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ABSTRACT 

The first justified theory of solid state was proposed by Grüneisen in the year 1912 and was based on the virial theorem. 
The forces of interaction between two atoms were assumed as changing with distance between them according to in-
verse power laws. But only virial theorem is insufficient to deduce the equation of state, so this author has introduced 
some relations, which are correct, when the forces linearly depend on displacement of atoms. But with such law of in-
teraction the phase transitions cannot take place. Debye received Grüneisen equation in another way. He deduced the 
expression for thermocapacity, using Plank formula for energy of harmonic vibrator. Taking into account the depend-
ence of atomic vibration frequency from distance between atoms, when the forces of interaction are anharmonic, he 
received the equation of state, which in classical limit turns to Grüneisen equation. The question, formulated by Debye 
is—How can we come to phase transitions, when Plank formula for harmonic vibrator was used? Debye solved this 
question not perfectly, because he was born to small anharmonicity. In the presented work a chain of atoms is consid-
ered, and their movement is analysed by means of relations, equivalent to virial theorem and theorem of Lucas (disap-
pearing of mean force). Both are the results of variation principle of Hamilton. The Grüneisen equation for low tem-
perature (not very low, where quantum expression for energy is essential) was obtained, and a family of isotherms and 
isobars are drown, which show the existence of spinodals, where phase transitions occur. So, Grüneisen equation is an 
equation of state for low temperatures. 
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1. Introduction 

The molecular-dynamical solid state equation, based on 
virial theorem, was derived by Sutherland [1], Mie [2], 
Grüneisen [3,4]. Another way of deriving, based on the 
Debye theory of heat capacity at low temperatures [5], 
which used the Plank expression for the energy of 
harmonic vibrator, was chosen by Ratnowsky [6], Eis-
enmann [7], Grüneisen [8], Debye [9,10]. In classical 
limit the quantum equation of state turns to classical 
Grüneisen equation. But here arises a question, which 
Debye formulated in such manner: because an expres-
sion of harmonic vibrator energy is used, can the 
Grüneisen equation be regarded as equation of state 
that describes phase transitions, which are non linear 
phenomena? In classical deduction of equation of state 
Grüneisen besides the virial theorem (which alone is 
insufficient to deduce equation of state) used some 
equalities that are strictly correct for forces that de-
pends linearly from displacement of atoms. Debye tried 
to solve the formulated question, but, because he was 
based on relations correct for small anharmonicity only, 
the analysis cannot be regarded as complete. We em-
ploy another way for equation of state deduction that 

begins from variation principle of Hamilton, which can 
be a base for deriving of the virial theorem [11]. The 
approximations, used in solving of equations, are not 
burned to small anharmonicity. Here is given a brief 
account of equations deduction, which in details is 
published elsewhere [12]. The calculations for atomic 
chain show that Grüneisen equation is valid as equation 
of state for no high temperatures. The families of iso-
therms and isobars illustrate the picture of phase tran-
sitions in the chain. 

2. The Basic Equations of Solid State 

The deduction of virial theorem from Hamilton variation 
principle is briefly described below. The variation of 
mean time Lagrange function L is transformed as follows 
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The first term of last expression is zero as consequence 
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of movements equations, the second—for infinite time 
interval. The product of a coordinate with variable factor 
  represents a varied coordinate: k kq q , so 

k,k k kq q q .q        These variations substituted 
in the left side of last Equation (1) give a relation 
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If the kinetic energy W does not depend on coordinates 
(in crystals rectilinear coordinates of atoms are used), it 
follows the virial theorem 
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The represented variation procedure may be general-
ised. The variable coordinates are represented in the form 

,k k k kq     where ,k k   are variable parameters 
(further generalization of variation procedure is de-
scribed in [12]). The variations of coordinates and ve- 
locities are expressed as ,k k k k k kq q q kq         
and after substitution in (1) a relation follows 
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So the equations are obtained 
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where the theorem about uniform distribution of kinetic 
energy is used. Further step in calculations consists in 
representation of coordinates as functions of time in the 
form 

( )k k k kq s u t                 (7) 

where ks  are the mean values of coordinates, k  is 
root mean square amplitude of vibrations, so the vibra-
tion functions satisfy the relations 

u
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If the kinetic energy depends only on velocities then (5) 
is represented as 
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Introducing in (6) taking into account (7) and (9) we 
obtain 
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If the system of atoms interacts with external corps, 
the positions of which are determined by means of coor-
dinates i , the mean forces acting on the system are 
determined by expressions 
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By shifting of the corps the forces produce a work, so 
the variation of energy by variation of all parameters is 
given by the expression 
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Taking into account (9), (11) a relation will be ob-
tained 
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It can be seen that the quantity T which till now is only 
the indication for mean kinetic energy, an integrant divi-
sor for the quantity of heat is, hence proportional to ab-
solute temperature. The expression for entropy is the 
follows 
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We introduce a function of variables as an analogy of 
thermodynamic potential 
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(items depending on temperature only are omitted). The 
condition of minimum Ф by constant temperature leads 
to Equations (9), (11), (12) and allows to choose stable 
values of variables. In a crystal the mean values of dis-
placements and amplitudes are equal for atoms belonging 
to the same sublattice, so the number of unknowns may 
be not great. Because in crystals the rectilinear coordi-
nates are employed, the kinetic energy will not depend 
on coordinates. 

3. Anharmonic Vibrator with Two 
Equilibrium Positions 

Additional information about dynamical variation pro-
cedure is obtained through considering of a simple an-
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harmonic vibrator with coordinate x and potential energy 
of the form 

2 4 ; 0,
2 4

c b
U x x c b    0          (17) 

which is represented on Figure 1 
It is necessary to determine mean time potential en-

ergy, so it will be written 
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where is put 3 0,   because  is an accidental  t
function with zero mean value, so with equal probability 
receives positive and negative values, and in such man-
ner behaves The mean value of  3 .t 4  is 3/2, if the 
function  is harmonic, but is greater, if on the path is 
potential barrier, which reduces the speed. Later we show 
what value of 

 t

4  is worthwhile to put in equations. So 
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The equations of state will be written as follows 
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It follows two solutions 
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Figure 1. Potential pit with two minima. 

The first solution corresponds to vibrations above the 
potential barrier, the second to vibrations in left or right 

potential pit. If we put 4  = 3, then the left sides of 
second equalities in (25), (26) differ only through multi-
plier, consequently intersect the abscissa axis in the same 
point. For this case the Equations (25) and (26) are rep-
resented graphically on Figure 2. 

Parts of the curves that have physical meaning, corre-
spond to positive temperature. Heating or cooling leads 
to transitions from one curve to the other, which is mani-
fested in jumps of amplitude. 

Braunbek [13] considered the phenomena of crystal 
melting, using the equation of sublattice motion. The 
potential curve was represented by a sinusoidal function 
of coordinate. The integration could be fulfilled with the 
help of elliptical functions. By low temperatures the at-
oms moves in one of minimums of potential curve, by 
more high temperature—above the maxima. This corre-
sponds to transition from crystalline to non crystalline 
state. On the Figure 3 is shown the calculated depend-
ence of the temperature from the energy of vibrations. 
The amplitude increases with energy, so it exists a possi-
bility to compare the graphs, received with both methods 
of calculation. The graphs are similar, and the point of 
intersection of curves, describing finite and infinite 
movements (in our model also finite, but taking more 
place in the space) lies on abscissa axis. So, it is reason-

able to accept 4 3.   
A serious question arises by comparing our calcula-

tions with calculations of Syrkin [14]. On the Figure 4 is 
shown a form of potential pit: symmetrical double min-
ima rectangular one. 

Syrkin calculated the dipole moment in electric field 
for charged atom by means of formula for statistical dis-
tribution, integrating over all space of the pit. It turned 
out that the dipole moment continuously decreases with 
 

 

2

T
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Figure 2. Relations between temperature and amplitude for 
vibrations; 1—Above the barrier; 2—In the region of 
minimum. 
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Figure 3. Relation between temperature and energy ac-
cording [13]. 
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Figure 4. Graph of potential pit according [14]. 
 
increasing temperature (as polarisability for thermal po-
larization according to Debye formula). So, a discrep-
ancy can be marked between dynamical and statistical 
calculations, but really this discrepancy is illusory, be-
cause such question was considered in the literature. In 
the course of Frenkel [15] is discussed a metastable state 
with conclusion, that such state corresponds to a region 
of phase space, where the molecular system exists long 
time and can be observed, then for determination of 
phase integral the integration must be extended over this 
region. But Syrkin integrates over all space, which in-
cludes both minima and potential barrier. This means that 
in no part of the space the atom delays for a long time, 
but jumps from one minimum to the other. Model of 
Syrkin corresponds to a hole in a crystal, where the atom 
is not bound tight to one minimum. 

4. Equations of State of an Atomic Chain 

It will be considered a chain of identical atoms situated 

on x-axis, where atoms interact with nearest neighbours. 
The extreme left atom with number 0 is fixed in the ori-
gin and on the extreme right atom a constant force f di-
rected along the axis is acting (Figure 5). 

Atom, which has the number k, interacts with left and 
right atom with numbers k – 1 and k + 1, which are 
placed on distances 1,k kl l   from the considered. 

The energy of interaction for the whole chain is repre-
sented by the sum 
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If the mean time distance between neighbouring atoms 
is l—identical for all atoms, then the distance in moment 
t will be written as 

 k kl l u t                  (28) 

where the mean square amplitude is written also as iden-
tical for all atoms. The energy of interaction is further 
expended in power series with respect to amplitude and 
the order of derivative is marked by means of Roman 
numerals 
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For taking the mean time value of (29) the relations (8) 
must be used and the mean time of (29) has the value 
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For the function   determined in (16) and calculated 
for one atom we receive, taking into account (30), an 
expression 
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where f is a constant stretching force (hanging load). The 
terms depending only on temperature are omitted. The 
conditions of minimum have the form 
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Figure 5. The atomic chain. 
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If we neglect the terms containing fourth power of 
amplitude, an equation will be received 
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This is Grüneisen type equation. Now we deduce an 
equation with regard to fourth power of amplitude. We  

multiply (32) with IVU  and (33) with 
1

4
VU  and sub-  

tract the second from the first, than it turns to be 
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The Equation (33) will be solved with respect to  2u
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The radical is taken with positive sign, because the 
amplitude increases with increasing temperature and 

 which will be clear later. Expanding the radi-
cal and retaining terms quadratic in temperature, we re-
ceive.  
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Introducing in (35), we obtain the equation of state 
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Further calculations concerning the transitions in the 
chain will be carried out retaining only linear in tem-
perature term. 

5. The Equation of State for Forces, 
Changing with Distance According to 
Inverse Power Law 

The potential energy of two atoms, one of which is 
placed in the origin, other on the x-axis on the distance l 
will be represented by means of a usual function 
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This expression is mathematically equivalent to given 
in [16]. 
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As can be seen, in the vicinity of the point M it must 
be , because  and the same is true for 0IIU 

.
,n m

IVU  
These values for derivatives of interaction energy sub-

stituted in (34) give the Grüneisen equation for accepted 
law of interaction. We undertake now a mathematical 
investigation of this equation for the purpose to receive 
equations for isotherms and isobars and analyse their 
behaviour in order to discover transitions. As was noticed 
[17] the calculations are most simple for values n = 12, m = 
6 that we introduce in above expressions and use the no-
tation 
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The expressions for energy and its derivatives are the 
follows 
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The Equation (36) now turns to the form 
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As the multiplier in front of the bracket varies slowly  

with the length, we put 
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approximate equation of state 
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From this equation, as is usual in physical chemistry, a 
family of isotherms and isobars will be deduced. 

6. Isotherms of the Atomic Chain 

The expression in brackets, including the sign in front of 
it, consists of two items—The first is represented as a 
parabola, that goes to negative infinity intersecting ab-
scissa axis in points q = 0 and q = 1, the top of which 
arises above abscissa axis on 0.25. The second item is a 
fraction where numerator and denominator are linear 
functions of q and it aspires to constant negative value 
when q goes to infinity, by diminishing of q also dimin-
ishes till the value q = 7/13, where the fraction turns to 
negative infinity. So the function (53), when the tem-
perature does not exceed definite value, is represented till 
this point by a curve with roots, lying between values of 
abscissa 0 and 1, and with top placed above the abscissa 
axis. By rising of the temperature the roots and the top 
coincide on the abscissa axis, and farther the chain can 
exist only under the action of negative (compressing) 
force. As it was noted in [17], the solid corps must resist 
to the action of stretching force, otherwise it is not a solid 
corps. The family of isotherms is depicted on the Figure 
6. The physical meaning has parts of isotherms to the 
right side of the top, where condition of stability 

0f q    is fulfilled [17]. In the top of the curves the 
transition in other phase takes place, but the structure of 
new phase is not described by the present considerations. 
It may be noticed in passing, that the branch of the curve 
to the left side of the top approaches the abscissa axis 
more abruptly, then that to the right side because the 
third derivative in the top is positive (when it is so, then 
in the vicinity of the top 

top top

0
f f

q q 

    
        

 

Expanding in series with respect to , we arrive at 
the formulated condition). 



Each curve on Figure 6 is characterised by the posi-
tion and height of maximum and position of intersection 
points with abscissa axis. The position of maximum  
is determined by the equation 

mq

 

g

T 

f

1
13
7

 

Figure 6. Family of isotherms of chain equation of state. 
 

   27 1
2 1 13 7

39 m m

kT
q q  


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If this expression of temperature will be substituted in 
Equation (53), then the equation of the curve, connecting 
maxima of the isotherms (spinodal) will be obtained 

 

   

1

1
2 1 13 4 13 7

39

M
m m

m m m

f l
q q

q q q

  


   
    (55) 

The right side decreases with increasing of the ab-
scissa from the value 7 13 0.538 , where the left side 
has the value 42 169 0.249 , till the intersection point 
with abscissa axis, where the top of the isotherm reaches 
it. As numerical calculation shows, here 

0.745; 0.0130m
m

kT
q  


          (56) 

The diagram (f, T) is represented in parametric form 
by expressions (54), (55). 

Now we determine the positions of the points, where 
the isotherm branches intersect the abscissa axis. Ac-
cording to (53) one must put f = 0, then solve the equa-
tion 

  1 13 77

13 4

q q qkT

q

 
 

 
         (57) 

We shall not solve this cubic equation to express the 
abscissa as a function of temperature, but shall confine us 
with consideration of solving procedure. The right side is 
a curve, intersecting the abscissa axis in the points q = 
7/13 and q = 1, between them has a maximum. The left 
side is a straight line parallel to abscissa axis, that at no 
high temperatures intersect the curve in two points, cor-
responding to roots of Equation (57). By rising of the 
temperature the roots converge till the straight line 
touches the top of the curve, then the roots and point of 
maximum coincide. The corresponding values of ab-
scissa and temperature are (56). 
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7. The Isobars of Atomic Chain 

From Equation (53) follows the expression for tempera-
ture 

 7 13 7
1

13 4
Mf lkT q

q q
q

         
      (58) 

The right side is a product of a fraction with negative 
sign, whose numerator and denominator are linear func-
tions of abscissa, and a quadratic function. The graphs of 
multipliers are represented on Figure 7 (the letter f on 
vertical axis means function). 

The temperature is positive, so physical meaning has 
the interval on abscissa axis, where the ordinates of both 
curves have the same (negative) sign that means interval 
between points, where the fraction and parabola intersect 
the abscissa axis. The first point is fixed; the second de-
pends on the value of the force and may disappear (if 
parabola is placed above the abscissa axis). So, the fam-
ily of isobars has the form, shown in Figure 8. Only the 

part to the right side of the top, where 0,
T

q





 have 

physical meaning, because here the length of the chain 
increases with increasing temperature, what is designated 
as thermal dilatation (notation 47). 

The position of the point Q, where parabola intersects 
the abscissa axis is given by the expression 

1 1

2 4
M

Q

f l
q   


            (59) 

With increasing force this point moves toward the 
point with abscissa 7/13 and coincides with it by the 
value of the force 
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Figure 7. Graphs of multipliers in Equation (58). 
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Figure 8. Family of isobars of chain equation of state. 
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By this value the isobar disappears, and the system of 
atoms does not exist as regular structure. 

For determination of maximum the expression (58) 
will be differentiated, and the result is 

 
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f l
q q

q q q
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

   
    (60) 

This equation has the form of Equation (55). The value 
of temperature maximum on the curves, shown in Figure 
8, we receive, if substitute the value of force (60) in (58), 
where the value of abscissa is  The temperature 
maximum is 

.mq

   27 1
2 1 13 7

39 m m

kT
q q  


         (61) 

and has the same mathematical form as (54). It is the 
equation of spinodale that joints the points of maxima on 
Figure 8. 

8. The Isobars Temperature—Amplitude 

The initial equations are (37), (50), (58) and the problem 
consists in excluding the quantity q. This is made as fol-
lows: Excluding the temperature leads to the equation for  

q (here 
1

3 1q  ) 

   291 1 ) 28 1 0w q w q p            (62) 

where  2

Mw u l . Mf l
p 


 The solution has the 

Copyright © 2012 SciRes.                                                                              WJCMP 



To the Question of Validity Grüneisen Solid State Equation 226 

form 

 
28 1

2 91 1

w
q

w

R 



             (63) 

where 

   2
28 1 4 91 1R w w    p  

Introducing (63) in (37), leads to the expression for 
temperature 

 
   2
28 1 910 1 13

4 91 1

kT w
w R w R

w
     

  (64) 

The first multiplier turns to zero, when w = 0, the last 
multiplier when p = 42/169 turns to zero also. When p = 
0, the last multiplier is zero at w = 2/91. It can be proved 
directly that for p laying between these extreme values 
the last multiplier is zero at 

2 169
1

91 42
w  

 
p                (65) 

So, the temperature has two roots with a maximum 
between them. The dependence of the temperature from 
the amplitude is shown in Figure 9. Physical meaning 
has increasing part of the curve from zero to maximum. 
In the vicinity of the maximum the temperature is nearly 
constant, so the square of vibration frequency, which is 
proportional to the fraction, 2 ,kT w  diminishes with 
nearing to the maximum. Such conclusion is formulated 
in Reference [18]. 

Gilvarry states that root mean square amplitude di-
vided through mean distance between atoms at transition 
point has the same value for all substances with the same 
structure [19] and the same assertion is found in the arti-
cle [20]. Such conclusion follows also from presented 
calculations. From (37) and (50) follows 

 
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2 3

13 7
MlkT

u q
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           (66) 

With using the expression (47) for q this equality turns 
to 
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Figure 9. Family of isobars temperature—amplitude. 
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By means of equation of state (58), where is put f = 0, 
this equation transforms to  

2
1 1

7 13 4

u

l q

     
q

              (68) 

To receive the value of q in the transition point, one 
must differentiate (58) and the derivative equate to zero. 
Under the condition f = 0 definite value of q and conse-
quently definite value of fraction u l  will be obtained. 

9. Concluding Remarks 

On the base of dynamic equations, that follow from va- 
riation principle of Hamilton, a thermal behavior of lin-
ear chain of atoms, interacting with nearest neighbors 
with forces, obeys inverse power law, and stretched with 
external force was considered. The mean potential en-
ergy is developed in series with respect to the amplitude 
of atomic vibrations and only second powers were re-
tained. This restricts the temperature from above, and the 
Grüneisen type equation of state was obtained. The fami-
lies of isotherms and isobars were drowing, and spi-
nodals are marked. So, Grüneisen equation is an equation 
of state, which describes phase transitions. This is the 
answer to the question, formulated by Debye: Is the 
Grüneisen equation an equation of state? The original 
calculations contain assertions, which are strictly correct 
for linear dependence of interacting forces from dis-
placements of atoms, so no transitions can occur. It is a 
correct reasoning, and if we put in Equations (37), (38) 
the numerical values (56), we come to result that linear 
and quadratic in temperature items are nearly equal, so at 
such temperature quadratic terms cannot be ignored, and 
Grüneisen equation is an approximation useful for lower 
temperature. In a discussion about Grüneisen work Nernst 
expressed his opinion [3]: 

“You all have received an impression, that we are so 
far, that can consider also the solid state from molecular- 
theoretical point of view, and one may hope that we soon 
receive a similar perfectly true theory also for solid state, 
that we for long time possess for gases.” 

The Grüneisen equation in essential features turns into 
Mie equation, when in the fraction the terms, arises from 
attraction interaction, will be stroked out. So, the founda-
tion for solid state equation development is the Grü- 
neisen equation. The equation that takes into account 
terms with second potent of temperature will be essen-
tially more complicated, than Grüneisen equation. 
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