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ABSTRACT 

This present issue is an extension of the work of Y. Xiao-Zhong et al. who investigated the influence of constant exter-
nal magnetic field on the decoherence of a central electron spin of atom coupled to an anti-ferromagnetic environment. 
We have shown in this work that the character variability of the field induces oscillations amongst the eigen modes of 
the environment. This observation is made via the derivation of the transition probability density of state, a manner by 
which critical parameters (parameters where transition occur) of the system could be obtained as it shows resonance 
peak. We equally observed that the two different magnons modes resulting from the frequency splitting via the applica-
tion of the time-varying external B-Field, exhibit each a resonant peak of similar amplitude at different temperature 
ranges. This additional information shows that the probability for the central spin system to remain in its initially pre-
pared diabatic state is enhanced for some temperature ranges for the corresponding two magnon modes. Hence, these 
temperature ranges where the probability density is maximum could save as decoherence free environment; an impor-
tant requirement for the implementation of quantum computation and information processing in solid state circuitry. 
The theoretical and numerical results presented for the decoherence time and the probability density are that of a 
decohered central electron spin coupled to an anti-ferromagnetic spin bath. The theory is based on a spin wave ap-
proximation and on the density matrix using both transformations of Bloch, Primakov and Bogoliobuv in the adia-
batic limit. 
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1. Introduction 

The interaction between quantum systems induced deco-
herence is commonly studied in the weak coupling and 
the strong coupling limits. Quantum decoherence is 
nowadays considered as the key concept in the descrip-
tion of the transition from the quantum to the classical 
world [1]. Various classical analogs have been developed 
and treated within the perturbation theory in the weak 
coupling regime [2]. Examples of the effects of weak 
coupling are changes in atomic decay rates [3] (Purcell 
effect) and Förster energy transfer [4] between a donor 
and acceptor atom and molecule. Förster energy transfer 
assumes that the transfer rate from donor to acceptor is 
smaller than the relaxation rate of the acceptor. This as-

sumption ensures that once the energy is transferred to 
the acceptor, there is little or no feedback effect to the 
donor. On the other hand, as the interaction energy be-
comes sufficiently large, a feedback effect on the donor 
becomes possible thus a signature of the strong coupling 
regime. In this limit, it is no longer possible to distin-
guish between donor and acceptor. i.e. the system is seen 
as part of a large system including the environment. The 
excitation becomes delocalized, and we view the pair as 
one system. A characteristic feature of the strong cou-
pling regime is energy level splitting, a property that can 
be well understood from a classical perspective [5]. The 
Hamiltonian of the total system provides a coupling be-
tween the apriori factorized two Hilbert spaces of the 
system and the environment, so that quantum evolution 
usually determines entanglement of the subsystems with *Corresponding author. 
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the environment states. A key problem is to understand 
the characteristics of the environment and its full influ-
ence on the system. It is widely accepted that a rapid loss 
of coherence caused by the coupling to environmental 
degrees of freedom is at the root of the non-observation 
of superposition of macroscopically distinct quantum 
states. 

Ford et al. (henceforth abbreviated as FLO) in its re-
cent publication [5], discuss a thought experiment in 
which a Brownian particle initially in thermal equilib-
rium with its environment is subjected to a double-slit 
position measurement, giving rise to an interference pat-
tern. Analyzing the decay of this pattern, they derive a 
decoherence time that is much shorter than that sug-
gested by previous calculations [6]. Because the deco-
herence time calculated by FLO remains finite even in 
the absence of any coupling to the environment, they 
describe their result as “decoherence without dissipation 
[7]”. 

The usual physical picture of decoherence [2,8] is the 
averaging over the unobserved degrees of freedom (the 
“environment”) that leads to non-unitary time evolution, 
with a consequent loss of information. If there is no cou-
pling to the environment, there will be no such lost. We 
remark that the transition from the quantum to the clas-
sical regime due to decoherence is different from the semi- 
classical limit, where the classical behavior is recovered 
by exploiting the smallness of Planck’s constant. There 
are three relevant main differences to this regard: First, 
decoherence requires an open system, second, decoher-
ence acts at the length-scale of the interference pattern, 
whereas a typical semi-classical procedure consists in 
evaluating a macroscopic observable on a fast oscillating 
probability distribution, third, decoherence is a dynami-
cal effect; it grows with time [9]. In spite of its recog-
nized relevance, there are still few rigorous results on 
decoherence, both from the analytical [10] and the nu-
merical [11] point of view. The coupled oscillator model 
was previously studied by Lukas Novotny [12] in the 
strong coupling regime with mechanical model oscilla-
tors. Xiao-Zhong Yuan et al. [13] gave a quantum me-
chanical representation of the oscillators where the oscil-
lators are constituted by a central spin atom coupled to an 
anti-ferromagnetic environment under the influence of a 
constant magnetic field. This model is an intuitive and 
popular model for many phenomena, including electro-
magnetically induced transparency [14], level repulsion 
[15] nonadiabatic processes [16], and rapid adiabatic 
passage [17]. 

In this paper we investigate the mechanism of deco-
herence in the simplest model of a quantum mechanically 
coupled oscillators, as a canonical example of the strong 
coupling regime characterized by frequency splitting. 
The conditions for the appearance of decoherence, adia-

batic and non-diabatic transitions are investigated. The 
system of interacting oscillators is the central spin of a 
couple to an anti-ferromagnetic environment and sub-
jected to a variable external magnetic field. Maintaining 
sufficient quantum coherence and quantum superposition 
properties is one of the most important requirements for 
applications in quantum computing and information pro- 
cessing, quantum teleportation [18,19], quantum cry- 
ptography [20] quantum dense coding [21], and tele-
cloning [22]. Therefore it is imperative to understand and 
mitigate the possible mechanisms of decoherence that 
hinder the realization of the above goals. 

This work is structured as follows; the model Hamil-
tonian of the central spin in the dual action of the anti- 
ferromagnetic bath and a parallel magnetic field is pre-
sented in Section 2. One of the most important observa-
tions in this section is frequency splitting of the anti- 
ferromagnetic spin bath due to the presence of external 
magnetic field, a situation where we can simulate the 
behavior of the system to that of a two level system a 
characteristic feature of the Landau-Zener scenario. The 
influence of the environment on the central spin dy-
namics is captured in the decohence factor and is 
evaluated in Section 3. We derive the transition prob-
ability of state in Section 4 and finally end with the 
conclusion. 

2. Model Hamiltonian 

We study a single central spin atom coupled to an anti- 
ferromagnetic spin bath environment subjected to a time 
dependent magnetic field. Without the external magnetic 
field, an anti-ferromagnetic crystal has in any elementary 
chain two network of spin orientation; anti-parallel spin 
oriented in oz  direction and in  direction and 
an anisotropy field, A

oz
H . In the presence of the exter-

nal magnetic field the Hamiltonian is given for exam-
ple by Equation 2.6.2 in ref. [23] The Hamiltonian of 
the environment used in this work is the Ising type 
model. 

0
Z

S BH g μ  B S                 (2.1) 

In an anti-ferromagnetic environment contrary to the 
ferromagnetic environment, the coupling factor J  is 
positive. 

0
0 ,
Z Z Z

SB a i b ii

J ,H  S S S
N

                  (2.2) 

   

, , , ,
, ,

, ,

B a i a i δ b j a j δ
i δ j δ

Z Z
B A a i B A b

i j

H J S S J S S

gμ B B S gμ B B S

  

    j

 

 
  (2.3) 

 0 ˆcosB B t z                            (2.4) 
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and the magnetic moment of each atom  

2 2 Bm s g                 (2.5) 

where g is the gyromagnetic factor, Bμ  is the Bohr 
magneton, 0J  the coupling constant, J  the exchange 
interaction. We consider only nearest neighbor interac-
tion. We assumed that the spin structure of the environ-
ment may be divided into two interpenetrating sublattices 

 and b  with the property that all nearest neighbor of 
an atom of  lie on  and vice versa. a,i  and ,b i  
represents spin operators of  and  atom on sub- 
lattice a and b, each sublattice contains  atoms.  
is the applied external magnetic field in the z-direction. 

A  is the anisotropy field, assumed to be positive which 
approximates the effect of the crystal anisotropic energy 
with the property of turning for positive magnetic mo-
ment, 

a

B

a b S S

B

thi thj
N

B , to align the spins on sublattice a  in the 
positive z-direction and spins on sublattice  in the 
negative z-direction. In ref. [24] is analyzed the crossover 
factor, 

b

 ; the vector that connect(connects) atom on site 
 or  with its nearest neighbor. To map the spin op-

erators of the environment to bosonic operators, we use 
the Holstein-Primakoff transformation, 

i j

1

2

2 1
2
i i

a,i

a a
S s

s

 
  
 

 
            (2.6.a) 

1

2

2 1
2
j j

b, j

b b
S s

s

 


 
 

  
           (2.6.b)  

and 
1

2

2 1
2
i i

a,i

a a
S s

s

 
  
 

 
            (2.6.c) 

1

2

2 1
2
j j

b, j

b b
S s

s

 


 
 

  
            (2.6.d) 

From where we have 

0
0
z

SB i i i i
i

J H S a a b b
N

             (2.7) 

with s  the eigen value of spin Hence Equation (2.3) 
defines the Heisenberg Hamiltonian plus the external 
magnetic field in the Ising model. It is impossible to 
solve it exactly but conveniently when full advantage of 
the translational symmetry is considered. We need crea-
tion operators which create Bloch-like non localized ex-
citations, in order to take translational symmetry into 
account. We consider one atom per unit cell and, ja ’s 
creates localized spin deviations at a single site. We use 
the spin wave approximation at low temperatures and we 
may expect the spin deviation quantum number to be 

rather small. Let i ia a s �  and j jb b s �  to reduce 
Equation (2.5) and (2.6); if we neglect the product of 
four operators and denote by M  the number of 
nearest neighbor, the Hamiltonian of the bath follows 
thus 

0B 1H H H                  (2.8) 

where 0Η  is the free Hamiltonian of the environment 
and 1H  the Hamiltonian describing the excited state of 
the environment 

2
0 2 2 B AH NMs J N B   sg         (2.9) 

The Hamiltonian 1Η  is made (up) of two parts  

1 1Η Η 1Η                  (2.10) 

where the first part 1Η  is the quantified Hamiltonian of 
the two magnons without interaction and 1Η  the inter-
acting Hamiltonian of the two magnons with expressions: 

1 2 i i j jΗ
i j

MsJ a a b  
   

 
 b       (2.11) 

and 

   

 
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,
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i i

B A j j
j

Η

sMJ a b a b g a a

g B B b b

 





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 



B B



    

 

 



(2.12) 

To find the total number of magnons, we do the Fou-
rier transformation of the total Hamiltonian with the 
Bloch operators: 

1 jikr

k
j

a ja
N

 e           (2.13.a) 

1 jikr

k
j

a ja
N


e            (2.13.b) 

where 1 1 2 2 3 3jr l e l e l e    is the vector of the primitive 
cell, k the wave vector. Let’s consider the restriction to 
the first Brillion zone and taking the inverse transforma-
tion of Equations (2.13.a) and (2.13.b) 

1 jikr
j ke

j

a a
N

            (2.14.a) 

1 jikr
j ke

j

a a
N

 

k

            (2.14.b) 

The total number of magnons equals the total spin de-
viation quantum number of magnons in mode . The 
spin wave variable  is substituted as 

k

kb
Z

k
k

Ns S b b               (2.15) 

where k k   is the occupation number operator for the 
number of magnons in mode k,   is the number of 

b b

N
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particles in each sublattice and 

1 ikδ
k

k

γ e
M

                (2.16) 

the Fourier transform coupling constant. The operators 

k , k , k , k  are the creation and annihilation op-
erators of sublattices  and  respectively. 
a a b b

a b
The Hamiltonian Equation (2.9) can then be trans-

formed using the Bogoliubov transformation: 

k k k kα u a v b  k

k



            (2.17.a) 

k k k kβ u b v a              (2.17.b) 

where the coefficients k  and kv  are real and also the 
new operators obey the boson commutation rules: 

u

k k k k kkα ,α β ,β δ 
                  (2.18) 

  0k k k kα ,β α ,β 
    

2 2

            (2.19) 

which leads to the constraint, . The Hamilto-
nians respectively in Equation (2.1)-(2.3) becomes 

1k ku v 

0
z

S BH gμ BS                       (2.20) 

0
0
z

SB k k k k
k

J
H S β β α α

N
    



        (2.21) 

  0B k k k k k k
k k

Η E ω α α ω β β          (2.22) 

0  is the energy of the free harmonic oscillator. The 
frequency of the two magnons at the symmetric posi-
tion given by the site and the site  of the system 
is: 

E

i j

1
22

2 21 2 1A
k

ξB
ω a k c ξB

a


        
   

     (2.23) 

In an anti-ferromagnet Cristal, the excitation of one 
magnon of a wave vector k lead to a change either of + 
1/N, or of –1/N for the ensemble of the two anti-parallel 
spins of the elementary network link. There exist then 
two modes, k  and k  which are degenerates if 
the contribution of the external magnetic field is ne-
glected. These states, up and down correspond respec-
tively to the eigen frequencies  

1
22

2 21 2 1A
k

ξB
ω a k c ξB

a


        
   

    (2.24.a) 

and 
1
22

2 21 2 1A
k

ξB
ω a k c ξB

a


        
   

    (2.24.b) 

From the given expressions Equations (2.24.a) and 
(2.24.b), we see that the magnetic state of spin “up” or 

“down” depends at the same time on the excitation of the 
modes k  and k  and to the population a a   
and  or of b ba a 


   and . Using the kinetic en-

ergy expression of the system, the effective mass 
b b 

 *m  
of magnon is found, 

2 2

2k *

k
ω

m
 


                (2.25) 

From where we have  

1

2
*

k

m
ω                 (2.26) 

Equation (2.26) gives the effective mass of a quasipar-
ticle moving in the crystal with frequencies kω

  in mode 
 where a, b, c, k   are the constants of system. The 

result of Equation (2.24.a) is not a good approximation to 
the situation of the spin wave [25]: We don’t take into 
account the processes which give in return their half-life. 
It has been calculated by some authors [26,27]. The 
critical magnetic field Bc (the corresponding external 
field that corresponds to field with the energy equals to 
the energy of the environment) is evaluated; that is when 
the mode 0k   and at the finite oscillating time, 

2π
t 


, and taking 0kω

  : 

1
2 2

1 A
c

ξBa
B

ξ a
1

      
   

           (2.27) 

Equation (2.27) is the critical magnetic field obtained 
as for the constant external magnetic field in [28]. In 
analogy to the dressed atom picture [29], the eigen fre-
quencies kω

  can be associated with dressed states, that is, 
the oscillator frequencies of state k  and k  (that 
are the states respectively with oscillator frequencies kω

 , 

kω
 ), in the presence of mutual coupling. 
In Figures 1-3 are plotted the frequencies of the two 

oscillators. In Figure 1 the two curves intersect at 0B   
and later diverge. The dynamics of the eigen modes fre-
quencies as function of time shows oscillations depicting 
the character variability of the external magnetic field 
Figure 2, it appears that the two curves intersect at 

cB B  
The dash curve corresponds to the frequency k

  and 
the solid curve to the frequency k

 . 
There is a characteristic anti-crossing with a frequency 

splitting of  

k kω ω Λ                (2.28) 

with 2ξB  . As B  , the splitting increases with 
the external field. Anti-crossing is a characteristic fin-
gerprint of strong coupling. 

The eigen modes of the oscillators with frequencies 
,k kω ω   translate the system to that of a two level system 
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Figure 1. Plot of the frequency versus the magnetic field 

with the constants = 0.8
B

T

gμ
, 100

B

MJ

gμ
 , , M = 

6. The dash curve corresponds to the frequency  and 

the solid curve to the frequency . 

= 0.4BA

-
kω


kω

 

 

Figure 2. Plot of the frequency versus time in the two states 
Zeeman effect. 
 
coupled by a constant magnetic field as analogous to the 
case in [30] where the coupling is via a spring constant, 
whereby in the light of Landau-Zener scenario, the fre-
quency difference of the oscillator changes linearly in 
time, the probability for level crossing (diabatic transi-
tion) at infinite large time is 

2

exp π
2diabP

µ

 
 

 
              (2.29) 

where µ   is the transition speed and is given by the dis- 

persion relation 
k

 



, where   is the wave vector.  k

Equation (2.29) is the probability that the anti-ferro- 

magnetic bath mode remains in the initially prepared 
state k

 . The characteristic Gaussian shape of this tran-
sition is shown in Figure 3(a) a signature that the anti- 
ferromagnetic spin bath described by the two frequency 
modes interact via the magnetic field with the subsequent 
collapse of population with frequency mode kω

  (red 
solid curve) and raising of population with frequency 
mode kω

  (green solid curve). This implies the magnetic 
field provides means by which the anti-ferromagnetic 
spin bath could be tailored. 

In Figure 3(b) supposing 0 cosB B  , the plot 
shows the range of values of the phase angle   that 
the survival transition amplitude is maximum as it 
exhibits a resonant peak. There is shrinkage in the width 
of this resonant peak for large value of the magnetic field 
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Figure 3. (a) Diabatic transition probability versus constant 
magnetic field , with ; (b) Diabatic transition 

probability versus phase angle for arbitrary , with 

. 
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5µ =

1.5ξ =
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amplitude implying the initially prepared state of the 
environmental frequency mode could be tailored with 
precision if a certain value of the magnetic field am- 
plitude and phase angle is used. Figure 4 is the plot of 
the frequency versus the wave vector for some system 
parameters. The dotted curve represents the behavior of 
the frequency, k

   and the solid curve that of the fre-
quency, k

  as the wave vector is varied. These curves 
show a basin-like behavior. It proceeds two extreme 
values (or minima) corresponding to the high cut-off 
frequency and the low cut-off frequency. Thus, any 
wave which is propagated with a frequency not in-
cluded in this domain vanishes. Note that we have ig-
nored damping of the magnons in the analysis of the 
coupled oscillators. When the external magnetic field 
exceeds Bc, we have . This indicates that, this 
branch of magnon is no longer stable due to the exter-
nally applied magnetic field. 

  0k
 

As a result, the anti-ferromagnetic polarization flips 
perpendicular to the field, i.e., the magnetic field induces 
spin flop transition. The spin-flop transition demonstrates 
a significant change of the spin configuration in the 
anti-ferromagnetic environment. This phenomenon has 
been observed and investigated for many different mate-
rials [31-33]. The spin wave theory is known to describe 
well the low-excitation and low-temperature properties 
of anti-ferromagnetic materials. 

Despite this low-excitation approximation, the spin 
wave theory also describes well the physics for cB B  
and the value of the critical magnetic field of the 
spin-flop transition in anti-ferromagnetic materials [28]. 
We will thus use the spin wave theory to discuss the de-
coherence time of the central spin under the influence of 
the anti-ferromagnetic environment when the external 
magnetic field is tuned to approach  from below (i.e. cB
 

 

Figure 4. Frequency versus the wave vector, with different 

constants: = 0.8
B

T

gμ
, 100

B

MJ

gμ
 , , M = 6, B = 2, 

in the two state of the Zeeman effect. 

c  for cB B B B ). It will be shown that an analytic 
expression for the decoherence time can be evaluated. 

3. Decoherence Time 

In this section, using the time evolution of the off-di- 
agonal elements of the reduced density matrix for the 
central spin, we calculate the decoherence time. We as-
sumed factorized initial state of the density matrix of the 
total systems, i.e.    0 0Sρ ρ Bρ 

0ρ
. The initial state of 

the central spin is described by . The density ma-
trix of the environment is assumed to be in thermal equi-  



librium, that is 
1

exp B
B

H
ρ

Z T
 
 


 , where Z is the 

partition function. We are interested in the dynamics of 
the off-diagonal elements of the reduced density matrix 
as they carry information on the phase coherence of the 
system. This is equivalent to calculating the time evolu-
tion of the spin-flip operator, 0 1oS   , where 0  
and 1   are respectively the lower and upper eigen 
states of oS  . By tracing out the environmental degrees 
of freedom, the time evolution of 0 1oS    can be 
written as: 

 

   1
exp 0 1 exp exp

o

B

S t

H
Tr iHt iHt

Z T



          
   


 

(3.30) 
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β β α α t
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

 

      
  

        

 


 (3.30) 

the decoherence factor  r t  can be found using the 
time evolution 

     0 0 0S t S r t                 (3.31) 

From Equation (2.3) the decoherence factor yields  

  exp B
à à

y y
r t igμ Bt

y y

 

             (3.32) 

where 

0

1
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y
J t ω

i
TN





 

  
 

         (3.33.a) 

0
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k k
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J t ω

i
N T





 

   
 
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= 0.4BA

The decoherence factor of the system in the volume 
 V  of environment is found at low temperature; that is 
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for , where  is the temperature,  
max

T � T

      2 2
0

2
exp Re

2π

f θ f θ
2

J t
r t

θ

        
    

    (3.35) 

Then in the thermodynamic limit, i.e. , N 
0   it is obvious that  as   0f   0  . To 

find the relation between   and  Re f   in the 
thermodynamic limit, we calculate: 

 
20

lim Re
θ

f θ
η

θ





             (3.36) 

The absolute value of the decoherence factor in the 
thermodynamic limit can be expressed: 

 
2

2
0

exp
t

r t
τ

 
 

 
              (3.37) 

where 

   0

0

π 2
t

J


  



            (3.38) 

We obtained these results analytically for the case of a 
variable magnetic field. It indicates that the decoherence 
factor displays a Gaussian decay with time (see Equation 
(3.37)). The factor  in the exponent is different from 
the Markovian approximation which usually shows a 
linear decay in time in the exponent thus portraying non- 
Markovianity a signature of strong coupling between 
system and environment. 

2t

In Figure 5 we see that the decoherence time de-
creases monotonically to zero with the external magnetic 
field. The opposite is observed in Figure 6 where the 
 

 

Figure 5. Decoherence time versus the external magnetic 

field, with different constants:  20.8 10
B
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Figure 6. Plot of the decoherence time versus the anisotropy 

field, with the chosen constants = 0.3
B

T

gμ
, 1

B

MJ

gμ
 , B = 

0.1, M = 6, 0 5J = . 

 
decoherence time increases exponentially with the ani-
sotropy field. This behavior shows the fact that the ani-
sotropy gives rise to stronger polarization of the envi-
ronmental spin and reduces the effect of the external field 
on the decoherence of the central spin. 

As discussed in[13] the field-dependent decoherence 
behavior may be inferred from the effective Hamiltonian, 
Equations (2.24)-(2.26). From the interaction Hamilto-
nian, Equation (2.25), we see that the larger the differ-
ence in the magnon excitation number between the 
magnon K  and magnon K , the stronger the effect of 
the environment on the central spin. At a given tempera-
ture, the average thermal excitation number may be the 
same for the two magnons, but the fluctuation in the ex-
citations for each individual magnon may not be the 
same at the same time. If the external magnetic field is 
increased, the magnon frequency  decreases but  

kω


 
kω
  increases. Consequently, the magnon mode k  is 

easier to be excited than the magnon mode k  at a 
given anisotropy field, temperature and time. This results 
in a larger magnon excitation number difference and 
fluctuation, and thus a stronger decoherence effect. 

An alternative way to understand the field-dependent 
decoherence time may be in terms of quantum correla-
tions. There is a kind of trade-off between the external 
magnetic field and the anisotropy field. The anisotropy 
field renders the anti-ferromagnetic environment stable. 
On the other hand, the external magnetic field tends to 
reduce the anti-ferromagnetic order of the environment. 
Therefore the stronger the external magnetic field is, the 
smaller the anti-ferromagnetic order. On the contrary, the 
larger the anisotropy field is, the stronger the correlation 
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of the anti-ferromagnetic environment. If the constituents 
(spins) of the environment maintain appreciable correla-
tions or entanglement between themselves, then there is a 
restriction on the entanglement between the central spin 
and the environment [34,35]. As a consequence, this sets 
a restriction on the amount that the central spin may de-
cohered [32,33,36]. Thus as far as the decoherence of the 
central spin is concerned, the anisotropy field has a simi-
lar effect on the exchange interaction strength between 
the constituents (spins) of the anti-ferromagnetic envi-
ronment. Strong intra-environmental interaction results 
in a strong anti-ferromagnetic correlation, thus an effec-
tive decoupling of the central spin from the environment 
and a suppression of decoherence [32,33]. Therefore the 
decoherence time increases with the increase of the ani-
sotropy field but decreases with the increase of the 
strength of the external magnetic field. 

In the subsequent section we find the transition prob-
ability of state in the system, considering that the density 
matrix of the environment is in thermal equilibrium. 

4. Probability Density of State 

At thermodynamic equilibrium, the density state of the 
system is expressed as 

 
  

exp

exps

H T

Tr H T






           (4.39) 

H is the total Hamiltonian and T the Boltzmann tem-
perature. Let’s evaluate the partition function of the sys-
tem, at the thermodynamic equilibrium 

0

1
exp k k k k k k

k k

Z

Tr E ω ω
T

      


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 (4.40) 

Here, g is the gyromagnetic factor, E0 the energy of the 
free harmonic oscillator. 

If we let n , n  the number of magnon for the dif-
ferent creation operator  and kα kβ   respectively 

 
1

1 exp
α,βn

ω
T




    
  

           (3.41) 

Then we have the mean value of the probability den-
sity of state. 

1 2ρ D D               (3.42) 
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        (3.44) 

The solid curve represents the vibration mode with 
frequency   and the dot curve the mode with fre-
quency  . Here,   is the gap between the two vi-
brational modes where looking at Equation (2.28), it re-
sults that     and may be interpreted as the energy 
necessary for spin transition from low spin energy state 
to high energy spin state. 

Figures 7-9 show plots of the probability density of 
state as a function of temperature. The plots demonstrate 
a resonance peak within some temperature range. This 
provides us with additional information on the range of 
values of the temperature, anisotropy field, magnetic 
field and other system parameters for which the central 
spin system is sensitive to and possibly undergoes tran-
sition. Transforming temperature into frequency via 
the Matsubara relation, we could talk of triple reso-
nance comprising of the driving field frequency, ani-
sotropy field frequency and the environmental eigen 
modes frequency. The resonance peak in the plot of 
the probability density of state for the two vibrational 
modes corresponds to minimum decoherence effect of 
the environment and the driving field on the central spin. 
In Figure 7, it is seen that two different peaks having 
the same magnitude arises for the two eigen modes fre-
quencies  ,   at different temperatures. We see 
that the two different modes enhance the probability 
density of state with each doing so at different temperature 
ranges. In the same figure  is the gap between the 
two vibrational modes where by looking at Equation 



 

0

TN


(3.43)  

Figure 7. Plot of the probability density versus the tem- 
perature. 

Copyright © 2012 SciRes.                                                                              WJCMP 



Effect of the Variable B-Field on the Dynamic of a Central Electron Spin Coupled to an Anti-Ferromagnetic Qubit Bath 254 

(2.29), it results that  and may be interpreted as 
the energy necessary for spin to make transition from its 
low energy state (with frequency mode 

  

 ) to its high 
energy state (with frequency mode  ) and vice versa. 
In Figure 8 it is seen that the variable external magnetic 
field reduces the probability density of state as compared 
to the constant magnetic field. The character variability 
of the external magnetic field with its frequency is used 
to control the dynamic of the hold system. This is be-
cause the variable field induces oscillations amongst the 
magnon modes with alternate collapse and revival of 
the modes. In Figure 9, the anisotropy field plays the 
inverse rule as compared to the external magnetic field. 
 

 

Figure 8. Probability density of state for a central spin in an 
antiferromagnetic spin system versus temperature for 
different value of the external field. With BA = 1.5. 
 

 

Figure 9. Plot of probability density of state for a central 
spin in an antiferromagnetic spin system versus tem- 
perature for different anisotropic magnetic field. With B0 = 
2. 

That is, the stronger the anisotropy field, the stronger the 
decoherence of the central spin system. 

The solid and dash curves are the plot considering the 
external magnetic field constant whereas the dotted curve 
is the plot of the probability density of state subjected to 
a variable magnetic field. 

We observed from Figure 8 that increasing the ani-
sotropic magnetic field intensity leads to an increase in 
the amplitude of the probability density. This shows that 
the anisotropy field provides to the central spin a deco-
herence free environment. This behavior is not surprising 
as the decoherence time increases with increase in ani-
sotropy (see Figure 6). 

5. Conclusion and Perspective 

We have studied the decoherence of a central spin cou-
pled to an anti-ferromagnetic environment in the pres-
ence of a variable external magnetic field. The results, 
obtained using the spin wave approximation in the ther-
modynamic limit, show that the decoherence factor dis-
plays a Gaussian decay with time. It is shown that the 
probability density of state occurs at some critical values 
of magnetic field and temperatures. The probability den-
sity as a function of temperature is characterized by a 
resonant peak corresponding to some critical parameters 
of the system which here are the critical external mag-
netic field, anisotropy field and temperatures. The prob-
ability of the central spin to remain in the initially pre-
pared state is maximum at these values and spin-flop 
transition is suppressed. Out of these parameter range 
spin-flop transition occurs, consistent with the QPT as 
studied in [37-39]. It is equally seen that strong anisot-
ropy field enhances the probability density and reduces 
decoherence of the anti-ferromagnetic environment of 
the central spin. Therefore, in order to reduce the loss of 
coherence of the central spin, we could decrease the en-
vironmental temperature, choose variable magnetic field 
with high amplitude (which) could lead to dark state of 
the environment, and choose the anti-ferromagnetic sur-
rounding or underlying anti-ferromagnetic materials with 
a strong crystal anisotropy field. The frequency eigen 
mode dependence on the phase angle as shown in (Fig-
ure 3(b)) suggest to us that the transition amplitude 
strongly depend on the phase angle and shall be one of 
the aspects for our future investigation. 
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