larger.

5. Conclusion

In this study, the HAM has intensively studied the gener-
alized Duffing equation. The general frequencies and
periodic solutions are presented for any arbitrary odd-
type of nonlinearity. The purposes of this paper are not
only to formulate the asymptotic approximate solutions
for the nonlinear Duffing oscillators, but also to furnish a
guidance to establish the higher-order asymptotic ana-
lytical approximations if necessary. Moreover, it is found
that the accuracy of the HAM is affected by the selection

Table 1. Comparison of the exact and approximate frequencies corresponding to various parameters in Equation (27) for

h=-1.
A 8, 8, e Wegy Dy @,
1 1 1 1.541 1.5275 1.5238 1.5235
0.5 10 10 1.807 1.7998 1.7851 1.7847
0.1 100 100 1.325 1.3250 1.3200 1.3200
5 0.1 0.1 6.475 6.2716 6.1699 6.1473
10 0.05 0.05 17.81 17.216 16.913 16.841
20 0.01 0.01 31.6 30.615 30.070 29.940

Copyright © 2012 SciRes.
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Table 2. Comparison of the exact and approximate frequencies corresponding to various parameters in Equation (40) for
h=-1.

A al aS a7 a)FAF E()EBM a)HAM a)ex
1 1 1 1 1.7093 1.6739 1.6763 1.6753
0.5 10 10 10 1.8305 1.8201 1.8064 1.8060
0.1 100 100 100 1.3252 1.3251 1.3200 1.3200
5 0.1 0.1 0.1 29.940 27.780 27.692 27.386
10 0.05 0.05 0.05 166.31 154.05 153.63 151.87
20 0.01 0.01 0.01 592.45 548.57 547.14 540.81

0.06 T T T T T T

005t 0.020 f

0.04} ] 0.015}

< 0.03f .

0.03 <0.010 f ]

0.02F

0.01} 0.005¢

0.00E s . , . . J 0,000k e

25 20 -15 -1.0 -0.5 0.0 2.0 -1.8-1.6 -1.4 -1.2 -1.0 -0.8 -0.6
7 7
Mode 1 Mode 2

005 [\ T 0.4

0.04 | ] 0.3

0.03

4 4 0.2¢

0.02

0.01 0.1p

U S 0.0k - b d

2.0-1.8-16-14-12-1.0-08-0.6 20 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6
i 7
Mode 3 Mode 4

0.0 by L L 1 1 L T 00k ; . ; ; . . i
20 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 20 -18 -16 -14 -12 -1.0 -0.8 -0.6
h h
Mode 5 Mode 6

Figure 1. The selection of optimal convergence-control parameters % in Table 3 for Modes 1 - 6.
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n=>5 n=7
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HAM approximate solution Numerical integration solution

Figure 2. Comparison of the approximate and numerical integration solutions for 4 = 10. (a) Phase portrait diagram; (b)
Time history response.
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Figure 3. Comparison of the approximate and numerical integration solutions for 4 = 20. (a) Phase portrait diagram; (b)
Time history response.
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Table 3. Comparison of the approximate frequencies using the optimal convergence-control parameter % with the exact

solution for n = 5.

A a, a, h O o,
1 1 1 —0.9841 1.52386 1.52359
0.5 10 10 —0.9961 1.7851 1.78471
0.1 100 100 —1.0016 1.32006 1.32003
5 0.1 0.1 -0.9509 6.16916 6.14739
10 0.05 0.05 —0.9486 16.9103 16.8416
20 0.01 0.01 —0.9480 30.0657 29.9408

Table 4. Comparison of the approximate frequencies using the optimal convergence-control parameter % with the exact

solution forn =7.

A a, a, a, h [ @,

1 1 1 1 —0.9604 1.67625 1.67534
0.5 10 10 10 —0.9924 1.80648 1.80602
0.1 100 100 100 —1.0016 1.32008 1.32005

5 0.1 0.1 0.1 —0.8848 27.6536 27.3865
10 0.05 0.05 0.05 —0.8826 153.407 151.874
20 0.01 0.01 0.01 —0.8821 546.318 540.817

of appropriate convergence-control parameter 7# . To
further improve the accuracy of solutions, the parameter
7 can be optimized and determined by the minimization
of the residual error A, for any given order approxima-
tion m. Besides, illustrative examples are applied as
crucial evidence to support that the HAM is effective for
the quantitative analysis of nonlinear problems. Finally,
this paper suggests to readers to apply the method for
solving nonlinear large-amplitude oscillations because of
its accuracy, reliability and simplicity.
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