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ABSTRACT 

We present a new derivation of the Born rule from the assumption of noncontextual probability (NCP). Within the 
theorem we also demonstrate the continuity of probability with respect to the amplitudes, which has been suggested to 
be a gap in Zurek’s and Deutsch’s approaches, and we show that NCP is implicitly postulated also in their derivations. 
Finally, physical motivations of NCP are given based on an invariance principle with respect to a resolution change of 
measurements and with respect to the principle of no-faster-than-light signalling. 
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1. Introduction 

The fundamental probabilistic postulate which allows 
QM its successful predictions was first introduced by 
Born (from a suggestion by Einstein) in 1926 within the 
scattering theory [1]. The question if such postulate 
could be derived as a theorem from other postulates of 
QM was quickly posed. A first answer was provided by 
Von Neumann and included in his famous book of 1932 
on the mathematical foundations of QM [2]. His theo- 
rem nowadays does not enjoy much attention since it is 
believed to contain more assumptions than Gleason’s 
[3,4]. Different attempts have been discussed in the con- 
text of the relative-state [5] and the many-worlds inter- 
pretations [6] of QM by Finkelstein [7] and Hartle [8], 
which have analyzed an endless sequence of measure- 
ments to show that the relative frequency follows the 
Born rule. However, the meaning in the real world of an 
infinite sequence of measurements is controversial and 
it is doubtful whether these proofs contain circularities 
[9-14]. 

The 1957 Gleason work [4] is regarded as the most im- 
portant derivation of the Born rule [15], but this theorem 
is usually considered quite formal and difficult to grasp. 
Moreover, it is based on the concept of noncontextual 
probability (NCP), whose connection with physics is not 
clear. In the structure of the Gleason theorem, every Hil- 
bert subspace  corresponds to an observable quantity. 
Each one of such subspaces is representable by a projec- 
tion operator  . A projector 



̂ ˆ =    can 
represent the question with answer yes or not concerning 
an experiment testing whether the system has the respec- 

tive state . A complete set of mutually commuting  
ˆ{ }iprojectors   corresponds to a set of questions which  

can simultaneously be asked in a measurement. In the 
logical-algebraic approach [16], probability is a measure 
defined over a projection lattice (set of closed subspaces) 
of Hilbert space , a mapping   ˆ: 0,1p  

N
ˆ{ }i

 . The 
postulates on which the theorem rests are: 

1) The probability assigned to a complete set of  
projectors   is normalized: 

 
=1

ˆ= 1,   = .
N

i
i

p I I              (1) 

2) For any sequence of M  mutually orthogonal 
projectors:  

 
=1 =1

ˆ ˆ=  
M M

i i
i i

p p
   
 
 

ˆ{ }

.             (2) 

Assuming Postulate 2) is equivalent to postulating 
NCP for projective measurements (or, i.e., according to 
the definition by Spekkens, measurement noncontextu- 
ality [17]): the probability of a certain occurrence, for 
example the answer yes for a projector, does not depend 
on other questions simultaneously tested, that is, on other 
projectors. In terms of basis vectors, the probability of 
obtaining a given state is independent of the basis it be- 
longs to. To illustrate this important point, let us consider, 
for instance, two complete set of mutually orthogonal 
projectors i , i

ˆ{ }  with , where = 3N 1 1
ˆ ˆ    . 

From the normalization postulate of probability: 

     1 2 3
ˆ ˆ ˆ 1,p p p               (3) 

     1 2 3
ˆ ˆ ˆ 1,p p p                 (4) *Corresponding author. 
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where in principle  and  may be dif-   1
ˆp   1

ˆp 

1̂

2 3
ˆ ˆ=   2 3

ˆ ˆp

ferent. In the subspace orthogonal to  we have  

2 3
ˆ    2 3

ˆ ˆp̂  ,  then        
and from Postulate 2: 

       2 3
ˆ ˆ .p p   

   1 1
ˆ ˆp p  

dim 3

2 3
ˆ ˆp p           (5) 

Then, by comparing Equation (3) and Equation (4), we  

get . It is also possible to show the vice  

versa, i.e, if NCP holds then Postulate 2 is true. 
From Postulates 1 and 2 it follows Gleason’s Theorem: 

For a Hilbert space with dimension  there 
exists a density operator ̂  which acts on  such that 
the probability measure for every projector 


̂  is the 

trace rule: 

   ˆ ˆˆ ,p tr   








dim 3
= 



dim 3
dim = 2

               (6) 

namely, the Born rule. 
More recently, new proofs appeared in the literature 

with the intention of being “more physically motivated 
than the theorem of Gleason” [18]. Their aim, as the ours 
in the present work, is to shed new light on the physical 
principles of QM, particularly on the origin of the Born 
rule. Indeed, Gleason’s theorem gives “rather little 
insight into the emergence of quantum probabilities and 
the Born rule” [19]. 

Particularly interesting are Deutsch’s and Zurek’s 
derivations [18,20-25]. Their approaches to the Born rule 
have similar structures. As a first step, they use an 
invariance principle in order to show that equal ampli- 
tudes correspond to equal probabilities. Deutsch finds such 
principle in the theory of decisions (for critical discus- 
sions and further elaborations see [26-28]). Zurek intro- 
duces an environment-assisted invariance principle [29,30], 
envariance, in the framework of a relative-state approach 
where the system  under measurement jointly evolves 
with the environment  and, possibly, with one or more 
auxiliary measurement devices. After demonstrating the 
correspondence between equal amplitudes and equal 
probabilities, both Zurek and Deutsch consider a fine- 
graining technique to deal with the general case of 
different amplitudes of the initial state. For this purpose 
they have to introduce auxiliary systems which become 
entangled with . 

However, fine-graining has been questioned: Caves 
[23] considers disturbing the necessity of introducing ad- 
ditional systems of adequate dimensions, possibly in an 
infinite Hilbert space, in order to reach the wanted ap- 
proximation to irrational probabilities. Barnum [25] po- 
ints out an even more stringent weakness: the step from 
rational to irrational amplitudes requires the continuity of 
the probability with respect to such amplitudes and such 

a property is not demonstrated by Zurek and Deutsch. 
We note that a fundamental and extensive part of Glea- 
son’s theorem is actually devoted to prove that the pro- 
bability is continuous. For several other controversial 
points of Zurek’s demonstration, the most of them shares 
with Deutsch’s, we refer to [19,23-25]. 

So, although Gleason-type theorems are usually con- 
sidered well established, a simple, physically justified 
and shared derivation of the Born rule is not yet present 
in the literature. With our work we intend to fill this gap. 

In the next section we propose a new derivation of the 
Born rule from the NCP assumption for projective mea- 
surements and pure states, the generalization to mixed 
states being immediate. Whereas Gleason assumes that a 
density operator acting on  describes a general 
quantum state of the system only at the final step of his 
work, we introduce vectors of the Hilbert space descri- 
bing quantum states from the very beginning of our 
derivation. On the one hand it allows a much more ele- 
mentary deduction of the Born rule, and on the other 
hand it makes the postulates and the physical principles 
of our theorem easier to analyze in comparison with the 
previous demonstrations. Moreover, involving Zurek’s 
and Deutsch’s demonstrations pure states, also the con- 
nections between those works, the Gleason Theorem and 
the ours are clearer. 

We do not enter into the controversy about the origin 
and the meaning of probability, and following Gleason 
and others (see also Mohrhoff in [24]), we assume the 
existence of probability defined on a quantum state. In 
addition, differently by Zurek, we do not suppose unitary 
evolution and consider a single system. As Gleason’s 
Theorem, our result holds for a Hilbert space with 

, whereas in general, because of fine-graining, 
Zurek’s and Deutsch’s hold for dim . We also 
give a rather simple derivation that the probability is con- 
tinuous from NCP. Without this proof, Deutch’s and 
Zurek’s results only hold for rational values of am- 
plitudes. 

In Section III we generalize our theorem to include 
entangled states and multi-particles systems. Since the 
Hilbert space  of such systems has dimension which 
is the product of the dimensions of its components, the 
coupling of a subsystem with  with another 
subsystem with  enables us to extend the 
Born rule also to such space. 

In Section IV we show that the Gleason postulate of 
NCP occurs in the use of fine-graining and that such a 
postulate is a hidden assumption of Zurek’s and Deuts- 
ch’s proofs. Indeed, fine-graining is a resolution change 
of our measurements and NCP is equivalent to a con- 
dition of invariance with respect to such a change: fine- 
graining on a subspace of the state must not alter the pro- 
bability of finding the system in a different subspace. 
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This resolution invariance is an intuitive and physically 
natural interpretation of measurement noncontextuality. 

Finally, in Section V, we show that the condition of 
noncontextual probability, or resolution invariance, can 
also be deduced by the hypothesis of no-faster-than-light 
signalling of the Special Relativity. 

2. Born Rule as a Theorem from 
Noncontextual Probability 

Contrarily to the principles of classical mechanics, the 
axioms of QM do not have an equally shared and clear 
formulation. We do not want to enter into such a thorny 
issue, related to the interpretative problems of QM. For 
our purpose, from the quantum postulates generally con- 
sidered in standard presentations of QM (see, e.g., 
[31-34]), we can extract the following common assump- 
tions:  

Postulate I:  
At the time  the state of every physical system  

is described by a normalized vector 
t 

 S t







 belonging 
to a Hilbert space .  

Postulate II:  
Every measurable physical quantity  is described 

by a Hermitian operator  acting in . ̂
Postulate III:  
The only possible result of a measurement of an 

observable  is one of the eigenvalues  i  of a ̂ , 
(as the customary habit, from now on we will identify the 
observable with its operator).  

Postulate IV:  
If the measurement of the observable  on the 

system in the state 
̂

 S  gives the result i , the 
state of the system immediately after the measurement is 
the associate normalized eigenstate 

t a

ia  (non-degenerate 
case). 

Postulate I is known as the Completeness Postulate of 
QM. Postulate II links an observable quantity with an 
operator in a Hilbert space (observable-operator link). 
Postulate III connects a particular value of that observa- 
ble with an eigenvalue of the corresponding operator 
(value-eigenvalue link). Postulate IV relates a detected 
eigenvalue with the state of the system (eigenvalue- 
eigenstate link).  

Now consider a Hermitian observable ̂  with 
discrete eigenvalues  i  and eigenstates a  a

= 1, ,i 
i , 

, and a single system  described by the 
state 

N 
N

S  .  ia   is a complete orthonormal set 
and S  can be decomposed into components: 

=1

 .
N

S i i
i

c a  

3N 

a ˆ

                 (7) 

We intend to prove the following  
Theorem 1:  
If NCP and Postulates I-IV hold, then for  the 

probability of obtaining the non-degenerate eigenvalue 

i , measuring   on the state S , is necessarily 
given by the square modulus of the inner product: 

   
2

Born Rule,i i Sp a a t         (8) 

where i  is the eigenstate associated with the eigen- 
value .  

a
a

a

i

We assume the probability as a primitive concept and 
we begin the derivation of Theorem 1 by proving some 
simple lemmas. We underline that any theorem having 
the aim to prove the Born rule has to face the fact that the 
connection between probability and quantum state must 
be postulated or deduced by other means. Gleason, for 
instance, postulates the probability to be a measure de- 
fined on states of the basis. As Gleason, we suppose QM 
to be a probabilistic theory, which makes predictions 
about probabilities of occurrences of observable quan- 
tities, and that probabilities are functions of quantum 
states. Then, from QM postulates we want to show that  

Lemma 1:  
The probability of obtaining an eigenvalue i  is 

equal to the probability of obtaining the respective 
eigenstate ia  (statistical case):  

   .i ip a p a

a   1ip a 

               (9) 

Proof:  
Suppose that the system is prepared with the 

eigenvalue i , in this case . According to 
Postulate IV if   1p ai   then   1p a i , and vice 
versa. But  ai  correspond to mutually exclusive 
events, thus has to be   = 0p a j ij  for . Then must 
necessarily be   0p a j   too, since, otherwise, having 
obtained with a measurement the state ja  we should 
assign to the system the eigenvalue ja


, in contradiction 

with the exclusivity property of i  events. Therefore 
we have the equations for the conditional probabilities 
for a non-statistical case: 

a

   ; ; ,i j j i ijp a a p a a          (10) 

which represent the probability of finding the state ia  
for systems prepared with certainty with eigenvalue ja

ˆ

, 
and vice versa. Because of Postulate III, the only pos- 
sible result of a measurement is one of the eigenvalues of 
 . Consider then a generic preparation | s   of the 
initial state with   1p ai  . Introducing the joint pro- 
bability  ,p a ai j  and considering the general validity 
of the Bayesian formula for the joint probabilities 
     , ;i j i j jp a a p a a p a , we have  

   

     

1

1

 ,

; ,

N

i i j
j

N

i j j i
j

p a p a a

p a a p a p a







 




     (11) 
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where we have used Equation (10) in the conditional 
probabilities of Equation (11). 

We note from Equations (10) and (11) that  
  p a p a ,ai i i  and that  i  represent a set of 

complete and mutually exclusive events: 
a

   
1

 1.ip a , ,
N

i j ij
i

p a a 


      (12) 

Lemma 1 can be easily generalized for entangled states 
as well. For instance, consider the state: 

=1

N M

SB
i k

   
=1

  ,ik i kc a b

̂ ˆ

         (13) 

where  is a new observable commuting with  , 
with eigenvalues  kb  and eigenstates  b

= 1
k , 

, and , ,k M N MSB , (we point out that 
 does not necessarily have to belong to another 

system: for example,  could be the spin observable 
and  the position observable of one particle). 
Consider the pairs of eigenvalues  i k , and 
eigenstates 

  
̂

̂

,a b
B̂

 ,a b i k . By using conditional 
probabilities, it follows that on the generic state SB : 

   
  

,

,

i k i k

i k

p a b p a b

p a b





 ip a

         (14) 

(see Appendix A for a proof of this). Then the probability 
 is again given by: 

      

    
1

 , .

i k
k

i

p a b

p a



 

 

1

1

 ,  
M M

i i k
k

M

i k
k

p a p a b

p a b





  


     (15) 

With a similar reasoning we can also show that 
 = p bk kp b . We notice from Equations (14) and (15) 

that the outcomes of  ,a b

 p a

e, kc

state 

i k  are mutually exclusive 
events as well, with the condition of normalization fol- 
lowing from the normalization of . i

Lemma 2: If a coefficient of an eigenstate in Equation 
(7) is zero, the probability of obtaining the corresponding 
eigenvalue and eigenstate is zero as well. 

Proof: If, for instanc 0 , the corresponding 

ka  will be orthogonal to S . We can think 

 ,S ka   a s  e i g e n s t a t e s  o f  t h e  p r o j e c t o r  

ˆ = S S  1,0

̂



 with eigenvalues  . The Hermitian  

operator  represents the observable testing whether  
the system  is prepared with the state S  or not.  

The pair  ,S ka
2

 is a complete orthonormal basis  

of a subspace  of N . 
With the system prepared in the state S :  

 ; 1S S  p . From Lemma 1, it follows that  

 1; 1p  S  and because eigenvalues are exclusive  

events 0; 0Sp   . So, if we apply Lemma 1 again to 

the previous equation, considering that  is eigen-  ka
ˆstate of both 

ˆ and A , we have  ; 0k Sp a    

and ; 0p a k S . 
Also Lemma 2 can be directly generalized to entangled 

states. For instance, if in the state SB  the coefficient 

kl


0c   then  ; 0p a b  k l SB . In particular, if the 

state of the system is in a Schmidt decomposition: 

1

,
N

SB i i i
i

c a b


              (16) 

from Lemma 1 and Lemma 2, since   0p a bi k   for 
k i , it follows the perfect correlation property 
   i ip a p b

    

: 

   

   
1

 ,

.

M

i i k i i i
k

i i

p a p a b p a b p a

p b p b



  

 



a

ic

  (17) 

Lemma 3:  
If the measurement is noncontextual then the 

probability of obtaining the eigenvalue i  can only 
depend on the modulus of the coefficient : 

   .i ip a p c

ˆ

                 (18) 

Proof:  
Let us recall the meaning of NCP with an example (we 

refer to the work by Spekkens for an extensive analysis 
of the contextuality concept in arbitrary operational 
theories and in QM [17]). Consider two operators   
and ̂  which do not commute, [ ]ˆ ˆ,   0, in a 
Hilbert space with . Eigenvalues and 
eigenstates of 

dim = 3
ˆ ˆ  and   are, respectively: 

   
   

1 2 3 1 2 3

1 2 3 1 2 3

ˆ : , , , , , ,

ˆ : , , , , , ,

a a a a a a

a a a a a a



    

a
ˆ

       (19) 

where they have in common the eigenvalue 1  and the 
associate eigenstate (we see that this is possible, if   
and ̂  must not commute, just for ). We can 
write the state 

3N 
S  in the two different bases of Equa- 

tion (19): 

1 1 2 2 3 3

1 1 2 2 3 3 .

S c a c a c a

c a c a c a

   

     

1a
ˆ

        (20) 

In general, the probability of obtaining the eigenvalue 
 could depend on whether we measure the observable 

ˆ   or . In other words, the probability p a

̂

1  could 
be different if we were in the experimental context which 
is prepared for measuring which value  assumes of 
the triplet  1 2 3, ,a a a ̂ or which value  assumes of 
the triple  , ,a a a1 2 3  . 

With the result of Lemma 1 and the completeness 
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postulate of QM, we can write the more general pro- 
bability in different experimental contexts as: 

   
    

1 2 3

1 2 3

, , ,

, , .

a a

a a 

 p a

 

1 1

1 1

; ,

; ,

A S

A S

p a p a a

p a p a a








     (21) 

The probability is noncontextual, and we have mea- 
surement noncontextuality, if 1  does not depend 
on the measurement with other eigenvalues: 

 1 1 ,A Ap ap a               (22) 

or, according to Lemma 1, the probability  p a1  does 
not depend on the measurement with other eigenstates: 

   1 1 .Ap aAp a             (23) 

Then, by assuming NCP, Equations (21) can be 
reduced to the equation: 

   1 1 ; ,Sp a p a             (24) 

stating that the probability only depends on the eigenstate 

1  and, from the completeness postulate of QM and 
NCP, on the state of the system 
a

S . 
Thus, let us choose a new basis  ai  such that the 

state in Equation (7) is written with only two com- 
ponents: 

1 1 2 2 ,c a c a  

3i 

S            (25) 

where  for , = 0ic 2c  is the modulus of the am- 
plitude  and 2c

1 1 2,a a a  
=22

1
 .

N

i i
i

c a
c          (26) 

 ,a a1 2

servable 
 could be regarded as eigenstates of an ob-  

1 1
ˆ = a a 1,0 with eigenvalues   check-  

ing whether our system is in the state 1

According to NCP the transformation of basis 
a  or not. 

   a ai i  of the state cannot change the probabi- 
lity: 

    

  

1

1

; ;

; .

i

i

S a

S a

a 




1c

1 Sp a p

p a




         (27) 

Now we expressly write the phase of the coefficient 
 in the state of Equation (25): 

1= eS c a 1 1 2 2 .c a               (28) 

We get for the state 1a  the probability: 

   1
1 1 1 1 2 2; ;e .Sp a p a c a c a       (29) 

Therefore, considering the normalization 
2 2

= 1c c1 2  
and that the components of the orthonormal basis are the 
constants =a ai j ij  , the most general function of the 
probability in Equation (29) can be written as: 

   1 1 1; = ,Sp a p c  .             (30) 

A similar argument when applied to every state ia  
gives  

   ; = ,i S i ip a p c  .             (31) 

However, by using the conservation of probability we 
can show the independence from the phase of 
 ;p a i S . Indeed, let us suppose to have two dif- 

ferent states S  and S   which are distinct just 
with respect to the phase of the component 1  (to sim- 
plify the notation, we select a basis such that the com- 
ponents of the states are different from zero only in a 
subspace with ):  

a

dim = 2
1 2

1 2

1 1 2 2

1 1 2 2

e e ,

= e e ,

S

S

c a c a

c a c a

 

 






 


       (32) 

where with 1
  we have denoted the new phase. The 

conservation of the probability requires:  

   
   

1 2

1 2

; ; 1,

; ; 1,

S S

S S

p a p a

p a p a

 

  

 
      (33) 

 

where from Lemma 2 we have used the fact that 
 ; = 0p a i S  if i Sa   . Thanks to Equation 

(31), we have that 

   2 2; = ; .S Sp a p a            (34) 

From this and Equation (33), we also get: 

   1 1; = ; ,
SSp a p a            (35) 

which is equivalent to write:  

  1 1 1 1( , ) = ,p c p c  .              (36) 

Therefore, since 1
  is an arbitrary phase, the proba- 

bility  p a1  does not depend on it but can only depend 
on the modulus 1 . So, we can set c   =p a p c

a

1 1 , 
and this proves our lemma (the generalization to pro- 
babilities of other eigenvalues  is immediate). i

Now we have all the ingredients to prove our  
Theorem 1:  

the probability ip a

ic
 is given by the square modulus 

of coefficient .  
Proof:  

NLet us consider the state S  with  in 
Equations (7). For the sake of simplicity we focus our 
attention again on 

  3N 

 1p a . We choose two bases  ia  
and  ia  such that 

1 1 2 2 3 3S c a c a c a            (37) 

1 1 2 2 ,c a c a  

= 0ic 4i  = 0ic 3i 

              (38) 

where  for ,  for  and 
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1 1 . From the conservation of the total probability 
for the states of the two different bases we get respec- 
tively: 

=a a

     3 = 1,p a1 2p a p a            (39) 

   1 2 = 1,p ap a            (40) 

where from NCP we have the same probability  p a

 

1  
in both Equations (39) and (40). With a change of 
variable we can write Equation (18) as  2

= f ci i . 
From Equations (39) and (40) it follows that  

p a

     
   

2

3

2 2

1 2

= 1,

= 1.

f c

f c

2 2

1 2f c f c

f c

 


         (41) 

By comparing the two Equations (41) we get:  

     22 2

3= .f c2 2f c f c          (42) 

Since the state S  is normalized, we also have 
22 2

3 = 1,c 1 2c c             (43) 

2 2

1 2 = 1,c c                  (44) 

and 
22 2

2 2 3= .c c c               (45) 

Putting this in Equation (42): 

     2 22

2 3= .f c

 

2

2 3f c c f c        (46) 

Now we recall that a function f x  is linear with 
respect to the variable x  if and only if the two follow- 
ing properties are jointly satisfied: 

    
   

1 2 1 2=   a

=                     

f x x f x f x

f x f x 

   dditivity,

homogeneity,
     (47) 

where   is any real number. We remark that if   is a 
rational number, it can be shown that the homogeneity 
follows from the additivity. Furthermore, since rational 
numbers form a subset dense in the set of real numbers, 
such derivation can be extended to the case of irrational 
 , if f  is a continuous function [35]. 

Therefore, the condition of additivity is sufficient to 
establish the linearity if f  is a continuous function. On 
the contrary, if f  is not assumed to be continuous, the 
condition of additivity implies linearity only for rational 
values of the variable x . 

Hence, if we assume that the probability is continuous 
with respect to the coefficients 

2
ci , Equation (46) is a 

constraint of linearity for the probability. In this case we 
can write: 

  2
= , = 2,3,i ic i

k d

p a k             (48) 

where  enotes a constant. From Lemma 1 we have that 

 2
= 1 = 1p c = 1k  i  and therefore  and 

2
=p a ci i . 

Hence, the Born rule is deduced for continuous proba- 
bilities. 

We point out that we have postulated the continuity of 
probability. However, a derivation of such a property 
from noncontextuality is present in Gleason’s work and it 
occupies a prominent part of that paper. Therefore in 
comparison to Gleason we have only accomplished half 
the job: as Bertrand Russell once said, postulating is 
equivalent to theft on the honest fatigue. On the other 
hand, if the continuity of probability is neither postulated 
nor demonstrated, we can only say that the Born rule 
applies only for rational values of the coefficients 

2
ci

Thus we now intend to complete our derivation by 
showing from NCP that the probability is continuous and 
that the Born rule also holds for irrational coefficients. 

. 

Consider, once again,  p a1 . We select a basis  

 ia  such that the state  is written with two com-  S
ponents as in Equation (38), with 1 1a a  , and the 

conservation of probability is given by Equation (40). 
Then we choose a new basis  ai  in general with 

1 1 , ia a  0c   for , but with 4i  2 2a a   so 
that we can write  

1 1 2 2 3 3= .S c a c a c a                 (49) 

The conservation of probability for the new states of 
the basis requires that 

     1 2 3 = 1p a p a p a    .          (50) 

From the previous condition we have the inequality:  

   1 2 1.p a p a                (51)  

By comparing Equation (40) with Equation (51) and 
since, thanks to NCP, the probability  2p a  is the 
same in these equations, we get  

   1 1 .p a p a                 (52) 

Finally, we choose a third basis   such that ia
= 0ic 4 for i , this time with 1 1a a  : 

1 1 2 2 3 3= .S c a c a c a               (53) 

The conservation of probability gives us: 

     1 2 3 = 1p a p a p a   .          (54) 

From Equation (54) we get the inequality: 

   1 21p a p a  .                 (55) 

Therefore the probability  1p a  is in the range: 

     1 1 21p a p a p a .   

2
1| |c

         (56) 

Suppose  to be an irrational number, we choose 
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rational values for  and  so that 2
1| |c 2

2| |c

 p a 2
1 |c1 =| and  p a 2

2 2=| |c . By putting 

 p a

2 2
1 2| | , | | ,c c  



= |p c

1 1|c p

2
1 1 |c  

2
1 1 |

 2 2| 1c 

2
2| | |c 

, Equation (56) becomes 

2
2| | | | ,     c      (57) 

with . Let us denote with S   the or- 

thonormal state to S . Consider the limits 1 1a a  ,  

3 Sa    and 2 2a a  , 3 Sa   
2 2

1 1| | | |c c  2
3| | 0c 

. From  

Equation (38) we have ,  and 
2 2| | |c c 2 2

2 2
2 1| | | | .c c 

2 2,1 | | ,c c 

| 2| | 0c ,  3 .  Summarizing,  with the  
normalization condition in Equation (44) we get: 

2 2
1 1| | | | , 1c c          (58) 

Because rational numbers form a dense set in the set of 
real numbers, we can always find a couple of numbers 

1 2  which are as near as we want to the 
irrational number 
| |

2
c

p
1 . Therefore, from Equation (57) it 

follows that the oscillation of the function  is zero at 
2

1 . Consequently, the probability must be continuous 
at 
c

2

1c  and  even if .  1| |p c  2
1| |c 



2 | c 2
1 |

3. Noncontextual Probability for Entangled 
States 

Theorem 1 with NCP can be generalized to include also 
entangled states, bipartite or multipartite systems and 
quantum measurement devices. 

Let us indicate with  the context, including our ex- 
perimental devices and the environment, and with 

M
i  its possible states. Consider again the mea- 

surement of the two observables  and 
C 

ˆ̂   
introduced in the proof of Lemma 3 in the previous 
section. The choice of measuring either the eigenvalues 

2 3  or 2 3  together with 1 corresponds to 
two different experimental arrangeme
 ,a a   ,a a  a

s nt A  and A . 
Suppose that at time 0t the system is in the initial sta- 

te 
 

0 0SC St me t , after the interaction 
with the measurement device, the entanglement between 
the system   with the experimental se    corre- 
lates the observable  (or ˆ

C . At ti

tup
̂  ) of the system with t  

point of the experimental device. If we measure ˆ
he

ers   
we have the state: 

  1 1 1 2 2 2SC t c a C c a C  

while if we measure ̂  we get:  

3 3 3 ,c a C   (59) 

  1 1 1 2 2 2 3 3 3 .SC t c a C c a C c a C          (60) 

The global wave functions Equations (59) and (60) are 
di

  

fferent in the different contexts A  and A . So the 
two probabilities  

    
    

1 1

1 1 1

; ,

; ,

SC

A SC

p a C t

p a p a C t



 
         (61) 

may be different. The possible contextuality of proba- 

1Ap a 

bility is now included inside the description of the global 
system    of the quantum state. We notice that it is 
no longe ible to write 

 

r poss

    1 2 3, , , ,t a a a   (62) 

if we accept the completeness of QM. Otherwise, i

1 1 1 ;A SCp a p a C 

ndeed, 
some parameters would be outside the description of the 
state  SC t , which now englobes not only the system 
but also h ntext of the measurement. This should im- 
ply the existence of hidden variables. 

Assuming NCP requires the equality between the pro- 
ba

 t e co

bilities in Equation (61):  

     1 1 ; ,SCa C t    (63) 

which generalizes the condition in Equation (23). 

1 1 ; SCp a C t p 

In fact, 
Equation (63), by the perfect correlation property of 
Equation (17), becomes equivalent to Equation (23). 

In a similar way as in the previous derivation, by using 
the state of Equation (59) and a state S  with a new 
basis  ia  such that 0ic   for 3i  , 1 1a a   
we can t :   wri e

  1 1 1 2 2 2 .c a C c a C            (64) 

From the condition of NCP it is not diffic
th

SC t 

ult to deduce 
at     ;i i SC ip a C t p c   must hold. Then, 

employ i e i 9) and Equation (64) 
and from NCP, normalization condition and conservation 
of probability, it is possible to prove again the linearity of 
the probabilities with respect to the square moduli of the 
amplitudes (continuity can also be generalized to the pre- 
sent case). Putting all pieces together, we get 

ing states l k n Equation (5

   2; | |i i SC ip a C t c 

 
2

2
.

i i SC

i S

a C t

a









           (65) 

We note that the state of the global system    is 
in the Hilbert space N M   with dimension MN  . 
If 3M   this allow clude in the deriva f 
the Born rule also states with 2N  . In fact, consider a 
system   described by a state

s us to in tion o
 

 S  in a Hilbert space 
with dim 2  and basis  1 2a a . With a measure- 
ment we ould use the cont  an ancilla system 
to build the following entangled states: 

,
 c  ext   as

0
1 1 1 2 2 2 ,SC c a C c a C  

1
1 1 1 2 2 2 3 2 3 ,SC c a C c a C c a C        

 (66) 
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where 1
SC   is obtained by dividing the part of the  

state S  associated with the eigenvalue 2a

two regions. So it is possible to demonstrate that  

 into  

 
2

i i Sp a   as in the previous cases. We note that a
nditio

uation
ditiv

.

A simple application of Lemma 3 shows that equal amp- 

the co n dim 3  for the state of the ancilla sys- 
tem   coupled with   is necessary to obtain, from 
Eq s (66) by the NCP property of Equation (63), a 
constraint of ad ity and linearity similar to that which 
is at Equations (39)-(46)  

4. Noncontextual Probability and Resolution 
of the Measurement 

litudes are related to equal probabilities, i.e: if i kc c  
th i k  then   ip a pwi a  Lemma 3 is 

. Then both

k . Whereas
derived from the NCP principle, the same result was ob- 
tained by Zurek and Deutsch on the base of two different 
invariance principles  authors study the more 
general case with states having different rational am- 
plitudes using the fine-graining technique. We shortly 
summarize their results. We consider the fine-graining in 
Zurek’s approach with the environment in a simple situa- 
tion (our remarks also hold for Deutsch’s similar deri- 
vation). We assume that the state of the system   is in 
a Hilbert space with dim 2 , entangled with the state 
of the environment   such that their joint state is  

1 1 2 2

1 1
.

N
a a

NN
  

       (67) 

The idea is to tran rm this state with unequal cosfo effi- 
cients into a state with equal coefficients by fin
This goal is reached by extracting from the en
an

e-graining. 
vironment 

 ancilla system   having states  

1 1 2
2

s 

,      1 ,
N

i
i

C C C C N


         (68) 

which become correlated with the state  1 2,a a  of 
 . Within a quantum can b
as a c nd 

measurement,   e regarded 
ounter a    iC onormas a new orth al basis of 

pointer states. Denoting with  ie  the  of 
the environment without  , after the interaction be- 
tween   and   ave the joint system  

new states

we h

1 1 1 2 2 2

1 1
,

N
a C e a C e

NN
     (69) 

which ca expressed with the new basis of 



n be pointer 
states of Equation (68): 

1 1 1 2 2
2

.i
i

a C e a C e
N N

 


      (70) 

Now we have a new st

1 1 N

ate with equal amplitudes. But 
how can we be sure that after fine-graining the pro- 

ility bab  p a  e state 1 with th     is the same 

with the state    or   ? In principle they 
be different, so to legitimately use the fine-g
reason

could 
raining 

ing we have to assume the equality:  

   1 1; ; ,p a p a             (71) 

equivalent to e condition of NCP encountered in 
Equation (63) of Section 3. Then, in their derivations 
Zurek and Deutsch implicitly assume NCP. We notice 
that fine-graining is equivalent to a change

th

 of measure- 
ment resolution, and this has been used in our derivation 
as well. A change of resolution, for instance, is consi- 
dered going from Equation (39) to Equation (40). There 
we assumed from NCP that  1p a  is the same in the 
two equations and therefore:  

     2 2 3 ,p a p a p a             (72) 

where  2p a  is the probability of finding the state of 
the system in the subspace ort al to honorm 1a , whereas 
 2p a  and  3p a  are the f finding it, 

respectively, in the subspace
probabilities o

s 2a  and 3a  of the 
subspace orthonormal to 1a . In fact, 

uatio
in terms of pro- 

jectors, Eq n (72) can be written as Gleason’s Pos- 
tulate 2: 

 
   

2 3 3

2 2 3 3 .

p a a a a

p a a p a a



 
        (73) 

Thus NCP could be physically interpreted as a pro- 
bability i

2

nvariance when we change the resolution of the 
measurement connected with other properties of the sys- 
tem. This interpretation gives physical insi
principle as an invariance under changing resolution. The 
pr

 spacetime. Every measurement of any observable 
is necessarily reduced to a measurement of position at a 

ch apparatus 
co servable so 

ght to the NCP 

obability of one measurement outcome should not ch- 
ange if we make coarse or fine-graining over other mea- 
surement outcomes. We point out that coarse/fine grain- 
ing could be done through a post-processing after the 
first measurement. Therefore, NCP is a natural assump- 
tion if we do not want signalling from the future to the 
past. 

5. Noncontextual Probability and 
No-Faster-than-Light Signalling 

In general, every measurement in the real world happens 
in the

certain time. For instance, the Stern-Gerla
rrelates a spin observable with a position ob

that different values of the spin univocally correspond to 
different position values of the system. A measurement 
of position detects the spin value of the system. 

Let us introduce in our representation of   the ob- 
servable position X̂ . We assume that at time 0t , the 
system is in the initial state  0 0 0SC St x C  . 
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For simplicity of notation, from now on we denote with 

xi i iC x C  the position state of the system with its 
context, where the letter x  will remind us the depen- 
de p

 v
values of the observabl

nce on the position of the system and the ex erimental 
apparatus. Suppose that we can measure either the alues 
of the observable ̂  or the e 
̂ . In the context A  of measurement we get:  

  1 1 1 2 2 2 3 3 3 ,SC x x xt c a C c a C c a C     (74) 

while for the experimental context A  we have the 
different state:  

  1 1 1 2 2 2 3 3 3 .SC x xt c a C c a C c a C           (75) x

 to prove the following  
m 2:  

-li
asurement events which are spacelike 

sepa en th ility  ip a  must be
cont al.  

 of identically prep  systems   in 
th

We want
Theore

rate, th
extu

If we assume the no-faster-than ght signalling 
condition for me

e probab  non- 

Proof:  
Consider a set ared
e initial state  0SC t . In order to estimate the  

p r o b a b i l i t i e s        1 2 3, ,p a p a p a  a n d 

      1 2 3, ,p a p a p a  , let us as that our experi- 
mental device

sume 
 is arranged to measure how many systems 

have the eigenvalue 1a  at the point 1x  and the eigen- 
values  2 3,a a  (Equation (74)) or the eigenvalues 
 ,a a   (Equation  the points 2 3  (75 2)) at x  and 3x . This 
could be done by first d  in two ividing  systems 

 associated 
 the

parts, one with the state 1a  at the point 1x  
and an other one associated with the orthogonal state 

1a   at a different int 2po x   (see e superposition 
state in  (78)), then by dividing such a state in 

b-parts, associated either th the basis 

th
uat

two s wi  
 E
u

q ion

 2 3,a a , or with the basis  2 3,a a   at e points 

2

th
x , 3x , respectively connected wit e states in Equ - 
tions (74)-(75). 

the measurements of  2 3, a  or  2 3,a a   at the 
points 2

h th a

If a
x  and 3x  are events spacelike separate with 

respect to the measurement of 1a  at 1x , according to 
stic hypothesis of n g, the proba- 

 1p a  of getting the eigenvalue 1a  has to be the 
same in both d

th i allin
b

 contexts 

e relativ o-sign

periment
ility 

ifferent ex al A  and 
A . Otherwise an observe lace of 

measur ent of 2 3,a a  or 
r situated in the p

em   2 3,a a   would be able to 
send a superluminal signal to anot r ob rver situated in 
the place where 1a  is measured. Then, according to the 
no-fast n-light signalling hypothesis

he se

: er-tha

     1 1 1 1; = ; ,x SC x SCp a C t p a C t    (76) 

which is to say, w esult tion (17):  

 
ith the r of Equa

     1 1 1; ; .SC SCp a p a t p a t      (77) 

Therefore  1p a  must be noncontextual. 
Consider, beside the measurement of the eigenvalues 

 1 2 3, ,a a a  of the observable ̂ , also the simple
e the 

1  uivalent to check whe- 
ther the systems   are in the state 

 pos- 
sibility of measuring whether our systems assum
eigenvalue a or not, which is eq

1a  or in t
space

he sub- 
 1a   nal to it. In such a case, 

ocess of m ent, the systems  
orthogo during the 

pr
th

easurem  will be in 
e state:  

  1 1 1 2 1 2= .SX x xt c a C c a C   
       (78) 

If the two choices of measuring either  1 2 3, ,a a a  
or  1a a   correspond to events spacelike separate, 
as mentioned above, from the condition o-signalling 
we must have the NCP condition: 

1,
 of n

        1 1 1; ;SC SCp a p a t p a 


 

 of probability
so th

.t  (79) 

From Equation (79) the conservation  
imposes al e equation:  

  
     2 3; ; .SC SCp a t p a t  

    (80) 

quation (79) we understand 
that it is analogous to assuming an invariance condition 
of the probability under a resolution change of 
surement, or fine/coarse graining. So, at least for space- 
lik

 quantum state of the system has allowed a 
more elementary proof than Gleason’s theorem. This 

of generality with respect 

1 ; SCp a t


As we showed at the end of Section IV, Equation (80) 
is equivalent to the initial hypothesis adopted by Gleason. 
Moreover, by examining E

our mea- 

e separate measurements, NCP could be deduced by a 
relativistic principle. However, the Born rule holds for 
general events, not only for spacelike separate ones. 
Hence NCP or, equivalently, the invariance of probabi- 
lity when we change resolution, seem to be more general 
principles.  

6. Concluding Remarks 

We have given a new derivation of the Born rule based 
on the noncontextuality for projective measurements and 
on some non-statistical postulates of QM. The introduc- 
tion of a pure

may seem, at first sight, a loss 
to Gleason’s proof, however Gleason also introduces 
vectors of basis which can be regarded as states of the 
system. Moreover, the step from pure states to density 
operators and to the trace rule for mixed ensembles is 
quite natural when we already have the Born rule [36]. 

As in Gleason’s, our derivation holds for dim 3 , 
where dim  could be finite or infinite. The origin of 
this dimensional limitation lies in the fact that for 
dim 3  the same state vector may belong to several 
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distinct orthonormal bases. This, with NCP, the norma- 
lization of the probability and the quantum state, brings 
us to a constraint of functional linearity between the pro-
ba r theorem

simply

dim 3

ti
ule also holds for measurements which 

a

under a resolution change of 
o

NCES 

ess, Princeton, 1955. 
/1.3061789

 
bility and the amplitude square modulus. Ou  

can be  generalized in order to include multipartite 
states. In such a case, if a part of the global system has 

, the Born rule can also be proved to hold in 
subspaces with dim = 2 . 

We have also given a derivation that the probability is 
continuous with respect to the amplitudes using measure- 
ment noncontextuality. This fills a gap of Zurek’s and 
Deutsch’s demonstrations. 

Physical motivation for NCP could come from a rela- 
nciple of no-faster-than-light signalling. How- 

ever, the Born r
vistic pri

re

u

doi:10.1063

 non-spacelike separate, hence NCP seems to be a 
more fundamental principle. Finally, we have given an 
interpretation of measurement noncontextuality as an in- 
variance of the probability 

r measurement. 
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Appendix A 

e want to generalize the result of Lemma 1 for en- 
ngled states. Suppose that the system is prepared with 

,b  and therefore with eigenstates 
the unentangled case, we can 

W
ta
eigenvalues  i ka
 | , |a b  . Similarly to i k

deduce that   ,n m in kmp a b    if and only if 
  | ,|n m in kmp a b     . This relation, translated into 

conditional p ies, is equivalent to writing: 


robabilit

   
    , ; , .n m i k in km

p a

p a b a b

, ; ,i k n mb a b

  
     (81) 

Then, from Equation (81) we have that for a generic 
state as in Equation (13): 

       

      
  

1 1

, , , ,

, ,

, .

N M

i k n m n m
n m

i k

p a b p a b a b

a b p a b

p a b

 







 (82) 

If the observable ̂  has an eigenstate ia  and the 
observable ˆ  has an eigenstate  kb  then the 
tensorial product i ka b  is an eigenstate of the 
observable ˆ ˆ , and vice versa. The eigenstates   

1 1

, ;

i k i k n m
n m

N M

p a b

 

 

 i ka b  of ˆ ˆ   form a basis of H bert space  il
N M  .  
If we indicate with  n mp a b  the probability of  
ainingobt  genstathe ei te n ma b , with a measurement  

of ˆ ˆ  , we have ,n m in kmp a b    if and  

only if  n mp a b in km , or, in  equivalence:  

  
 ;

n m

n m i

b

b a 
i k

p a

, ;p a b a

, .k in kmb   
  

From Equations (82)-(83), through the use of the 
conditional probabilities, it immediately foll
the state 

    (83) 

ows that on 

SB  we have     ,b . i k i kp a b p a
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