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ABSTRACT

Generally, the procedure for Solving Security constrained unit commitment (SCUC) problems within Lagrangian Re-
laxation framework is partitioned into two stages: one is to obtain feasible SCUC states; the other is to solve the eco-
nomic dispatch of generation power among all the generating units. The core of the two stages is how to determine the
feasibility of SCUC states. The existence of ramp rate constraints and security constraints increases the difficulty of
obtaining an analytical necessary and sufficient condition for determining the quasi-feasibility of SCUC states at each
scheduling time. However, a necessary and sufficient numerical condition is proposed and proven rigorously based on
Benders Decomposition Theorem. Testing numerical example shows the effectiveness and efficiency of the condition.
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1. Introduction

Security-constrained Unit commitment (SCUC) is one of
the most important daily functions for independent sys-
tem operators (ISOs) to clear the electric power market
and for generation companies (GENCOs) to analyze ge-
neration costs and determine bidding strategies [1-3].
The objective of SCUC is to minimize the total bid cost
in current electric power market or generating cost in
traditional power systems while satisfying the system
constraints including system demand balance, system
spinning reserve and related transmission security con-
straints, and individual unit operating limits such as
minimum/maximum generation level, minimum up/down
times, ramping rate constraints.

Since the SCUC is an NP-hard mixed integer-pro-
gramming problem, it is extremely difficult to obtain the
exact optimal solution within acceptable time [4]. La-
grangian Relaxation (LR) is one of the most successful
methods for obtaining suboptimal solutions [5], where
Lagrange multipliers relax the system-wide constraints
such as system demand balance, system spinning reserve
and DC transmission constraints. Some methods, usually
heuristics are needed to modify the dual solution into a
feasible one. In fact, the Lagrangian based SCUC methods
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are all similar but the ways to obtain feasible solutions
may vary significantly.

It is clear that the core to develop an effective method
for solving SCUC problems within the Lagrangian re-
laxation framework is how to obtain feasible solutions.
First of all, a necessary or sufficient condition used for
checking promptly on the feasibility of SCUC states is
crucial. Our previous work [6] proposed such conditions.
However, a necessary and sufficient condition for deter-
mining the feasibility of SCUC states at each scheduling
time is not given. Furthermore, ramp rate constraints are
not taken into consideration in those results.

A necessary and sufficient condition for determining
the feasibility of SCUC states at each scheduling time is
proposed and proven rigorously in this paper based on
the Benders Decomposition Feasibility Theorem [7,8].
The condition is very crucial for constructing a feasible
solution of a SCUC problem. Numerical test example
shows that the presented condition is very efficient.

2. Problem Formulation of SCUC Problems

For the convenience of presentation, some notations are
defined as follows.

T : commitment horizon in hours;

| : number of units with the index i denoting the

i" unit;
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P (t) : power generation by unit i at time t;
u; Et% : binary variable: 1 if the i" unit is turned on or
kept on during the time period t, else 0;

X; (t) : the number of time periods that Unit i has
been up ( x; (t)>1)or down (X (t)<—-1);

7, : the minimum number of time periods for which the
unit i must be up;

7,: the minimum number of time periods for which
the unit i must be down;

Ci(P(t)): fuel cost of producing power P (t) for
thermal unit i ;
S; éxi (t).u; (t)): startup/shutdown cost for unit i ;
D t) : total demand of the whole power system during
time period t;
P. (t): the spinning reserve requirement during time
period t;

r(t): r(t)=min {Ti, P-P (t)} is the spinning re-
serve requirement during time period t, T is the maxi-
mum spinning reserve requirement;

P, : the maximum generation of unit i at scheduling

time t,ifunit i has no raping limit, P, =P ;
P, : the minimum generation of unit i at scheduling
time t,ifunit i has no raping limit, B, =P ;

A; : the maximum ramp rate;

The objective of the unit commitment problem is to
minimize the total operating cost as the following mixed
integer-programming problem:

min{ 33, ()0 (05, (50 (1]

subject to

2.1. System Level Constraints

1) System demand constraint
|
2R (Hu(t)=D(t), &)
i=1

where D, (t) is the demand at bus Kk ;
2) Spinning reserve constraint:

;ri (u (1) =P (1), 3)

where I, (t)=min {Fi, P-P (t)} is the maximum spin-
ning reserve requirement.
3) Transmission security constraints:

F < (1)

| K
i=

Ly ‘R (t)—zfl,k D (t) < 'Ew 4)

1 k=1

=1L,

2.2. Individual Unit Constraints

4) The minimum up/down time constraint:

X (t)27,if u (t-1)=1Lu(t)=0, ()
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X (1) <z, if u (t=1)=0,u, (t) =1, (6)

5) The relation between the unit state and unit up/
down decision

X (t=1)+u; (t=1),if x (t-1)-u; (t-1)=>1
L2 [HE DRI ) ez
u; (t),if x (t=1)-u, (t)<-1
6) Generation constraint
P, <P (t)<P, .if x(t)>0, ®
P(t)=0, if X (t)<0.
7) Ramp rate constraints: if
X (t—-1)>1 and x(t)>1 then
RO-Rt-1<A. ©)

8) Minimal power generation constraint at the first/last
up hour:

),Pi(t)):O, (10)

3. The New Necessary and Sufficient
Condition for Checking the Feasibility of
SCUC States

A mixed-integer programming problem can be repre-
sented as

er,zg,lg}}y,z)zo f (y’ Z) ’ (1 1)
where Y < R" is assumed to be a nonempty convex set
and g is concave on Y for each fixed zeZ<R", Yy
and Z are continuous and discrete variables, respec-
tively.

Definition: A vector z,e€Z is called to be quasi-
feasible if there exists a vector Yy, €Y such that
9(Y,,2,)=0.

Benders Decomposition Feasibility Theorem [7,8]:
For problem (11), Y and Z are nonempty and Y is
convex, the vector function g(y,z) is concave vector
function for each z € Z . Furthermore, the set

W, :{We R™|G(y,z) 2w for some er} (12)
is closed for each zeZ. Then z,€Z(1V is quasi-

feasible if and only if the following inequalities are satis-
fied for VAe A

c(2)=supATg(y,z,) 20, (13)
yeY
where
A:{/H/izo,m/?,,:l}, (14)
i=1
V ={z:G(y,z)20,forsome yeY}, (15)
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Note 1: The result still holds forall 2>0.
Note 2: A SCUC problem can be written as the form
of Equation (11), where

y :{yiln""yin} eY :I:_Piltf F_)ilt:lx"'X[Eintﬂ F_)int]a (16)
Descartes product 24 {0,1}
z =101 x-x{0,1], (17)

and n is the number of generating units at scheduling

time t, i, are the indices of generating units, P, and
P, are the minimal and maximal power generation of unit

i level, respectively. g(y,z) is a 2L+ 3-dimensional
vector function, of which the first and second dimensions
corresponds to the system demand constraint (since such
constraint can be represented as two inequalities), the
third relates to the spinning reserve constraint, and the
rest dimensions correspond to 2L transmission security
constraints. f(y,z) is the total cost including the fuel
cost of all generating units at time t and their startup
cost.

Since for SCUC state vector zeZ at each schedul-
ing time t the power generation of units not being
started up need not be optimized, the set Y is determined
by z and is a convex cube of R". For the given SCUC
state vector zeZ, g(Yy,z) is the continuous concave
vector function over the closed convex set Y , and hence
W, is closed. Therefore, at each scheduling time t, the
SCUC problem is a mixed-integer programming of the
form (11), which satisfies the conditions of the above
Benders Decomposition Feasibility Theorem.

To obtain the desired result, the units are classified
into three categories at time t: E; is the set of units
which is on the normal generating state; E,, is the set
of units at the first/last generating hour; E,, is the set of
units with ramp rate constraints. The set E,, is further
classified into four types, named as E;, E., E; and
E; respectively, as follows:

n={ili € Ey,x (t) =1 (t)=—1first_last(i)=1}

Using the Benders Decomposition Feasibility Theorem,
we obtain the desired necessary and sufficient condition
for SCUC states to be feasible.

Theorem: SCUC states at scheduling time t is quasi-
feasible if and only if the optimal value of the following
nonlinear program is nonnegative:

minc (A1),

AeA

(18)

where
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C(/i)Z_ Y. [@Pi+AF]
ieE;,qi<0
+ Y |:ai|5i+(ﬂ3_ai)?i:|
ieEy,0<a <y
+ Z aiISi"'ZaiEi
i€Ey 0> icEY
+ Z [aiEit—’_ﬂ’jri]
icE} o <0
+ Y [aP+ar]
icEl,0i>0
+ Y [(a. )En”sF_’i]
icE2,ai<s
+ Z [(ai_ﬂ?)ﬁlt*'ﬂsﬁi}
ieEf >4

+ 2 [aPy+AT]

| ZE [%E‘%%‘%)ﬁ}

icE3,0<aj </

+

+ieE3Za:->/1 [(ai +23PJ
+iEZE:aiBi (4 =4)D(t)- 4R (1)

_Z(ﬂmul ﬂ’j+l)zr|kD ( )

M-t

+

(2’3+I +A’3+L+I ) 'E

I=1

and

A= R =200 = th
ATH—I :plt’ﬂii+L+| :plt’I :1"”’L

a=x A +IZE:(P|% _Pllr)rn

Proof: The left hand side of the Benders Decomposi-
tion Feasibility Theorem is

maxH(ﬂ: —#)L; R(t)+

u{za)z(t) : <t>}

+ZLZ{(/0§ —p.‘t){z LR (t)+ X TP,

1=1 icEy =

s Zraw-Srow||

icEs;

(ol +p.?)ﬁ}
>

ieE;.Py <R (t)<Ry.1i (t)=min{F.R -R (t)}

2 P+ 2 R(1)-

M-

+

1

= max

where
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c-(2-2) L e-00)|-ur )

icEy¢

M:—

+

(si-a)| Zr-Eno)

[15=00

Mr—

+ (pllt +P|%)|E|

The solution of problem (19) depends on the following
subproblems since the problem (19) is decomposable
with respect to units:

i) Subproblem 1: i€ E,, we have

ii) Subproblem 2: i€ E3t , we have

o (R.00)

Rt =R (t)2Pi¢. 1 (t)=min{F R -R
aP (t)+ 45 (1)

=P if P () P, ():O

—I127

= max
Rt =R (t)2Py. 5 (t)=min{F R R (1)}

iii) Subproblem 3: i € Ej, , we have
BB (12244 1) omin(. B -A(0) f(R(-5())
= pentee S @0 (A1)
o, Py + AT o <0, PI ( ) Pt ( )
a; |t+;i3|r|slfa >0, *() F_)lt’rl ( ):Fu
iv) Subproblem 4:

max f, (P, (t).r (t))

Rt =R (1)=Pic. 1 (t)=min{F, B -R (t)}
= max o P (t)+ Ar (t
Ru=R (1)2Py (t)=min{F. B -R (1)} (O A (1)

{aiEit + /4 (lSi_Eit)’if o < A,

i € E, we have

v) Subproblem 5: i € E;,, we have
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max (R (1)

Ri 2R (t)2Pir.f (t)=min{ R R (1)}
= max a,P (t)+ 4 (1)

ﬁnZH(t)ZEh,ri(t):min{ﬁﬁnfpl(t)}
{2y AT @, <07 () =P (1) =T)
{ (P -F) +ATif 0<a <4,

By Benders Decomposition Feasibility Theorem, we
have the desired result. Q.E.D.

Note 3: The all subproblems above are linear pro-
gramming problems with simple constraints. Thus, by
comparing the values of all extreme points, the optimal
solutions and corresponding optimal values can be ob-
tained easily.

Note 4: It should be noted that the theorem still hold
for 120.

4. The Numerical Solution of the Problem

Consider the SCUC problem at scheduling time t with
0 being the objective

max 0,

9(y.z,) 20, (20)
yey,

where y, Yand Z are defined in Equations (16)-(17).
The dual problem of the problem (20) is
r£1>1£1 c(4), 1)
By the theorem and the note 4, z, is quasi-feasible if
and only if and only if the optimal value of c(1) is
nonnegative over the positive orthant A4 >0. While the
problem (21) can be solved by using subgradient method
[9], and the value c(A) can be obtained by Equation
(19) for the given Lagrange multiplier vector A, the
Lagrange multiplier can then be updated by subgradient
method. Since the best multiplier vector in the dual itera-
tion of the SCUC problem is taken as the initial multiplier
A, , the rate of convergence of A is quite promptly.

5. Numerical Testing Result

The standard IEEE example [5] tests the effectiveness
and efficiency of the proposed method (Figure 1), which
has 16 units, 43 transmission lines, 31 buses (of which 11
is load bus). The fuel cost function of unit i is
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Ci(P(t)):ail:)iz(t)+lJll:)i(t)

The data of units, the system reserve requirement P, (t),

the system demand D(t) at each scheduling timet, the
maximal value of DC power flow F on each transmis-
sion line | and the amount of electric power on each
load bus are given in Tables 1-5, respectively. Units 1
and 4 have minimal power generation constraint at the
first/last up hour.
The CPU-time is within 2.3 second for checking SCUC
states for 24 scheduling period on a DELL Computer
with 2G RAM using MATLAB 7.01. Table 6 gives a
feasible SCUC obtained within Lagrangian framework.
Figure 2 presented the tendency of ¢ A¥) with A
at t=8 . Testing example shows that the numerical
method for determining the feasibility of a SCUC is ef-
fective and efficient.

6. Conclusions

The key of solving SCUC problems is to determine
whether a SCUC is quasi-feasible or not. The existence
of ramp rate constraints and transmission security con-
straints increases the difficulty of obtaining an analytical
condition. However, a numerical necessary and sufficient
condition for checking on the feasibility of SCUC states
at each scheduling time is proposed and proved rigo-
rously based on Benders Decomposition Feasibility

Table 1. Generation level and its coefficient of fuel cost
function of each unit.

Figure 1. The one-line diagram for the 31-bus test system.

Copyright © 2012 SciRes.

Uniti D R h § by
MW) MW) Mw)  (KSIMW2)  (kS/MW)
1 300 1350 1000 0.0015 8.752
2 360 1620 1200 0.0016 7.654
3 360 1620 1200 0.0016 7.654
4 360 1620 1200 0.0016 7.654
5 300 1875 1500 0.0013 6.052
6 300 1875 1500 0.0013 6.052
7 240 1080 800 0.0015 9.072
8 150 675 500 0.0015 8.752
9 100 625 500 0.0015 8.752
10 45 202.5 150 0.0019 12.54
11 90 405 300 0.0018 11.62
12 120 750 600 0.0017 9.543
13 150 937.5 750 0.0015 8.352
14 52 235.7 175 0.0019 13.00
15 60 270 200 0.0018 14.62
16 120 750 600 0.0017 9.543
5
— 2 - -
. O .
T T T
— 17 I
- -
CTTTT . - -
e |2— 2
i ||
| 271 |
— i
S
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Table 2. Length of up/down time, initial states and coeffi-

cient of startup cost function of each unit.
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Uniti 7, 7 % P, A s! S¢ 5
1 5 6 5 500 - 21208 25976 12
2 5 6 5 370 - 15729 19124 12
3 5 6 5 400 - 22775 27658 12
4 5 6 5 400 200 23507 28623 12
5 5 6 5 35 180 22275 27158 12
6 5 6 5 35 180 20775 25658 12
7 5 6 5 300 200 24039 29387 12
8 3 4 3 20 - 14160 17346 8
9 3 4 3 150 200 12959 15703 8
10 1 1 -1 o0 - 36.3 38.6 2
11 1 1 -1 0 - 27.8 33.6 2
12 34 -4 0 - 13709 16453 8
13 3 4 -4 0 - 16246 20199 8
14 1 1 -1 0 - 458 51.6 2
15 11 -1 0 - 24.6 29.3 2
16 34 -4 0 - 11985 14776 8

Table 3. System load and system

scheduling hours.

reserve requirement for 24

Hour t (?40\;3) (l'?;l(\)t\/)) Hour t (I;/[(tvg) (';;l(\;/))
1 2502 250.2 13 7995 799.5
2 2441 244.1 14 7201 720.1
3 2197 219.7 15 6591 659.1
4 2075 207.5 16 6225 622.5
5 2502 250.2 17 6652 665.2
6 3418 341.8 18 7812 781.2
7 4809 480.9 19 8056 805.6
8 5859 585.9 20 7079 707.9
9 6957 695.7 21 5188 518.8
10 7690 769 22 4028 402.8
11 8056 805.6 23 3174 317.4
12 8300 830 24 2807 280.7
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Table 4. Limits of DC power flow F on each transmission
line.

Line: i > j Capacity Reactance Line:  Capacity Reactance

(MW) (p-u.) i>] (MW) (p-u.)
1-2 1000 0.025 16 - 18 1200 0.01
1-12 1000 0.008 16-19 800 0.01
2-13 1000 0.054 17-21 1200 0.015
3-14 2000 0.01 18-25 2500 0.0005
19-26
3-15 2000 0.01 (Double 250 0.045
lines)
4-6 1500 0.01 19-31 200 0.04
5-6 1500 0.01 20-24 1000 0.03
6-7 1200 0.015 20-28 1000 0.025
6-18
(Double 1200 0.046 20-30 1000 0.05
lines)
7-16 1200 0.025 21-26 900 0.01
7-17 1200 0.015 22-26 1250 0.01
8-22 1000 0.01 23-27 1250 0.01
9-23 1000 0.01 24-25 1000 0.012
25-31
10-14 1000 0.0035 (Double 250 0.045
lines)

11-15 1000 0.0035 26 -27 1200 0.025

12-20

(Double 1000 0.054 26 -29 800 0.01
lines)

13-18 1000 0.03 26-31 600 0.0333
13-20 1000 0.01 28-30 1000 0.025
14-18 1780 0.00815 30-31 700 0.022

15-18 1780 0.00815

Table 5. Percent of system load drawn by load bus.

Bus Percent Bus Percent
1 0.024 7 0.265
2 0.024 8 0.062
3 0.361 9 0.024
4 0.036 10 0.048
5 0.012 11 0.12
6 0.024
EPE
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Table 6. A Feasible SCUC obtained within Lagrangian re-
laxation framework.

The Unit States (0 Denotes Downstate, 1 upstate)

Units Hour 1 S Hour 24
1 100000011111111111111000
2 00000O111TIIITITITITI1ITITITITIT11
3 I11111rrrrtr1r111r1r1rrtr1r11111
4 Ittt
5 rrrrrr1r1rtrrrrrrr1r1r1r1rrrral
6 rrrrrrrrrtrrrrrrr1rrrrroal
7 I11111111111111111111000
8 I11111111111111111111100
9 1111111111111 11111111100
10 000000000000000000000000
11 000000000000000000000000
12 000000011111111111110000
13 0000OI1IIT1111111111111110
14 000000000000000000000000
15 000000000000000000000000
16 000000000000000000000000
9000
8000 R
7000 E
6000 R
=
§ 5000 E
E 4000 4
8
3000 E
2000 i
1000 E
N
0 50 100 150 200 250 300 350

Iteration Number

Figure 2. The tendency of c(,l(")) with 2% ats=8in the

first dual iteration of the SCUC problem. The SCUC at#=8
is feasible.

Theorem. The condition is very crucial for constructing a
feasible solution of a SCUC problem. Numerical testing

Copyright © 2012 SciRes.

example shows that the proposed condition is very effec-
tive and efficient.

(1]
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