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ABSTRACT 

It is possible to construct an arbitrage-free interest rate model in which the LIBOR rates follow a log-normal process 
leading to Black-type pricing formulae for caps and floors. The key to their approach is to start directly with modeling 
observed market rates, LIBOR rates in this case, instead of instantaneous spot rates or forward rates. This model is 
known as the LIBOR Market Model. We formulate the SAFEX-JIBAR market model based on the fact that the forward 
JIBAR rates follow a log-normal process. Formulae of the Black-type are deduced. 
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1. Introduction 

Instantaneous rate models, although theoretically satis- 
fying, are less so in practice. Instantaneous rates are not 
observable and calibration to market data is complicated. 
Hence, the need for a market model where one models 
LIBOR rates seems imperative. In this modeling process, 
we aim at regaining the Black-76 formula [1] for pricing 
caps and floors since these are the ones used in the 
market. To regain the Black-76 formula we have to model 
the LIBOR rates as log-normal processes. The whole 
construction method means calibration by using market 
data for caps, floors and swaptions is straight-forward. 
Brace, Gatarek and Musiela [2] and, Miltersen, Sand- 
mann and Sondermann [3] showed that it is possible to 
construct an arbitrage-free interest rate model in which 
the LIBOR rates follow a log-normal process leading to 
Black-type pricing formulae for caps and floors. The key 
to their approach is to start directly with modeling ob- 
served market rates, LIBOR rates in this case, instead of 
instantaneous spot rates or forward rates. Thereafter, the 
market models, which are consistent and arbitrage-free 
[2,4,5], can be used to price more exotic instruments. The 
resulting model is known as the LIBOR Market Model. 

Some of the advantages of market models as compared 
to other traditional models are that market models imply 
pricing formulae for caplets, floorlets or swaptions that 
correspond to market practice. Consequently, calibration 
of such models is relatively simple. 

The plan of this work is as follows. Based on an 
improved version of the standard risk-neutral valuation 
approach, the forward risk-adjusted valuation approach, 
and on an elaborate process of computing forward risk- 
adjusted measures, a proposition is made to apply the 
technique to the pricing of South African caps and floors. 

Secondly, based on general interest rate modeling [6-25] 
and the formulation of the LIBOR, the technique used 
will enable us to formulate and name a new model for the 
South African market, the SAFEX-JIBAR model.  

2. The JIBAR 

Each day at 10:30 am, each of the 14 South African and 
South African-based foreign banks are asked to provide 
the midpoint between Bid and Offer of their 1, 3, 6, 9 and 
12 month deposit National (Negotiable) Certificate of 
Deposit (NCD) rates quoted as yield. In each category, 
e.g., in the 1 month category, the 14 rates are arranged in 
order. The top two and the bottom two are eliminated and 
the remaining 10 are averaged and rounded to 3 decimal 
places. The resulting rate is termed a k-month JIBAR rate 
where 1,3,6,9,12k  . JIBAR stands for Johannesburg 
Inter Bank Agreed Rate. It is the rate at which banks buy 
and sell short-term money among themselves and is 
traditionally a wholesale and not a retail rate. It is reset 
every quarter and is fixed for the duration of the quarter. 
Let kJ  represent the -month SAFEX-JIBAR rate. 
Let k

k
J  represent the -month SAFEX-JIBAR rate. 

Then  
k
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1
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k i
i

J k
n 

   

where 1,3,6,9,12, 10k n  , 
Bid Offer
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2

i
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
 i  is  

the midpoint corresponding to bank .  i

3. Background to Interest Rate Caps and  
Floors: The South African Context 

In many circumstances, corporate treasurers in South 

Copyright © 2012 SciRes.                                                                                 JMF 



V. GUMBO 322 

Africa are hesitant to enter into interest rate derivative 
agreements which involve an element of optionality. 
The main deterrent factor is that many of them do not 
necessarily have access to sophisticated pricing models to 
accurately price these derivatives. However, for many 
corporate treasurers, caps and floors have been the pre- 
ferred method of achieving disaster insurance against 
incidents like the 1998 emerging markets crisis. This 
sterms from the fact that caps and floors are highly adap- 
table to the particular needs and requirements of com- 
panies wishing to manage and hedge against interest rate 
reset risk on interest-sensitive assets and liabilities. On 
the exercise date of the cap or floor agreement, the pre- 
specified strike rate is compared to the standard reference 
floating rate, that is the 3-month SAFEX-JIBAR rate. The 
interest differential is then applied to the contractually 
specified notional principal amount (amount to be bor- 
rowed/lent) in order to calculate the amount to be paid by 
the writer/seller to the holder/buyer (the settlement). The 
notional principal amount is normally at least R1 million. 

Settlement of a single period cap/caplet is done in the 
following manner. The seller of a cap agrees to pay the 
buyer the difference between the fixed strike rate and the 
reference floating rate (JIBAR), based on the notional 
principal amount, when the JIBAR reset exceeds the 
fixed strike rate. Settlement occurs on each reset date 
according to the formula:  

 
,

36500
cJ K Ld

S


  

where  is the settlement amount in Rands, S J  is the 
JIBAR rate for that period/quarter, cK  is the cap strike 
rate,  is the notional principal amount, and  is the 
exposure period in days (usually 91 or 92). 

L d

In the majority of cases, settlement takes place in ar- 
rears, in which case the settlement amount is then pre- 
sent-valued to the exercise date. 

In a similar fashion, the settlement amount of a single 
period floor/floorlet is given by the formula:  

 
36500

fK J Ld
S


  

where  is the settlement amount in Rands, S J  is the 
JIBAR rate for that period, fK  is the floor strike rate, 

 is the notional principal amount, and  is the 
exposure period in days. 
L d

In this case, the seller of a floor agrees to pay the 
buyer the difference between the fixed strike rate and the 
SAFEX-JIBAR, based on the notional principal amount, 
when the SAFEX-JIBAR rate resets below the fixed 
strike rate. Settlement also takes place on each reset date. 
To get a better feeling of this, take a company that 
expects a surplus cash receipt of R1 million in a month’s 
time which it will wish to invest. The company fears 

rates will be lower in future and therefore decides to buy 
a T1m-T4m at-the-money floorlet with a maturity of 3 
months, to hedge against the risk of losing money.  

4. Pricing Caps, Floors and Collars 

Each caplet/floorlet is priced from the implied 3-month 
forward rate for that period, from the yield curve. Hence, 
the at-the-money price of a caplet/floorlet is just the for- 
ward rate for that period. A strike price lower than that 
implied by the forward rate will result in an in-the-money 
caplet with both intrisic and time values, whereas a strike 
price above the forward rate will result in an out-the- 
money caplet. Similarly as with most option-styled deri- 
vative instruments, the more time to expiry, the greater 
the time value inherent in the option. This means that a 
T3m-T6m period caplet has time value of 3 months while 
a T21m-T24m period caplet has time value of 21 months. 
Volatility (annualized) is another factor that affects the 
value of a cap/floor. There is a positive correlation bet- 
ween volatility and the price of both caps and floors. The 
more volatile the price or rate of an asset, the more likely 
it is to reach the option strike price, and so the more valu- 
able the option. In brief, higher volatility implies higher 
option value. Standard option pricing theory postulates 
that the spot price or rate of the underlying follows a log- 
normal random walk. The fact that there are so many fac- 
tors impacting on the price of a cap/floor makes it prac- 
tically impossible for market-makers to hedge caps and 
floors. Cap and floor values also change as the shape of 
the yield curve changes, something which is not a factor 
in equity derivatives. Basically, the pricing of caps and 
floors in the South African market follows an extension 
of the Black-Scholes option valuation formula and is done 
in the following manner. 

Suppose we have an interest rate cap with strike rate 
K  and reset at times 1 2, , , Nt t t , with a final payment 
to be made at time 1Nt  . If we let 1k k kt t    and R  
be the k  maturity forward rate observed at time  

, 1kt k N  , then the time-t of the kth caplet  is 
given by  

kc

     1
2 1e ,rt k

k kc L N d R N d K           (1) 

where  is the nominal amount.  L
Similarly for a floor, the price of the kth floorlet  

with strike 
kf

K  is given by  

     1
2e .rt k

k kf L N d K RN d     1        (2) 

In both cases,  
2

1 2 1
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
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r  is the continuously compounded rate at the caplet/ 
floorlet payment time 1  The cap/floor price is the 
sum of the prices of the caplets/fllorlets.  

.kt 

ing theory postulates that the spot price or the rate of the 
underlying follows a log-normal random walk. If for 
each  the SAFEX-JIBAR rate i  iJ t

 i

 is log-normal 
under its measure, we assume J t  is a Geometric 
Brownian Motion, then we have  5. The SAFEX-JIBAR Market Models 

 
     

          21
d d

2

d
= d

e .
iT T

i it t

i i
i

i

s W s s s

i i

J t
t W t

J t

J T J t
 



 


     (4) 

Consider a fixed set of increasing maturities  

0 1, , , NT T T  such that 1i iT T   = exposure period in  

days. Define 1 , 1, 2, ,
365

i i
i

T T
i N     as the day-  

count factor (usually 91/365 or 92/365). Denote by iJ  
the 3-month SAFEX-JIBAR rate corresponding to the 
period  1,i iT T

K
. We can therefore define a caplet with 

strike  and resettlement dates 0 1, , , NT T T  as a 
contract which at time  gives the holder a pay-off or 
settlement amount of  

iT

 
        21

ln d d .
2

T Ti i
i it t

i

J T
s W s s s

J t
 

 
    

 
   (5) 

Define    e
r T ti

iq t L
   where  is the continuously 

compounded forward rate for the period 
r

1,i iT T . We 
propose the following new results.  

 max ,0 ,i i iS J K             (3) Proposition 5.1 In the SAFEX-JIBAR market, the 
time-t price of a caplet with strike K  is given by  where iJ  is the reference floating SAFEX-JIBAR rate 

for the period  1,i iT T ;  is the caplet strike. iK   is 
normally termed the tenor. Both the floating and strike 
rates are in decimal form. 

          
        

1 1 2 1

1 2

Capl , ,i i i i i i

i i i

t q t J t N d t T KN d t T

q t J t N d KN d





       

 



(6) Thus, for a portfolio of  caplets we would have the 
following settlements:  

N

where  
 
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K

 

Here,  

    21
, d

2

T

i it
m t T s s    Since by definition, iJ  is an average, for every  

1, 2, ,i   N , the JIBAR-SAFEX process iJ  is a 
martingale under the corresponding forward measure 

 on the interval TiQ  1,i iT T  [6]. Standard option pric- 

and  

    22 , d .  
T

i it
v t T s s 

Proof: Since  

          21
exp d d ,

2

T Ti
i i i it t

J T J t s W s s s                             (7) 

the value of caplet  is given by  i

            21
Capl exp d d .

2

T TT ii
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Hence  

         22 2Capl exp 2 e d
2π

i i x
i i i i

q t
t J t v z v K

  
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    x

becomes  
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Now completing the square,  
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2

iv
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Now letting  and , we have, 

as required that

A floorlet with strike 

 2d a 
  

 1 id a v  

 i i it q    (10) 

Definition 5.2 

       1 2Capl .i t J t N d KN d  

K  and 
resettlement dates 0 1, , , NT T T  

lder a settlemen
is a contract

time gives the ho t amount o
 wh
f  

ich at 

iT  

 max ,0 .i i iS K J t               (11) 

Proposition 5.3 In the SAFEX-JIBAR market, the 
price of a floorlet whose settlement amount is given by  

 max ,0 .i i iS K J t              (12) 

is given by the formula  
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          2 1Floorli i i it q t KN d J t   N d   (13) 

where  
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2
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1
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is the volatility of the interest rate 
.  

4 The time-t price of a SAFEX-JIBAR 
collar with resettlement dates 

of the 
period 

Propos
 ,i it t
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where cK  and fK  are the cap and floor strike rates 
respectively,  
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i  

1,i it t

is the volatility of the interest rate of the period 
.  

Eq
pricing caps and floors in the JIBAR market is 

 

uations (6) and (9) show that the numeraire for the 
 of 

 i iq t .  

6. The Greeks 

 intend to derive formulae for some 
or our model. Most traders employ 

In this section, we
hedging measures f
sophisticated hedging schemes which involve the 
calculation of such measures as delta, gamma and vega. 
The delta of an option measures the rate at which the 
option price changes with respect to the price of the 
underlying forward rate. Gamma is the rate of change of 
the option’s delta with respect to the forward rate. Vega 
is the rate of change of option price with respect to the 
volatility of the underlying. If vega is high in absolute 
terms, then the option value is sensitive to small changes 
in volatility. In contrast, if vega is small in absolute terms, 
volatility changes have relatively little impact on the 
value of the option. We will recall that  
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This fact will help us deduce our measures in the 
following manner. For a caplet,  
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Similarly, it can be shown that for floorlets,  
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Note that the delta, gamma and vega of a cap/floor is 
simply the arithmetic sum of the respective delta, gamma 
and vega for the caplets involved.  

.

The present work has made some nota e contribut
the interest rate modeling arena. A clear understanding of
the LIBOR theory enabled an easy extension of the same
ideas to the construction of the SAFEX-JIBAR m
model which gives prices consistent with oth econ
practicality and with other Black-type mo ls. 
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