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ABSTRACT 

The aim of this paper is to explore the concept of observability with constraints of the gradient for distributed parabolic 
system evolving in spatial domain Ω, and which the state gradient is to be observed only on a part of the boundary of 
the system evolution domain. It consists in the reconstruction of the initial state gradient which must be between two 
prescribed functions in a subregion Γ of . Two necessary conditions are given. The first is formulated in terms of 
the subdifferential associated with a minimized functional, and the second uses the Lagrangian multiplier method. Nu-
merical illustrations are given to show the efficiency of the second approach and lead to open questions. 



 
Keywords: Distributed Systems; Parabolic Systems; Regional Observability with Constraints; Regional Reconstruction 

1. Introduction 

For a distributed parameter system evolving on a special 
domain Ω, the observability concept has been widely 
developed and survey of these developments can be 
found [1-3]. Later, the regional observability notion was 
introduced, and interesting results have been obtained 
[4,5], in particular, the possibility to observe a state only 
on a subregion   interior to Ω. These results have been 
extended to the case where   is a part of the boundary 

 of Ω [6]. Then the concepts of regional gradient 
observability and regional observability with constraints 
were introduced and developed by [7-11] in the case 
where the subregion is interior to Ω and the case where 
the subregion is a part of . Here we are interested to 
approach the initial state gradient and the reconstructed 
state between two prescribed functions given only on a 
boundary subregion  of system evolution domain. 
There are many reasons motivating this problem: first the 
mathematical model of system is obtained from meas- 
urements or from approximation techniques and is very 
often affected by perturbations. Consequently, the solu- 
tion of such a system is approximately known, and sec- 
ond, in various real problems the target required to be 
between two bounds. This is the case, for example of a 
biological reactor “Figure 1” in which the concentration 
regulation of a substrate at the bottom of the reactor is 
observed between two levels. 







The paper is organized as follows: first we provide re- 
sults on regional observability for distributed parameter 
system of parabolic type and we give definitions related 

to regional boundary observability with constraints of the 
gradient of parabolic systems. The next section is fo- 
cused on the reconstruction of the initial state gradient by 
using an approach based on sub-differential tools. The 
same objective is achieved in Section 4 by applying the 
multiplier Lagrangian approach which gives a practice 
algorithm. The last section is devoted to compute the 
obtained algorithm with numerical example and simula- 
tions. 
 

Control: input delivery 
of substratum 

Sa

z = 0

z = 1

 

Figure 1. Regulation of the concentration flux of the sub- 
stratum at a bottom of the reactor. 
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2. Problem Statement 

Let Ω be an open bounded subset of IRn (n = 2, 3) with 
regular boundary  and a boundary subregion   of 

. For a given time T , let  0  0,Q T   and 
 0,T   . 

Consider a parabolic system defined by  
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with the measurements given by the output function 

              (2) 

where 0  is linear and 
depends on the considered sensors structure. 

 :C H  

The observation space is . 
A is a second order differential linear and elliptic ope- 

rator which generates a strongly continuous semigroup  

 

in the Hilbert space . 
A denotes the adjoint operators of A. 
The initial state 0  and its gradient 0  are as- 

sumeed to be unknown. The system (1) is autonomous 
and (2) allows writing 
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trace operator of order zero which is linear and surjective. 
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while   denotes its adjoint. 
We recall the following definitions 
Definition 2.1 

1. The system (1) together with the output (2) is said to 
be exactly (respectively weakly) gradient observable 
on Γ if 

    * 1 2Im
n

K H      

(respectively   * * *ker 0K   

  
1

n

i i


). 

2. The sensor (D, f) (or a sequence of sensors) is said to 
be gradient strategic on Γ if the observed system is 
weakly gradient observable on Γ. 

For more details, we refer the reader to [11]. 

Let 
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1

n

i i



· and  be two functions defin-  
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Definition 2.2 
1). The system (1) together with the output (2) is said to 

be exactly    ,   · · -gradient observable on Γ if 

     *Im ,K         · · . 

2). The system (1) together with the output (2) is said to 
be weakly    ,   · · -gradient observable on Γ if  

     *Im ,K         · ·

 

. 

3). A sensor (D, f) is said to be    ,  · · -gradient 
strategic on Γ if the observed system is weakly 

   ,   
Remark 2.3 

· · -gradient observable on Γ. 

1). If the system (1) together with the output (2) is ex- 
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actly    ,  · · -gradient observable on Γ then it is 
weakly    , · · -gradient observable on Γ. 

 
 

 

 
2). If the system (1) together with the output (2) is ex- 

actly gradient observable on Γ then it is exactly 
   , · · -gradient observable on Γ.  

3). If the system (1) together with the output (2) is ex- 
actly (resp. weakly)    ,  · · -gradient observ- 
able on Γ1 then it is exactly (resp. weakly) 

   , · · -gradient observable on any    . 

 

 

   ,   · ·

  2 1

There exist systems which are not weakly gradient 
observable on a subregion Γ but which are weakly 

-gradient observable on Γ. 
Example 2.4 
Consider the two-dimensional system described by the 

diffusion equation 
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 (3) 

where    0,1 0,1


  , the time interval is ]0, T[ and let 
Γ be the boundary subregion given by   0,1 0   . 
We consider the sensor (D, f) defined by  0,1D    
 0,1  and 

 1 2, si    1 2n π sin πf x x  x x

 1 2 1 2, d dx x x x

. 

Thus, the output function is given by 

   1 2, ,
D

z t y x x t f        (4) 
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where           1 2sin π1 2, 2sin πij x x i  x j x

 2 2 2πi j  

   ,   · ·

   2sin 2π ,0x

  

and           . ij

Then we have the result: 
Proposition 2.5 
The system (3) together with the output (4) is not 

weakly gradient observable on Γ but it is weakly 
-gradient observable on Γ. 

Proof 
Let g1 be the function defined in Ω by 

  1 1 2 1, cos 2πg x x x  

be the gradient to be observed on Γ and show that g1 is 

not weakly gradient observable on Γ. 
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 * * * 0K g    1 we have   . Consequently, the gra- 
dient g1 is not weakly gradient observable on Γ. Then the 
system (3) together with the output (4) is not weakly gra- 
dient observable on Γ. but we can show that it is weakly 

   ,  · · -gradient observable on Γ, indeed, for 
      2 1 2 1 2, cos π sin π ,0g x x x x  

we have 
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which show that the gradient g2 is weakly gradient ob-
servable on Γ. 

   1 25 , 1x x x       and For  1 ,2x x   1 , 
we have that    ,g  2    , then the system (3) to-
gether with the output (4) is weakly 

· ·
   ,   · · -gra- 

dient observable on Γ. 
Proposition 2.6 
The system (1) together with the output (2) is exactly 
   ,  · · -gradient observable on Γ if and only if  

     *ker Im ,K          · ·  

Proof 

   *ker Im ,K    - If      · ·

   ,z  

    

then, we can find   · ·

 *ker Imz K   

 such that  

, 
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*
2z Kthen  where 1 2z z z 1 0z   and     
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and  thus  

     ,    · ·*Im K      

which shows that the system (1) together with the 
output (2) is exactly    ,   · · -gradient observ- 
able on Γ. 

- Assume that the system (1) together with the output 
(2) is exactly    ,  · · -gradient observable on Γ, 
which is equivalent to  
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which implies that the system (1) together with the 
output (2) is weakly   · · -gradient observ- 
able on Γ. 

- Suppose that the system (1) together with the output 
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3. Subdifferential Approach 

This section is focused on the characterization of the ini-
tial state of the system (1) together with the output (2) in 
the nonempty subregion Γ with constraints on the gradi-
ent by using an approach based on subdifferential tools 
[12]. So we consider the optimization problem 

2
min

O
Ky z

y Y

 




   

             (6) 
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    Let us denote by 
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In this section we propose to solve the problem (6) sing 
the Lagrangian multiplier method [13]. Also we describe 

of 

4. Lagrangian Multiplier Approach 

u

a numerical algorithm which allows the computation 
the initial state gradient on the boundary subregion Γ and 
finally we illustrate the obtained results by numerical 
simulation which tests the efficiency of the numerical 
scheme. 
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we obtain 
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6)  * * * * *K y     1 0 

illustrates the efficiency of the previous approach. The 
results are related to the choice of the subregion, the ini-
tial conditions and  Let us consider a 
t

 the sensor location.
wo-dimensional system defined in    0,1 0,1    and
escribed by the following parabolic uation
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lying the previous algorithm for  0.34,0.78b  , 
we obtain 

“Figures 2 and 3” show that the estimated initial gra- 
is between 

    


App

 ·  and  dient   ·  on the subregion Γ, 
and show that the sensor located in  0.34,0.78b   is 

   ,   · · -gradient strategic on Γ. The estimated ini- 
tial gradient is obtained with reconstruction error 

55.54 10   . 
If we take  0.15,0.52b  , we obtain “Figure 4”  
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Figure 2. The first component of the estimated initial gradient, α1(·) and β1(·) on Γ. 
 

 

Figure 3. The second component of the estimated initial gradient, α2(·) and β2(·) on Γ. 
 
shows that the estimated initial gradient is not between 
   ·  and   ·  on the subregion Γ, which implies that 

the sensor located in  0.15,0.52b   is not  
  , t strategic on Γ. 

Rem
The a are obtained with pointwise mea- 

surement, and one can obtain similar results with zone 
(internal or boundary) measurement. 

5. Conclusions 

The problem of 

servability on Γ of parabolic system is considered. The 
initial state gradient is characterized by two approaches 
based on regional observability tools in connection with 
Lagrangian and subdifferential techniques. 

Moreover, we have explored à useful numerical algo-
rithm which allows the computation of initial state gra-
dient and which is illustrated by numerical example and 
simulations. Various questions are still open. The char-
acterization of 

    · · -gradien
ark 4.2 
bove results 

   ,   · · -boundary gradient ob-
servability by a rank condition as stated for usual gradi-

l  
eat interest. This  

ent observability or regiona gradient observability of
distributed parameter systems is of gr   ,   · · -boundary gradient ob-  

yright © 2012 S
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Figure 4. The first component of the estimated initial gradient, α1(·) and β1(·) on Γ. 
 
question is under consideration and will be the subject of 
the future paper. 
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