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ABSTRACT 

This paper presents the evaluation of the capacitance of an isolated elliptical plate and two parallel elliptical plates. In-
tegral equations are formed by relating the previously unknown charges on the elliptical plates and the potential on the 
metallic plates. The integral equations are solved by applying the method of moments based on the pulse function and 
point matching. The elements of the matrix in the method of moments are found by dividing the structure into triangular 
subsections. The matrix equation is solved in order to compute the unknown charges on each subsection. Numerical 
results on the capacitance as a function of the geometrical parameters of the ellipse are presented. 
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1. Introduction 

The evaluation of the capacitance of various structures 
having different geometrical shapes is of importance to 
study the behavior of electrostatic charge build-up on bo- 
dies that are isolated in space such as space-craft struc-
tures in orbit. The analysis of three-dimensional spherical, 
paraboloidal and truncated conical surfaces and two-di- 
mensional square, rectangular, circular and annular me-
tallic disks have been examined using the method of mo- 
ments [1-6]. In these works, the capacitance of the dif- 
ferent geometrical structures was obtained by subdivid- 
ing the structure into uniform rectangular planar subsec- 
tions and computing the effect of the charge on each sub- 
section on the potential of the others. The use of rectan- 
gular subsection in a curved boundary requires a very 
fine meshing in order to obtain convergence for the data 
of the capacitance and charge distribution. Meshing with 
triangular elements on the other hand facilitates the map-
ping of the geometrical boundaries of arbitrary shape 
very accurately [7]. The meshing techniques employed in 
[3] are limited by the large ratio of the area of the biggest 
elements to smallest elements, which possibly results in 
an unstable solution. 

This paper presents the analysis of a planar elliptical 
metallic plate isolated in free space as well as two paral-
lel elliptical plates using the method of moments in 
which triangular sub-areas were used for the solution of 
integral equations. A closed form expression for the ca-
pacitance of a single elliptical conducting plate has been 

reported by Liang et al. [8]. They did not present any 
data on the capacitance for the case of two parallel ellip- 
tical plates of finite size. Thus it is worthwhile to carry 
out the analysis of elliptical structures using the method 
of moments with triangular subsections for the geometry 
under consideration unlike that reported in [1-6].  

In order to apply the method of moments, the elliptical 
plate is divided into a number of triangular elements. The 
unknown charge distribution on the surface of the ellip-
tical plates appears in the form of an integral equation 
relating the potential function and charge distribution. 
This integral equation is solved using the method of mo- 
ments formulation based on a pulse function and point 
matching. The methods of finding the diagonal and the 
non-diagonal elements of the matrix are presented. The 
capacitance is calculated as a function of eccentricity of 
the ellipse for a unit semi major axis. The validity of the 
analysis is justified by comparing the data on the capaci-
tance using the present method with that of the closed 
form expression in [8]. 

2. General Analysis  

2.1. Single Elliptical Plate 

Figure 1 shows a single elliptical plate with a semi major 
axis a and semi minor axis b. In order to compute the 
capacitance of this structure, the plate is subdivided using 
triangular elements as shown in Figure 2. The unknown 
surface charge density on the plate at any point 
 , ,r x y z     is denoted by . It is assumed that the 

surface charge density is constant over each subsection  
 r 
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Figure 1. Geometry of a single elliptical plate. 
 

 

Figure 2. Subdividing an elliptical plate with triangular ele- 
ments. 
 
so that the charge on each element can be represented by 
pulse basis functions. The potential at any point  

 due to the charges of the plate is expressed as 
follows  
 , ,r x y z 

   
0

d1

4π s

r s
r

r r


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Assuming that the metallic plate is a perfect conductor, 
the surface will be an equipotential surface ( = V which 
is the assumed potential of the plate), the above equation 
forms an integral equation with  being as yet un-
known. The surface charge density  can be ex-
pressed as [9] 

 r 
  r

 
1

N

n n
n
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where N is the number of triangular elements, n are the 
unknown coefficients and fn are the pulse basis functions 
given by 

1  on 

0 on 
n

n
m

s
f

s


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              (3) 

where sm and sn are the areas of the mth and nth trian-
gular elements respectively. 

Substituting Equation (2) into Equation (1) and satis-
fying the resultant equation at the centroid of each trian-
gular element, the following expression is obtained  

1

;     1, ,
N

n mn
n

V L m


  

The potential at the centroid of each triangular subsec-
tion in terms of an integral can be expressed which can 
also be reduced to a summation where Lmn represents the 
potential at point m due to charge at the subsection n. 
The Equation (5) can be written in matrix equation form 
as follows 
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where 
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04π
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
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and  m  is the area of the mth triangular element. 
For m = n, this expression for the matrix element is not 

valid. Thus the diagonal elements have to be treated sep-
arately [6]. The diagonal elements are calculated by con-
sidering each triangular section to be a circle of equal 
area. Then the diagonal element is given by [10] 

2
m

mn
o

r
L


                  (7) 

which corresponds to the potential of a uniformly char- 
ged circular disk of radius rm at the edge of the disk.  

The matrix equation can be solved to determine the 
unknown coefficients as follows 

     1
L V                (8) 

The total charge can be computed from 

1

N

n n
n

Q 


                  (9) 

where n  is the area of nth triangular element. 
The capacitance can be computed from  

Q
C

V
                 (10) 

2.2. Parallel Elliptical Plates 

Consider two parallel metal elliptical plates 1s  and 2s  
separated by a distance  as shown in Figure 3. Let the 
potential at 1

d
s  be V1s and the potential at 2s  be V2s. 

The unknown quantities in this case are the charge dis-
tributions  , ,1 x y z     and 2  , , x y z     over the sur- 
faces 1s  and 2s . Let 1s  be discretized by N elements 
and 2s  from N + 1 to 2N elements. The discretization is 
shown in Figure 4. Let the total charge be  and  
on the surfaces 

1q 2q

N            (4) 1s  and 2s  respectively. 
Using superposition and the relationship between the  
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Figure 3. Geometry of parallel elliptical plates. 
 

 

Figure 4. Subdividing parallel elliptical plates with triangu- 
lar Elements. 

 
charge and the potential [8], we have 

1 11 1 12 2s sq c V c V            (11) 

2 21 1 22 2s sq c V c V            (12) 

where  

 1 1 , , dsq x y z  1s

2s

 

 2 2 , , dsq x y z   

Equations (11) and (12) can be expressed in the matrix 
equation form as  
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If V1 is the potential on 1s  due to 1q  and  is the 
potential on 

2V
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 
   

   

1

1

1 1 2

1 1

2 2
0

2 2

2 2 20

, , d1
     =

4π

( , , )d1
       +

4π
d

s

s

s

s

s

V V V

x y z s

x x y y

x y z s

x x y y







 

  

   

  

    





  (14) 

If 3  is the potential on 2V s  due to 1  and 4V  is 
the potential on 

q
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is  

 

 
   

1

1

2 3 4

1 1

2 2
0

2 2

2 2
0

, , d1
    

4π ( ) ( ) d

, , d1
       

4π

s

s

s

s

s

V V V

x y z s

x x y y

x y z s

x x y y







 

  


    

  


   





2

n

   (15) 

Equations (14) and (15) are two integral equations 
which can be solved using the same procedure that was 
used for the isolated ellipse case as given in section A. 
applying the pulse function and point matching tech-
niques, the following sets of equations are obtained 
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In Equations (17)-(20),  is the area of the mth 
triangular element of 1

 1m
s  and  is the area of the 

mth triangular element of 2

 2m
s . The diagonal elements are 

similarly obtained by assuming that the triangular ele-
ment is replaced with a circle with the equivalent area 
and the potential at the edge of a circle is computed. The 
diagonal element is given by [9] 
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d d
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where r is the radius of the equivalent circle. 
The above set of simultaneous equations can be writ-

ten in matrix equation form as follows 
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The solution of Equation (22) is obtained as 

Copyright © 2012 SciRes.                                                                               JEMAA 



Electromagnetic Modeling of Metallic Elliptical Plates 471

 
 

11 12

1 1

21 22
22

mn mnn s

sn mn mn

V

V

 

  

                           
       (23) 

where mn are the elements of inverse of the square ma-
trix of Equation (22). Comparing Equations (13) and (23), 
the elements of the capacitance matrix in (13) are ob-
tained as the sum of the elements of each sub matrix of 
Equation (23).The capacitance of the structure of Figure 
3 is determined by [9] 

2
11 22 12

11 22 122

c c c
C

c c c


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3. Numerical Analysis 

Using Equations (6)-(8), the matrix elements and the 
unknown coefficients are calculated assuming that the 
potential of the plate is equal to 1. Using Equations (8) 
and (9), the capacitance of an elliptical isolated disk with 
eccentricity e = 0.85 has been calculated. The conver-
gence of the computed numerical values is illustrated in 
shown in Figure 5. The converged value of the capaci-
tance is 49.873 pF. The computed capacitance as a func-
tion of eccentricity is presented in Figure 6 and the nu-
merical value of the capacitance is presented in Table 1. 
The numerical results can be compared with a closed 
form solution for a circular disk (eccentricity=0) in Ta-
ble 1 [8].  

Using Equations (17)-(23), the matrix elements and 
the unknown coefficients are calculated assuming the 
upper plate is at potential Vs1 = +1 while the potential on 
the lower plate is Vs2 = –1 with various values of eccen-
tricity and separation distance between the plates. Using 
Equation (24), the capacitance of parallel elliptical plates 
separated by a distance d = 1 and e = 0.85 has been 
 

 

Figure 5. Convergence of data on capacitance for an iso- 
lated elliptical plate. 

 

Figure 6. Capacitance of a metallic isolated elliptical plate 
as function of eccentricity of unit semi major axis. 
 
Table 1. Numerical Value of Capacitance Data with Func-
tion of Eccentricity. 

Eccentricity (e) Capacitance (pF) 

0.85 49.873 

0.8 54.723 

0.6 63.846 

0.4 66.022 

0.2 67.004 

0 69.011 [8] 

 
calculated to check the convergence of the data on ca-
pacitance. The convergence of the data on the capaci-
tance has been checked by increasing the number of 
subsections and the converged value of the capacitance is 
39.263 pF. The convergence data is shown in Figure 7. 
The capacitance values for various eccentricities are pre-
sented in Figure 8. The numerical value of the capaci-
tance for two parallel circular disk (eccentricity = 0) with 
d = 1 is 63.378 pF as shown in Figure 8. The numerical 
value of the capacitance is computed as a function of 
distance and is presented in Table 2. Figure 9 shows the 
variation of the capacitance normalized by the closed 
from of the simplified expression A/d (C0), where A is 
the area of the ellipse as a function of A/d. 

4. Discussion and Conclusions 

This investigation demonstrates that convergence can be 
obtained for an elliptical plate for a finite number of 
elements which is approximately 725 elements for an 
isolated elliptical plate. With this number, the conver- 
gence achieved is at the fourth decimal place. The ca- 
pacitance of an isolated elliptical plate decreases mono-  
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Figure 7. Convergence of parallel elliptical plates (d = 1). 
 

 

Figure 8. Capacitance of parallel elliptical plates as function 
of eccentricity of unit semi major axis. 
 

 

Figure 9. Capacitance of parallel elliptical plates as function 
of A/d. 

Table 2. Capacitance data for the structure of Figure 4 as a 
function of distance. 

Distance d Capacitance (pF) 

1 39.263 

1.5 34.519 

2 32.073 

4 28.535 

6 27.422 

 
tonically with an increase in eccentricity. If the eccen- 
tricity = 0 which is the case of a circle, the results can be 
compared with an analytical result. 

When the eccentricity = 0, which is a case of a circle, 
the result obtained by this technique is 6.90e-011 F 
which is very close to the approximate closed form ex-
pression of capacitance 80 for a circular disk of unit ra-
dius [11]. Figure 7 shows that the convergence of the 
parallel ellipse occurs at 863 elements at the third deci-
mal point. Figure 8 shows how the capacitance of a par-
allel elliptical plate decreases monotonically with an in-
crease in eccentricity. The data presented in Table 2 de-
picts that there is a decrease in the capacitance with an 
increase in the distance between the metallic elliptical 
plates. For the further validation, Figure 9 shows that 
C/C0 decreases as A/d increases, for very large A/d, 
which corresponds to the fringeless case, the ratio of 
C/C0 is very close to unity. 
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