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ABSTRACT

The aim of this paper is to explore the concept of observability with constraints of the gradient for distributed parabolic
system evolving in spatial domain €, and which the state gradient is to be observed only on a part of the boundary of
the system evolution domain. It consists in the reconstruction of the initial state gradient which must be between two
prescribed functions in a subregion I' of 0Q2. Two necessary conditions are given. The first is formulated in terms of
the subdifferential associated with a minimized functional, and the second uses the Lagrangian multiplier method. Nu-
merical illustrations are given to show the efficiency of the second approach and lead to open questions.
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1. Introduction

For a distributed parameter system evolving on a special
domain Q, the observability concept has been widely
developed and survey of these developments can be
found [1-3]. Later, the regional observability notion was
introduced, and interesting results have been obtained
[4,5], in particular, the possibility to observe a state only
on a subregion @ interior to Q. These results have been
extended to the case where @ is a part of the boundary
0Q of Q [6]. Then the concepts of regional gradient
observability and regional observability with constraints
were introduced and developed by [7-11] in the case
where the subregion is interior to Q and the case where
the subregion is a part of 0Q. Here we are interested to
approach the initial state gradient and the reconstructed
state between two prescribed functions given only on a
boundary subregion I' of system evolution domain.
There are many reasons motivating this problem: first the
mathematical model of system is obtained from meas-
urements or from approximation techniques and is very
often affected by perturbations. Consequently, the solu-
tion of such a system is approximately known, and sec-
ond, in various real problems the target required to be
between two bounds. This is the case, for example of a
biological reactor “Figure 1” in which the concentration
regulation of a substrate at the bottom of the reactor is
observed between two levels.

The paper is organized as follows: first we provide re-
sults on regional observability for distributed parameter
system of parabolic type and we give definitions related
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to regional boundary observability with constraints of the
gradient of parabolic systems. The next section is fo-
cused on the reconstruction of the initial state gradient by
using an approach based on sub-differential tools. The
same objective is achieved in Section 4 by applying the
multiplier Lagrangian approach which gives a practice
algorithm. The last section is devoted to compute the
obtained algorithm with numerical example and simula-
tions.

Control: input delivery
of substratum

Sa

=)

Figure 1. Regulation of the concentration flux of the sub-
stratum at a bottom of the reactor.
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2. Problem Statement

Let Q be an open bounded subset of IR" (n = 2, 3) with
regular boundary 0Q and a boundary subregion I of
0Q . For a given time 7 >0, let Q:QX]O,T[ and
> =00x]0,T] .

Consider a parabolic system defined by

a—y(x,t) =Ady(x,t) in Q

ot
y(x,O)zyO (x) in Q )
y(&,6)=0 on X

with the measurements given by the output function
z(t)=Cy(1) ()
where C:H’(Q)NH,(Q)—IR(¢) is lincar and
depends on the considered sensors structure.
The observation space is O = I (0, T, IR") .
A is a second order differential linear and elliptic ope-
rator which generates a strongly continuous semigroup

(5))..,

in the Hilbert space I’ (Q) .

A denotes the adjoint operators of 4.

The initial state y, and its gradient Vy, are as-
sumeed to be unknown. The system (1) is autonomous
and (2) allows writing

z(t)=CS(1)y,,t €10,7]
We define the operator
K:H*(Q)NHy(Q)—> 0
z— CS(')Z
which is linear bounded with the adjoint K~ given by
K :0— H*(Q)nH (Q)

S [S()CE ()

0

Consider the operator
V:H*(Q)NHy (Q)—>

(2@

¥y 6y]

-V
4 o (6}@ " ox

While V" denotes its adjoint given by
V(2 (Q)) - H (Q)nH, (Q)
y>Viy=v

where v is a solution of the Dirichlet’s problem
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ET AL.

Av = —diV(y) in Q
v=0o0n oQ
Let

(L (Q))" —(H" (r))"

29722(7021’7022"'702»1)

With y,: L’ (Q) > (Hl/2 (F)) is the extension of the
trace operator of order zero which is linear and surjective.
7", 7, denotes the adjoint operators of y and ¥, .

For T' — 0Q2, we consider

20 (H" (002)) - (H" (1))
Y=oy = Ir

while y; denotes its adjoint.
We recall the following definitions
Definition 2.1

1. The system (1) together with the output (2) is said to
be exactly (respectively weakly) gradient observable
on I if

{7 ) = (1 ()
(respectively ker(KV*y* ;(;) {o}).

2. The sensor (D, f) (or a sequence of sensors) is said to
be gradient strategic on I' if the observed system is
weakly gradient observable on I,

For more details, we refer the reader to [11].

Let (@ (), and (A (),
ed in (Hl/2 (F))n such that ¢, (")< 3.(*) ae. onT for
all 1<i<n.In the sequel we set

[().8()]
= {(J’pyzv""yn) € (Hl/z (F))n

a()<y,()<B () ae.onT Vie{l,2, -, n} }

Definition 2.2
1). The system (1) together with the output (2) is said to
be exactly [a(‘), B ()] -gradient observable on I if

Im(;(r}/VK*)m[a( ) ﬂ()]:ﬁ .

2). The system (1) together with the output (2) is said to
be weakly [a : : ] —gradient observable on T" if

Im(;(r;/VK ) Na().8()]%2.

3). A sensor (D, f) is said to be [a(-),ﬂ(-)] -gradient
strategic on I' if the observed system is weakly
[a('),ﬂ(')] -gradient observable on T'.

Remark 2.3
1). If the system (1) together with the output (2) is ex-

be two functions defin-
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H. BOURRAY ET AL. 321

actly [a('), B(°) | -gradient observable on I' then it is
weakly [a('), B )} -gradient observable on T.

2). If the system (1) together with the output (2) is ex-
actly gradient observable on I' then it is exactly
[a () ,,6'(')] -gradient observable on I'.

3). If the system (1) together with the output (2) is ex-
actly (resp. weakly) [a("),5(")] -gradient observ-
able on Iy then it is exactly (resp. weakly)
[a().B(")] -gradient observable on any T, <T,.

There exist systems which are not weakly gradient
observable on a subregion I' but which are weakly

[a('),ﬁ(')J -gradient observable on T

Example 2.4
Consider the two-dimensional system described by the
diffusion equation
2 2
%(xl,xz,t) :ZT?(xl,xz,t)+gTj;(xl,x2,t) in Q
y(xl,xz,O):yO(xl,xz)inQ (3)

y(&mt)=0onX

where Q =10,1[x]0,1[, the time interval is ]0, T[ and let
I' be the boundary subregion given by I'=[0,1]x{0}.
We consider the sensor (D, f) defined by D =[0,1]x
[0,1] and

S (x,x,) =sin(mx, )sin(mx, ) .

Thus, the output function is given by

z(t):'[y(xl,xz,t)f(xl,xz)dxldx2 4)
D
The operator
2 2
A :6_2+a_2
ox;  0x,

generates a semigroup (S (t)) in I*(Q) givenby

t>0

S(t)y=>] exp(/ii,t)<y, ?, >H1(Q) ®; (5
ij=1
where @; (x,,x,) = 2sin (imx, ) sin ( jmx, )
and A = —(i2 +j2)752 .

Then we have the result:

Proposition 2.5

The system (3) together with the output (4) is not
weakly gradient observable on I' but it is weakly
[cx('),ﬁ(')} -gradient observable on T,

Proof

Let g| be the function defined in Q by

& (xlsxz ) = (005(27“1 )sin(27£x2 )’O)

be the gradient to be observed on I" and show that g is
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not weakly gradient observable on T'.
KV'y xia7(g)
= Y exp(4)xer(2)| ¥ (9)
i,j=1 (1)
x J.(P,-j (xl > Xy )f(xl ,xz)dxldxz
D

- Si ijn’ exp(ﬂ,{/.t)x jlsin(inx)l sin (mx, ) dx,

0
=
X J; sin (jmx, )sin (7, ) dx, x.[; cos (imx, ) cos(2mx; ) dx,
=0

we have KV'y y 7:7(g,)=0. Consequently, the gra-
dient g, is not weakly gradient observable on I'. Then the
system (3) together with the output (4) is not weakly gra-
dient observable on I'. but we can show that it is weakly
[a ().8 ()] -gradient observable on I', indeed, for

g, (xl,x2 ) = (cos(mc1 )sin(nx2 ),0)
we have
KV 2 x07(2)
= Y exp(40) (7 (2)| 27V (2)))
i,j=1 (H1/2 (r))"
XI%‘ (xl,xz)f(xl,xz)dxldxz
D

= 4i ijn’ exp(/IU.t)x J'; sin (imx), sin (mx, ) dx,

ij=1

x J: sin (jmx, )sin (7, ) dx, x _[0] cos (imx, ) cos (2mx, ) dx,
1
= En3 exp(/”tijt)

=0

which show that the gradient g, is weakly gradient ob-
servable on I'.

For a(x)=(-5+x +x,,-1) and B(x)=(1+x,2),
we have that g, e [a(),ﬁ()j , then the system (3) to-
gether with the output (4) is weakly [a('),ﬂ ()] -gra-
dient observable on I'.

Proposition 2.6

The system (1) together with the output (2) is exactly
[a ().8 ()] -gradient observable on I if and only if

ker y- +Im(7VK*)ﬁ[a('),ﬂ(')] e%)
Proof
- If kery, +Im(7/VK*)m[a('),ﬂ(')} =0
then, we can find z e [a(‘),ﬂ(')] such that
zeker g +Im(7/VK*) ,
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=WNVK'0

then z=z +z, where .z =0 and z,
with @ €O, then
XrZ=Xr5 T Xr s,
=Xr%
= VK 0
and g ze Im(;(ryVK*) thus
Im( VK ) [a().B
which shows that the system (1) together with the
output (2) is exactly [a('), Yij ()J -gradient observ-
ableonT.
- Assume that the system (1) together with the output

(2) is exactly [a('), ,B()} -gradient observable on T,
which is equivalent to

(VK ) [a().5()] =2
then there exists ze[a(-),ﬂ(')] and e such
that yrz= y-VK'@ which gives
2 (z-VK'0)=

Let y =z—-WK'@ and Y, =VK'@, then z =y, +
v, with y ekery. and y, e Im(;/VK *) which
shows that

()]=2

z eker g +Im(}/VK*)
and therefore
(ker;(r + Im(}/VK* ))m[a('),ﬂ

Proposition 2.7
The system (1) together with the output (2) is weakly
[a('), ¥ ()J -gradient observable on I' if and only if

(ker;(r +Im(}/VK )) [a

Proof
- Suppose that

(ker;(r +Im(7VK )) [a

()]#2

A()]#2

A()]=2
then, there exists z e [a(-), ﬂ()] such that
z eker g +Im(}/VK*)
S0 z=z +2z,,where y.z =0 and
z, = lim VK'0,
with 6, €O, VnelN,then
ArZ = Xr2;
= 7 lim 7K,

= lim y VK0,
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and
Zrzelm( 7 VK')
therefore

Im( 1rVK ) [a
which implies that the system (1) together with the
output (2) is weakly [a(~), B ()J -gradient observ-
ableonT.

- Suppose that the system (1) together with the output
(2) is weakly [a(-), ,6’()] -gradient observable on T,
which is equivalent to

(K)ol 50)]

then there exists ze[a(),B()] and 6, a se-
quence of elements of O .such that

Xrz = lim ;(FWK*Hn

A()]#2

which gives

;(r(z— lim WK*@):O.

n—>+0

Let
y, =z- lim WK'6,

n—+0

and

y, = lim WK'6,,

n—>+0

then z=y +y, with y ekery,. and
v, eIm(NVK")
which shows that
zeker 7 +Im(VK")
and therefore

(ker;(r +Im(7VK*))m[a(-)’ﬂ(.)} =

3. Subdifferential Approach

This section is focused on the characterization of the ini-
tial state of the system (1) together with the output (2) in
the nonempty subregion I with constraints on the gradi-
ent by using an approach based on subdifferential tools
[12]. So we consider the optimization problem

min ||Ky - z||20 ©6)
yeY

where

Y ={yeH* (Q)nHy(Q) 17y e[a(). ()]}
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Let us denote by
- T, (H2 (Q)nH,; (Q)) the set of functions

S H? (Q) A Hy (@) - IR = | o0, 4]
proper, lower semi-continuous (1.s.c.) and convex.

- For feT, (HZ(Q)mHé(Q)) the polar function f*
of fbe given by

7 () =sup{ (v 0)- £ ()}
vy e HY Q)N Hy (Q),y € dom(f)

where

dom(f)={yeH* Q) Hy (Q) £ () < +of .

- For »” edom(f) the set

o (»")
=y e H (Q)nH Q)| £ (»)

> () + (v y=2") vy e H? (Q)n H, (Q)}

denotes the subdifferential of f at °, then we have
y, €df (") ifand only if

L)+ ()=(r"n)-
- For D anonempty subset of H’ (Q) NH, (Q)

{0 if yeD

‘II =
P (y) +o00  otherwise

denotes the indicator functional of D.
With these notations the problem (6) is equivalent to
the problem:

{inf("Ky o+, (1) -

yeH*(Q)nH (Q)

The solution of this problem may be characterized by
the following result.

Proposition 3.1

If the system (1) together with the output (2) is exactly
[a('),ﬁ(')] -gradient observable on I, then y” is a solu-
tion of (7) if and only if y" €Y and

(26 (15 2) =2l e 2 )

Proof
We have that " is a solution of (7) if and only if
oea(F+\yy)(y*),
with
F ()= ==
since

Copyright © 2012 SciRes.

Fel,(H* (Q)nH,(Q)),
Yis closed, convex and nonempty, then
W, eTy (H? (Q)nHy(Q))

Also, according to the hypothesis of the [a(-),ﬂ(-)] -
gradient observability on I', we have

Dom(F)nDom(¥, )= .
Now F is continuous, then
o(F+¥,)(y")=0F (y")+o%, (»")
it follows that y" is a solution of (7) if and only if
0edF(y')+ow,(y).
On the other hand F is Frechet-differentiable, then
of () ={vF ()} = {2k (0" -2)}
and y” is a solution of (7) if and only if
2K (Ky' —z)eaw, ()
which is equivalentto y" €Y and
v, () +¥; (—21<* (K" - z)) =(y'\2K'Ky" +2K'z)
and consequently y €Y and

(2 () =2 20 5)

4. Lagrangian Multiplier Approach

In this section we propose to solve the problem (6) using
the Lagrangian multiplier method [13]. Also we describe
a numerical algorithm which allows the computation of
the initial state gradient on the boundary subregion I" and
finally we illustrate the obtained results by numerical
simulation which tests the efficiency of the numerical
scheme.

From the definition of the exact [a(-),ﬁ ()J -gradi-
ent observability on I" all state we will consider are of the
form K@ such that @ e I? (O,T;IR") . So the last
minimization problem is equivalent to

®)

{min "KK*H— z"2
o
0ecG

with
G- {é e I*(0,7;1R")

1 NK Oe[a().8()])-

Then we have the following result:

Proposition 4.1

If the system (1) together with the output (2) is exactly
observable in Q, exactly [al ().5 ()] -boundary gradi-
ent observable on I' with o, =a+d, [ =4-0,
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5=(& >0,+-,&,>0) then the solution of (8) is given
by

6" =(KK'KK") KKz

l * * *

©
_E(KK*KK*)_I KV'y 40"

and the gradient in I' of the solution of the problem (6) is
given by

Y :RFK*Z—%RFV v A (10)

where A" is the solution of

* ok ok

lRrv*y A ==y +R.K'z
2 (1)
y = P[a()ﬂ()] (P/l + y )

while

P

[mﬂﬂ%HMU”'*DA%ﬂOL
denotes the projection operator, p>0 and
-1

R. = VK (KK'KK') K.

Proof

The system (1) together with the output (2) is
[a(~),ﬁ(~)} -gradient observable on ' then G # @ and
the problem (8) has a solution. The problem (8) is
equivalent to the saddle point problem

min "KK*H—z"j9
(H,y) eWw

(12)

where
w={(0,y)eOx[a("). ()] 1K 6~y =0}

We associate with problem (12) the Lagrangian func-
tional L defined by the formula

L(6.y.2)=|KK 02| +(2. 1 VK 6~ y>(HV2(F))N
for all
(6.y.4)eOx[ (). B()]x(H"(T))".
Let us recall that (6",y",4") is a saddle point of L if
maxL(6",y",4)=L(6",y", A" ) =min L(6,7,2")
Ae(H"(T)) 0eo,

vela().8()]

- The system (1) together with the output (2) is
[ (). 5, ()] -gradient observable on T and, there-
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fore, there exist 6 >0 and @€ O such that
HNKOela()+8.8()-5].
which implies
inf {L(0.7.2).(0.y) € Ox[a().A() ] = .
as

||/1"(H'/2(r))" e

moreover, there exists A, € (H v2 (F))n such that
lim L(H,y,ﬂ)o =+

|(@.3)| >+

then L admits a saddle point.

Let (9*, y*,/i*) be a saddle point of L and prove
that y" = y VK @ is the restriction gradient on T
of the solution of (6).

We have

L(6.y 2)<L(6.y A )< L(6p 2
for all

(0,y,2) e 0x[a(-),ﬂ(-)]x(H1/2 (F))" .
The first inequality above gives

<ﬂ, ZFWK*H* - y* >(H‘/2(r))"
= <l*’Zr7VK*9* -y >(H1/2(r))"

vie(H"(T)) .
which implies that . )VK @ =y" and hence
%VK0 <[a().8()]-
The second inequality means that
v(0.y)e0x[a().5()]
we have
|kx o —2"(2) (A VKO -y
<|lxx6- z||(2) +H{(X VKO- y)
Since y = VK 0" we have
|kK'0 =[] <|KK0~=[ +(2" 1 VK O-y)

for all

(6.7)€ Ox[a(). ()]
Taking
v=mNKO<[a().A()];
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we obtain
kKo 2], <[kK 0,

which implies that 6" minimize (KK 0-z 2, and
so y,=K'6@" whose the restriction of the gradient
on I is y =y VK@ minimize the function
||Ky—z||i) for all the states which are of the form
K'6 with 0€O0.

- Now if (6’*,y*,/1*) is a saddle point of L, then the
following assumptions hold

2<KK*9* ~2,KK'(6-6 )>+</1*,;(FWK* (6-6 )> -0,

YOeO
(13)

~(Ay=y)20, wela().8()] (14
(A=2", e VK0 =y ) =0, Vae(H"™ (1)) (15)
From (13) we have

<2(KK*)* (KK'0"~z).(6-0° )>

+<(;(FWK*)* /1*,(9—9*)> =0,Y0e0
Then
2(KK') KK'0" +2(KK") z=( VK ) 2

we assume that the system is observable in Q, then
KK"KK" is invertible, and

0" =(KK'KK") KKz
_%( KK'KK') ' KV'y 704"
so vy’ is given by

Y =1 VK (KK'KK") KKz

_% 1VK (KK'KK') KV'y 704

Then
y = RFK*Z—%RFV*}/* A
with
R =1 VK (KK'KK') K |
By (14) we have
(o2 +y")=y"y=y") <0,
vyela().B()].vp>0

Copyright © 2012 SciRes.

Then
y* = P[a()ﬂ()] (p/l* + y*)

Corollary 4.2

If the system (1) together with the output (2) is ob-
servable in Q, exactly gradient observable on I' and the
function

L - [(Kv*y*}(; ) KV 7 T (KV'7 ' 7)
% KK'KK" [( 2VK') 1VK *T (2K

is coercive, then for p convenably chosen, the system (11)
has a unique solution (/1*, y*) .

Proof

We have

v = VK (KK'KK') KK 'z
1 " o\l wa ke
- VK (KK'KK") KV'y 714
then

A ==2L.y"

-1

2 (VK )RV Y 71)] (KV'Y 7)) KK 2

So if (6’*,y*,i*) is a saddle point of L then the sys-
tem (11) is equivalent to

2 =2 (VK ) KV )Jl (KV'/'7) KKz
_2Lry*

y* _ }Ea(‘)’ﬂ(‘)] (2p|:(}(ryVK* ) (KV*V*Z; ):|—1

<(KV'y' 71) KK'z=2pL.y' +y*)
It follows that y" is a fixed point of the function
E,:[a().8()] > [a().8(0)]

y= P‘:a()ﬂ()] [+2p|:(/‘{r7/VK*)(Kv*7*z; ):|—]

<(KV' 7)) KK'z=2pLoy+ y)

Now the operator L. is coercive, so 3m >0 such
that

n

(Ley,y)z |y vy e(H” (D))

It follows that

Vit € [al (')’ﬁl ():I
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"Fﬂ (u)-F, (% )"2 < "_2er (b =5)+(t -1 )"2
<4p?|L | ||(t1 —h )”2 + "(’1 —h )"2
~4p(L(t,-1,).(t, -1,))
<(427 || +1-4pm)|( —1, )

and we deduce that if
pe M
Iz

then F, is a contractor map, which implies the uni-
queness of y and A"

4.1. Numerical Approach

In this section we describe a numerical scheme which
allows the calculation of the initial state gradient between
a() and B() on the subregionT.

We have seen in the previous section that in order to
reconstruct the initial state between «(-) and A('), it
is sufficient to solve the Equations (9)-(11), which can be
done by the following algorithm of Uzawa type. Let
T = KK KK, if we choose two functions

(- ) el ()8 () ]x (1" (F))n
and

k% %

o =T‘1KK*Z—%T’1KV v A

'n

y: = P[a()ﬁ()] (pﬂ; + y:—l)

Aoy =20 +( e VK 'O, —37)
then we obtain the following algorithm (Table 1).

4.2. Simulation Results

In this section we give a numerical example which

Table 1. Algorithm.

1) Given the subregion I', the location of the sensor b, the function
of measure distribution f, the functions «(-) and A(-), initiate

two functions y; e[a('),ﬂ(')] and A G(Hl/2 (1"))" and £>0
the threshold.

2)Solve T(6)=KK'z —%KV*y*;{;l;,n >1.

3) Caleulate =Ry, () 5.1 (P2 + 350 )m=1.

4) Caleulate Ay,; =4y +( VK6, =y, )in=1.

S)If

Vn = Vn-1

(H'/Z(r))” < ¢, stop, else.

6) /1:+1 = /1: +(;(r70VK*9: —y:),n >1 and return to step 2.

Copyright © 2012 SciRes.

illustrates the efficiency of the previous approach. The
results are related to the choice of the subregion, the ini-
tial conditions and the sensor location. Let us consider a
two-dimensional system defined in Q = ]0,1[ X ]0,1[ and
described by the following parabolic equation

a—y(x X t)z0.0l 62_y(x X t)+82—y(x X t) inQ
o axt T e T

7(%,%,0) = ¥, (%%, ) in Q
y(&mt)=00on X

The measurements are given by a pointwise sensor
z(¢t)=y(b,t)with b is the location of the sensor and
T=2 .Let I'={0}x]0,1[ and

g(xl,x2)=(g1 (%.%,). 8 (xl,xz))

the initial gradient to be observed on I" with g; and g, are
given by

g (xl,x2 ) =4x,x; —8x,x +4x,x, —2x; +4x; —2x,
and

2 (xl,)c2 ) =6x7x; —8x7x, +2x7 —6x,X; +8x,x, — 2,

For

a(x.x%)=(a (x.x,),, (%, ,))
and

B(x,x,)= (/31 (x,2). By (3%, ))
with

a, ()c1 , X, ) = 4x,x; —8x,x; +4x,x,
—2x; +4x; —2x,-0.5

a, (xl,x2 ) =4x,x; —8x7 X, +4x,x,
+2x; —2x; —2x, - 0.4

Bi(x,x,)= 8x,25 —8x,x5 +4x,x,
—2x; +4x; —2x, +0.5

By (x,,x,) = 4x'x] +8x,x; +2x.x,

—4x5 +4x] +2x, +0.4

Applying the previous algorithm for b =(0.34,0.78),
we obtain

“Figures 2 and 3” show that the estimated initial gra-
dient is between «(-) and () on the subregion T,
and show that the sensor located in b5=(0.34,0.78) is
[a('), ,b’()] -gradient strategic on I'. The estimated ini-
tial gradient is obtained with reconstruction error
£=554x10".

If we take b=(0.15,0.52), we obtain “Figure 4”
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Figure 2. The first component of the estimated initial gradient, a,(-) and f;(-) on I'.
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Figure 3. The second component of the estimated initial gradient, a,(-) and f,(-) on I.

shows that the estimated initial gradient is not between
a() and B() on the subregion I, which implies that
the sensor located in b =(0.15,0.52) is not
[a('),ﬁ(')] -gradient strategic on I".

Remark 4.2

The above results are obtained with pointwise mea-
surement, and one can obtain similar results with zone
(internal or boundary) measurement.

5. Conclusions
The problem of [a(-),ﬂ(-)] -boundary gradient ob-

Copyright © 2012 SciRes.

servability on I' of parabolic system is considered. The
initial state gradient is characterized by two approaches
based on regional observability tools in connection with
Lagrangian and subdifferential techniques.

Moreover, we have explored a useful numerical algo-
rithm which allows the computation of initial state gra-
dient and which is illustrated by numerical example and
simulations. Various questions are still open. The char-
acterization of [a('),ﬂ(')] -boundary gradient ob-
servability by a rank condition as stated for usual gradi-
ent observability or regional gradient observability of
distributed parameter systems is of great interest. This
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Figure 4. The first component of the estimated initial gradient, a;(-) and f;(-) on I'.

question is under consideration and will be the subject of
the future paper.
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