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ABSTRACT 

Covariate dependent Markov models dealing with estimation of transition probabilities for higher orders appear to be 
restricted because of over-parameterization. An improvement of the previous methods for handling runs of events by 
expressing the conditional probabilities in terms of the transition probabilities generated from Markovian assumptions 
was proposed using Chapman-Kolmogorov equations. Parameter estimation of that model needs extensive pre-proc- 
essing and computations to prepare data before using available statistical softwares. A computer program developed 
using SAS/IML to estimate parameters of the model are demonstrated, with application to Health and Retirement Sur-
vey (HRS) data from USA. 
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1. Introduction 

In recent times, there has been a growing interest in the 
applications of Markov models in various fields. In the 
past, most of the work on Markov models dealt with es-
timation of transition probabilities for first or higher or-
ders. The use of higher order Markov chain models for 
discrete variate time series appears to be restricted due to 
over-parameterization and several attempts have been 
made to simplify the application. In recent years, there 
has been also a great deal of interest in the development 
of multivariate models based on the Markov Chains. 
These models have a wide range of application in the 
fields of reliability, economics, survival analysis, engi- 
neering, social sciences, environmental studies, biologi- 
cal sciences. Muenz and Rubinstein employed logistic 
regression models to analyze the transition probabilities 
from one state to another for first order [1]. In a higher 
order Markov model, we can examine some inevitable 
characteristics that may be revealed from the analysis of 
transitions, reverse transitions and repeated transitions. 
Islam and Chowdhury [2] extended Muenz and Rubin-
stein [1] model to higher order Markov model with co-
variate dependence for binary outcomes.  

Using Chapman-Kolmogorov equations, Islam and 
Chowdhury introduced an improvement over the previ- 
ous methods in handling runs of events which are com- 
mon in longitudinal data [3]. Without loss of generality, 
they express the conditional probabilities in terms of the 
transition probabilities generated from Markovian assum- 
ptions. Their proposed model is a further generalization 
of the models suggested by Muenz and Rubinstein [1] 
and Islam and Chowdhury [2] in dealing with event his-
tory data. The proposed model is based on conditional 
approach and uses the event history efficiently to take 
account of unequal intervals in the occurrence of events. 

In order to estimate parameters of the model proposed 
by Islam and Chowdhury extensive pre-processing and 
computations are needed to prepare the data before one 
can use the standard available procedures in existing sta- 
tistical softwares [3]. In this paper we present a SAS 
program developed using SAS/IML to estimate parame- 
ters of the proposed model [4]. The program is demon- 
strated using the follow-up data on Health and Retire- 
ment Survey (HRS) from USA. 

2. Model 

Consider a stationary process  1 2, , ,i i ijy y y  denoting 
the past and present responses of the i-th subject 
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( ) at the j-th follow-up ( ). Here 

ij  is the response at time ij . One can think of ij  as 
an explicit function of past history of i-th subject at j-th 
follow-up denoted by 

1, 2, ,i  
y

n 1, 2, , ij J 
t y

 ,  1, 2, , 1k j  

ijy H
, ,y y 

y s

0ijy 

ij ik . The 
order of the transition model is considered as q, for 
which the conditional distribution of  given  de- 
pends on q prior observations . 

H y 

ij

1ij ij q

Let us define the multiple outcomes by ij , s = 0, 
1, 2, ···, m−1 if an event of level s occurs for the i-th 
subject at the j-th follow-up where  indicates that 
no event occurs. The first order Markov model can then 
be expressed as 

   1 1, , i ij ijy P y y 

 1jt 



ij ij qy j 


jt

P y

0,1,

0,u u
 0, ,v v m 

,       (1) 

where,  are the m possible outcomes of a 
dependent variable, Y. The probability of a transition 
from  at time  to  

 at time  is 

, 1m 

 , m 
1

1
 π . 

Note that 
1j jY v u P Y v u  

1

0

π 1, 0,u , 1m
m

v u
v





  .           (2) 

Figure 1 presents different types of transitions from 
one state to another state (e.g., state 0 and state 1) for 
seven hypothetical subjects measured over six consecu-
tive time points for occurrence or non-occurrence of 
some events (e.g., any disease) without any event at 
baseline. Subject one has a transition from non-event (0) 
at time 1 to an event (1) at time 2 and for subject two, the 
transition took place at time point three. We used 

1j
t  to 

denote the time of occurrence of transition any time point  

after first time points. Subject 3 did not make any transi- 
tion in all six time points, i.e. in other words remained 
disease free in all six measurements. We can consider it 
as censored case for transitions 

Next we consider reverse transition for those subjects 
who made a transition already. Subject four made a tran-
sition from non-event to an event in time 3 and remained 
in the same state in time 4, after that this subject made a 
reverse transition from an event to non-event in time 
point five. The time point of reverse transition is denoted 
by 

2j
. Subject five remained in state 1 (event) for con-

secutive follow-ups after making a transition at time 
point 3 and this we can think as censored cases for re-
verse transitions. 

t

Finally subjects 6 and 7 are those who already made a 
transition and a reverse transition and thereafter can only 
make a repeated transition. Subject six made a transition 
to event (1) in time point 2 from non-event (0) at time 
point 1. Then it made a reverse transition at time point 3 
to non event. Again at time point 4 this subject made a 
transition back as event in time point 4, so we called it a 
repeated transition. Subject seven first made transitions 
in time 2 then made a reverse transition in time 3 as non- 
event and remained in the same state rest of the time 
points and can be considered as censored for repeated 
transitions. The time point for repeated transition is de- 
noted by . 

3j

Let us consider m = 3 for illustration of our method. 
Let the first two states be transient and the third one an 
absorbing state. For m = 3, we can define the following 
probabilities using the Chapman-Kolmogorov equations  

t

 

 

Figure 1. Flow diagram for different types of transitions.  
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and also using Equation (1). The probability of a transi-
tion from u (u = 0, 1, 2) at time  to v (v = 0, 1, 2) at 
time  is 

1 1jt 

 
1j

t

   
1 1

1 1 1

1

1 1

π ,uv j j

j j j

P Y v Y u

P Y v Y u P Y u



 

  

    
      (3) 

where  is the time of follow-up just prior to . 
1 1j 1j

The probability of a transition from u (u = 0, 1, 2) at 
time 

1 1j  (just prior to the follow-up at time 
1j

) to v (v 
= 0, 1, 2) at time 

2 1j  (just prior to the follow-up at 
time ) and w at time  is 

t  t

t 

2j
t

t
t 

 
2 2 1jt j j

 
   
     

2 1 2

2 1 2 1 2

2 2 2 1 1

1 1

1 1 1 1

1 1 1 1

π , ,

, ,

.

uvw j j j

j j j j j

j j j j j

P Y w Y u Y v

P Y w Y u Y v P Y u Y v

P Y w Y v P Y v Y u P Y u

 

   

   

   

      

       

(4) 

Similarly, the probability of a transition from u (u = 0, 
1, 2) at time 

1 1j  (just prior to the follow-up at time 
1j

) 
to v (v = 0, 1, 2) at time 

2 1j  (just prior to the follow-up 
at time 

2j
) to w at time 

3 1j

t  t
t 

tt   (just prior to the fol-
low-up at time ) and s at time  is 

3j
t  

3 3 2 1jt j j j 

   
   

3 3 3 2

2 1 1

1 1 1

1 1 1

π

 .

uvws j j j j

j j j

P Y s Y w P Y w Y v

Y v Y u P Y u

  

  

     

   
  (5) 

It is observed that  given in (3), (4) and 
(5) are initially first, second and third order joint prob-
abilities, respectively. The conditional probabilities may 
be expressed in terms of first order transition probabili-
ties as:  

π , π , πuv uvw uvws

 1 1 1π ,j jv u P Y v Y u              (6) 

π π π ,w uv w v v u                (7) 

π π π π .s uvw s w w v v u               (8) 

In the above conditional probabilities (6)-(8), it is as- 
sumed that once a transition is made from u to v, then the 
time of event u will remain fixed for all other subsequent 
transitions. Here a transition from u to v can happen in 
the second follow-up or the process can remain in the 
same state u in consecutive follow-ups before making a 
transition to v. Similarly, in case of a transition from v to 
w, the last observed time in state v, before making a tran- 
sition to w, will remain fixed for any subsequent transi- 
tion. In other words, we can allow the process to stay in 
the same state v in consecutive follow-ups prior to mak- 
ing any transition. Finally, if a transition is made from w 
to s then the process is observed at the last time point in 
the state of w, before making a transition to s. Here the 
time of last observing w can be different from the occur-
rence of w for the first time as found in expressions for 

πw uv  (for the first observed time to transition to w and 
last observed times for u and v) and πs uvw  (for the first 
observed time to transition to s and last observed times 
for u, v and w).     

Let us define the following notations: 

11,  , ,i iX X X ip     = vector of covariates for the i- 
th person; 

0 1, , ,uv uv uv uvp         = vector of parameters for 
the transition from u to v. 

In what follows we assumes all the individuals start at 
state u = 0. The probabilities of transition from state u to 
state v can be expressed in terms of conditional prob- 
abilities as functions of covariates as 

   
 

 1 1 1 2

0

e
π , ,

e

0, 0,1, 2;

uv

uv

g X

j jv u
g X

k

X P Y v Y u X

u v





   

 

    (9) 

where 

   
 

1

1

1

1

0, if 0

,
ln , if 1,2.

0 ,

j juv

j j

v

P Y v Y u Xg X
v

P Y Y u X






            

 

Here, 
  0 1 1uv uv uv uvp pg X X      X . 

Expressions similar to (9) may be obtained for transi-
tion from state v to state w and state w to state s, for de-
tails see Islam and Chowdhury and Islam et al. papers 
[3,5]. 

3. Estimation 

The likelihood function for n individuals with i-th indi-
vidual having  1, 2, ,iJ i   n  follow-ups is given by 

  

  

  

2
1

1

32
1 2

1 2 1

32
1 2 3

1 2 1 3 2

2

1 1 0 0

2

1 0 1 0

2

1 0 1 0 0

π   

π

π ,

ij uv

ij j vw

i ij j j ws

jn

iv u
i j u v

jj

iw uv
j j j u v w

j Jj

is uvw
j j j j j u v w s

L X

X

X







   

    

      

 
  

 
 
  
 
 
  
 

 



 

 (10) 

and (10) can be expressed as 

  

  

  

2
1

1

3
1 2

2 1

1 2 3

3 2

2

1 1 0 0

1 2

0 0

1 2

0 0

π

π

π

ij uv

ij j vw

i ij j j ws

jn

iv u
i j u v

j

iw v
j j v w

J

is w
j j w s

L X

X

X






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  

  

    
 

   
 

   
 

  

 

 

       (11) 
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where 
1

1ij uv 

0

 if a transition type  (u = 0, v = 1, 
2) is observed at 1 th follow-up for the ith individual, 

u  v
j

1ij uv  , otherwise; 
1 2

1ij j vw  , if a transition type 
 (u = 0, v = 1, 2) is observed at 1 th follow-up 

and a transition type  (v = 1, w = 0, 2) is ob-
served at 2 th follow-up, 

1 2ij j vw

u  v

j

j

0
v w

  , if a transition type 
 (u = 0, v = 1, 2) is observed at 1 th follow-up 

and a transition type  (v = 1, w = 0, 2) does not 
occur at 2 th follow-up; 

1 2 3ij j j ws

u  v

j

j

1
v w

   if a transition type 
 (u = 0, v = 1, 2) is observed at 1 th follow-up, a 

transition type  (v = 1, w = 0, 2) is observed at 

2 th follow-up, and a transition type  (w = 0, s = 
1, 2) is observed at 3 th follow-up, 

1 2j vw

u 

j

v j

w
ij

v w

j
s

0  , if a 
transition type  (u = 0, v = 1, 2) is observed at 

1 th follow-up, a transition type  (v = 1, w = 0, 
2) is observed at 2 th follow-up, and a transition type 

 (w = 0, s = 1, 2) does not occur at th fol- 
low-up.  

u 

j

v
j

w

v w

s 3j

From (11) the log likelihood function is given by 
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 
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1 2 3
3 2

2
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ln ln π
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i j u v
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
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








    (12) 

By equating to zero the derivatives of (12) with respect 
to the parameters and solving the resulting equations, we 
obtain the maximum likelihood estimates. The observed 
information matrix can be obtained from the second de- 
rivatives. We can also compute the test statistic for the 
model as a whole and also for individual parameters [3, 
5]. 

Testing the Global Null Hypothesis  
For illustrating the test procedure, let us suppose that 

all the individuals were in state 0 initially. We will get 
three sets of parameters, one each for transition, reverse 
transition and repeated transition. If we consider p vari- 
ables then  1 2 3, ,       where 0 1, , ,k k k kp        
here 0k  are the intercepts, k = 1, 2, 3. Then the likely- 
hood ratio chi square for testing the null hypothesis 

0H : 0  , is 

    2
32 ln 0 ln .pL L        

To test the significance of the q-th parameter of the 
k-th set of parameters, the null hypothesis is 0 : kqH 0   
and the corresponding Wald test statistic is  

 ˆ ˆ .kq kqW se   

4. Computations 

To explain the computation procedures we will start with 

a hypothetical data set. Let us consider a binary (0 = no 
event, 1 = event) outcome variable (i.e. outcome variable 
with two states) and a single binary covariate (X) from a 
longitudinal study with 4 follow-ups. We will get three 
sets of parameters, first one for transition ( 1 ), second 
for reverse transition ( 2 ), and a third for repeated tran-
sition ( 3 ). It should be noted that for a multistate out-
come variable, number of sets of parameters will increase 
accordingly [6]. 

Table 1 gives the hypothetical data on 7 cases. The 
value of the outcome variable of third follow-up of case 
7 (Case ID = 7) is missing and is coded as 99 in the data. 
Also the value of the outcome variable for this case for 
the rest of follow-ups will be considered as missing in 
the data. It should be noted that we have started with 
only those cases that were in state 0 at follow-up 1. Sup- 
pose we have a total of four outcome variables, one for 
each follow-up. Next we need to find out what are the 
possible combinations of the values of the outcome vari- 
ables which will identify the occurrence or non occur- 
rence of an event for transition, reverse transition and 
repeated transition. Let us explain what we mean by a 
combination here. For example, case 3 was in state 0 at 
follow-up 1 and changed its status to state 1 at follow-up 
2 (0 → 1). Hence an event took place for this case which 
we termed as combination (this combination can be 
viewed like a covariate pattern for four outcome vari- 
ables from four follow-up) of 0 → 1 and we identified it 
as a transition [7]. We do not need to worry about the 
status of this case for follow-up 3 and follow-up 4. If any 
case remains (e.g., Case 2) in same state for all of the 
remaining follow-ups as it were in follow-up 1, (0 → 0 
→ 0 → 0) then this case did not observe any event. Also 
we have to find out the corresponding covariate value 
from where a transition or reverse or repeated transition 
took place.  

From the data in Table 1 we have to create three sets 
of data, one each for say, Set 1 (Transition), Set 2 (Re- 
verse Transition), and Set 3 (Repeated Transition). The 
created data sets shall include a single binary outcome 
variable (e.g., “Estatus”) which will identify whether an 
event occurred (1) or not occurred (0) for each of these 
three parameter sets and the covariate (X) by taking the 
value from appropriate follow-ups. In addition we have 
to create another variable which will identify which cases 
are for which parameter set (e.g., “TranType”). 

To create the new data set with two new variables in 
addition to the covariates, first we need to identify which 
cases observed the event for single outcome variable 
(Estatus) for three sets of data namely Set 1, Set 2, and 
Set 3. Table 2 shows the possible combination of the 
value of binary outcome variables of occurrence or non 
occurrence of events for Set 1 (Transition), Set 2 (Re- 
verse Transition), and Set 3 ( epeated Transitions) with  R  
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Table 1. Hypothetical data set with four follow-ups. 

Outcome variable follow-ups Covariate (X) follow-ups 
Case ID 

1 2 3 4 1 2 3 4 

1 0 0 1 0 1 0 1 1 

2 0 0 0 0 1 1 1 0 

3 0 1 0 0 0 1 0 1 

4 0 1 1 1 1 0 0 0 

5 0 1 0 1 0 1 1 1 

6 0 1 1 1 1 0 1 1 

7 0 0 99  1 0   

 
Table 2. Combinations of outcome variable for identification of occurrence of events for transition, reverse transition and 
repeated transitions. 

Possible combinations of outcome variables Combinations number 
(TranCode) 

Transition type 
(TranType) 

Event status 
(Estatus) 

Follow-up 1 Follow-up 2 Follow-up 3 Follow-up 4 

Set 1 (Transition) 

1 1 1 (Event) 0 1   

2 1 1 (Event) 0 0 1  

3 1 1 (Event) 0 0 0 1 

4 1 0 (No event) 0 0 0 0 

5 1 0 (No event) 0 99   

6 1 0 (No event) 0 0 99  

7 1 0 (No event) 0 0 0 99 

Set 2 (Reverse Transition) 

1 2 1 (Event) 0 1 0  

2 2 1 (Event) 0 0 1 0 

3 2 0 (No event) 0 1 1 1 

4 2 0 (No event) 0 0 1 1 

5 2 0 (No event) 0 0 0 1 

6 2 0 (No event) 0 1 99  

7 2 0 (No event) 0 0 1 99 

8 2 0 (No event) 0 1 1 99 

Set 3 (Repeated Transition) 

1 3 1 (Event) 0 1 0 1 

2 3 0 (No event) 0 1 0 0 

3 3 0 (No event) 0 1 0 99 

4 3 0 (No event) 0 0 1 0 

5 3 0 (No event) 0 1 1 0 
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four follow-ups including missing values. There are in 
total seven possible combinations of outcome variable 
with four follow-ups (Table 2) for Set 1. First three 
combinations will identify the occurrence of an event and 
coded as 1 for the event status column (Estatus). Re-
maining four combinations will identify the non occur-
rence of an event for Set 1 and coded as 0 for the event 
status column (Estatus). Combinations from 5 to 7 with 
missing values are also considered as non occurrence of 
an event for Model 1 and are also coded as 0 for the 
event status column (Estatus). For the first combination 
in Model 1 for covariate (X) we have to take the corre-
sponding covariate (X) value from follow-up 1, because 
the event for this transition was originated from follow- 
up 1. For combination 2 the corresponding covariate (X) 
value will be from follow-up 2, and so on. In case of 
combination four, “no event” was observed. Hence for 
this case we have to take the covariate value from last 
follow-up i.e. follow-up 4. For combinations 5 to 6 we 
have to take the covariate value from first, second and 
third follow-up, respectively, i.e., the follow-up just prior 
to the value being missing. The value of transition type 
(TranType) column is coded as 1 for all of the combina-
tions corresponding to Model 1. Sequence number in 
(TranCode) column identifies the unique combinations 
for Set 1. 

For Set 2, again we have a total of eight combinations 
to identify occurrence or non occurrence of events. It is 
evident that only those cases who observed the occur- 
rence of an event in Set 1 (i.e. made a transition) will be 
in Set 2 (i.e. can make a reverse transition). First two 
combinations observed an event (reverse transition) after 
observing a transition in Set 1 and coded as 1 for the 
event status column (Estatus) in Set 2. Hence these two 
combinations will be considered as an occurrence of an 
event for Set 2. Third to fifth combination in Set 2 did 
not observe any event after making a transition and will 
be considered as the non occurrence of an event for Set 2 
and coded as 0 for the event status column (Estatus). 
Sixth and seventh combinations for Set 2 are also con-
sidered as non occurrence of an event for this model due 
to missing observations after making a transition and are 
also coded as 0 for the event status column (Estatus). The 
covariate (X) value for Set 2 for first two combinations 
will be from follow-up 1 and follow-up two, respectively. 
The covariate (X) value for third to fifth combinations 
will be from fourth follow-up, since cases with these 
combinations did not change the state after making a 
transition. In case of missing data for outcome variable 
the covariate value for observation six to eight will be 
from second and third follow-up, respectively. The value 
of transition type (TranType) column is coded as 2 for all 
of the combinations corresponding to Set 2. Sequence 
number in (TranCode) column identifies the unique com- 

binations for Set 2. 
Finally for Set 3 (Repeated Transitions) we have five 

possible combinations from four outcome variables for 
four follow-ups. Again only those cases who have ob- 
served an event for reverse transition will contribute to 
Set 3. First combination for Set 3 observed an event after 
observing a transition and then reverse transition, hence 
is considered as an event for Set 3 (Repeated Transition) 
or we can say that a repeated transition took place and 
coded as 1 for the event status column (Estatus). The 
covariate (X) value for this combination will come from 
follow-up 3, because the repeated transition was origin- 
nated from that point. Second and third combinations did 
not observe any event after making a reverse transition 
hence are considered as non occurrence of an event for 
Set 3 and coded as 0 for the event status column (Estatus) 
in Table 2. The covariate value for second combination 
will be from last follow-up as usual and for the third 
combination will be from third follow-up due to missing 
value in last follow-up. Fourth and fifth combination will 
also be considered as non occurrence of event for Set 3 
and the corresponding covariate (X) value will come 
from fourth follow-up. The value of transition type 
(TranType) column is coded as 3 for all of the combina-
tions corresponding to Set 3. Sequence number in (Tran- 
Code) column identifies the unique combinations for Set 
3. 

Now we can match these combinations of outcome va- 
riables of the follow-ups for each case in the data (Table 
1) with the combinations for transition, reverse transition 
and repeated transitions presented in Table 2. For com- 
bination 1 in Set 1 (Table 2) we need to match the value 
for first two follow-ups of the data (Table 1) only. For 
combination 2 we need to match only with first three 
follow-ups from the data and so on. Since we created the 
combinations (Table 2) we can also identify the number 
of follow-ups to match from the data i.e., the starting 
follow-up and ending follow-up. For example, for com-
bination 1 in Set 1 the starting follow-up is the first and 
ending follow-up is the second and so on. Similarly we 
will be able to identify the appropriate follow-up from 
where the covariate value should be taken. 

Table 3 shows the new data set created by using pro-
cedure discussed above for creating data set for Set 1, Set 
2 and Set 3. First column in Table 3 (Case ID) gives the 
case identification. Second column (TranCode) shows 
which combination was matched by this particular case. 
Third column (TranType) represents transition types 
where 1 for transition (Set 1), 2 for reverse transition (Set 
2) and 3 for repeated transition (Set 3). Fourth column 
(Estatus) represents the occurrence or non occurrence of 
events as discussed earlier. In Set 1 (Transition), five 
cases observed an event while remaining two did not and 
coded accordingly in fourth column (Estatus). Those five  
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Table 3. Created data set with computed variables. 

Case ID TranCode TranType Estatus X 

1 2 1 1 0 

2 4 1 0 0 

3 1 1 1 0 

4 1 1 1 1 

5 1 1 1 0 

6 1 1 1 1 

7 6 1 0 0 

1 2 2 1 1 

3 1 2 1 1 

4 3 2 0 0 

5 1 2 1 1 

6 3 2 0 1 

1 4 3 0 1 

3 2 3 0 1 

5 1 3 1 1 

 
cases who observed an event in Set 1 can make a reverse 
transition and are included in Set 2 (see Table 3). Case 1, 
3, and 5 observed an event for Set 2 (reverse transition) 
and 4 and 6 did not observed any event. Finally those 
who observed a reverse transition (Case ID 1, 3 and 5) 
can observe only a repeated transition. Two cases (Case 
ID 1 and 3) did not observed any event after observing a 
reverse transition (see data in Table 1) and remaining 
one case (Case ID 5) observed an event for Set 3.  

The data set created in Table 3 now can be used to run 
logistic procedures from statistical software (e.g., SAS, 
SPSS). Here “Estatus” is the binary dependent variable 
and X is the covariate. TranType variable is needed to 
distinguish the three sets of models namely Set 1, Set 2 
and Set 3. TranCode variable can be used to run the fre- 
quency distribution of different combinations observed in 
the data set. However, we will need a little more compu- 
tation to get the overall model test results, since existing 
statistical software will produce model test separately for 
three sets of models on the basis of “TranCode” variable.  

Algorithm 
1) Create all possible combinations on the basis of 

number of follow-ups for binary outcome variable for 
transition (Set 1), reverse transition (Set 2) and repeated 
transition (Set 3). 

2) Find the starting and ending follow-up number to 
for each combination to match with the data. 

3) Find covariate(s) position depending on the transi-
tion, reverse transition and repeated transition. 

4) Match data for each observation with created com-
bination in step 1 by considering appropriate starting and 
ending follow-up number created in step 2. Create three 
new variables (TranCode, TranType, and Estatus). As- 
sign appropriate value for each of these three variables. 

5) Select the covariate value from the appropriate fol- 
low-ups. 

6) Create new data set (explained in Table 3) with 
Case ID, three new created variables (TranType, Tran-
Code and Estatus) and corresponding covariates. 

7) Run binomial/multinomial logistic regression using 
any statistical software (e.g., SAS, SPSS, etc.). 

8) Calculate overall model test for all three sets of pa-
rameters together. 

5. Program Description 

As we can see now the estimation of the model parame-
ters is complicated and tedious. In addition it needs to be 
done in several phases and a large amount of pre-pro- 
cessing for data preparation is needed. We wrote a SAS/ 
IML function “trrmain()” to make this processing auto- 
mated. Four arguments have to be provided to invoke the 
trrmain() function. These are input data file name, num- 
ber of states for outcome variable, maximum number of 
follow-ups and number of models for data preparation.  

5.1. Input Data File Format 

The input data set for our SAS/IML function is needed as 
a FLAT file format. First variable in the input data file is 
CASE ID, from 2nd column onward is the outcome va- 
riable corresponding to the number of follow-ups. The 
outcome variable should be coded as 0 and 1 for binary 
and 0, 1, 2 and so on for multistate (present version of 
the program will work for binary outcome variable only). 
Let us consider the hypothetical data provided in Table 1, 
with four follow-ups; in the input data file second to fifth 
variables will be the outcome variable and sixth to ninth 
variable will be the covariate (X), one for each follow-up. 
If we have another covariate then variable 10 to variable 
13 will denote the values of second covariate. The same 
pattern has to be followed for other covariates, if any. 
Missing values should be coded as 99 for outcome vari- 
ables only. However, covariates also may contain miss-
ing values and can be left as missing in the data. Table 4 
provides a hypothetical sample input data file with two 
covariates for four follow-ups, where DV is outcome 
variable and X and Z are two covariates for four follow- 
ups. 

5.2. Sample Run 

To demonstrate the use of our program, we have em- 
ployed data from the Health and Retirement Study (HRS).    
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Table 4. Input data file format with hypothetical data set for four follow-ups. 

ID DV1 DV2 DV3 DV4 X1 X2 X3 X4 Z1 Z2 Z3 Z4 

1 0 0 1 0 1 0 1 1 34 35 36 37 

2 0 0 0 0 1 1 1 0 21 22 23 24 

3 0 1 0 0 0 1 0 1 29 30 31 32 

4 0 0 99 99 0 1 0 1 23 25   

 
The HRS is sponsored by the National Institute of Aging 
(grant number NIA U01AG09740) and conducted by the 
University of Michigan (2004). This study is conducted 
nationwide for individuals over age 50 and their spouses. 
We have used the panel data from the seven rounds 
(Health and Retirement Study [8]).  

The outcome variable considered here is whether or 
not an individual were hospitalized during past 12 months 
for all the rounds. In wave 1, there were a total of 9760 
age eligible respondents in the sample (the number was 
reduced to 9750 due to dropping of 10 cases with miss-
ing values of outcome variable at round 1). Finally, we 
started with 8657 individuals who reported that they 
were not hospitalized at wave 1. The explanatory vari-
ables considered are gender (male = 1, female = 0), num-
ber of medical conditions between two consecutive 
rounds, black (yes = 1, no = 0) and white (yes = 1, no = 
0).  

The program can be invoked in both SAS 8 and SAS 9. 
To use our function trrmain(), we need to open the 
trrmain. SAS file in editor window and run the whole 
program. Then we need to submit the following SAS 
statements to INVOKE our function. 

proc iml; 
load module = trrload; 
run trrload; 
run trrmain(trdata, 2, 7, 3); 
The first argument in trrmain() is trdata which is the 

SAS data set from input data file. The second argument 2 
is for binary outcome variable. The third argument 7 is 
the total number of follow-ups in our data file. The last 
argument 3 is for the transition types. If we set the last 
argument to 1 then it will create data for transitions only, 
2 for transition and reverse transitions and 3 for all three 
models. The newly created data set will be name as 
“Fdatres” in the SAS WORK library. Our program will 
use the name for each first follow-up explanatory (e.g., 
X1, Z1) variable as the explanatory variable name in the 
newly created data file. Table 5 presents the distribution 
of occurrence or non occurrence of events (i.e. Estatus 
variable) from the “Fdatres” data for three models. The 
program will store a data set named “cmbout” of all pos-
sible combinations of outcome variables according to the 
number of follow-ups with three newly created variables 

as described in Table 2. Combination of outcome vari-
ables from this data can be used as labels for “TranCode” 
variable.  

5.3. Running Logistic Regression from Created 
Data 

Next step is fitting three sets of logistic regression on the 
basis of TranType variable from “Fdatres” data created 
by our program and computation of global likelihood 
ratio test for overall model (all three models together). 
Following SAS instructions will invoke the logistic pro- 
cedure.  

PROC LOGISTIC COVOUT DATA = Fdatres de-
scending OUTEST = COVM1;  

ODS OUTPUT GlobalTests = asts ModelInfo = asts1; 
BY TranType; 
MODEL Estatus = r1gender r1conde black white; 
RUN; 
First line of the above instruction invokes logistic pro- 

cedure and “Fdatres” data set is used. The additional in- 
struction COVOUT and OUTEST = COVM1 adds the 
estimated covariance matrix to the to Covm1 data set in 
SAS WORK library for all three models. ODS OUTPUT 
GlobalTests = asts instruction will store the global test 
results (Likelihood, Score and Wald) test to asts data set 
and ModelInfo = asts1 will store model information to 
asts1 data set in SAS WORK library for all three models 
separately. There should not be any existing data set with 
name “covm1”, “asts” and “asts1” in SAS WORK library, 
if any data in those will be replaced by the above instruc-
tions. These we need to compute the overall model test 
for all the models together. Instruction “BY TranType” 
will estimate separate models for the three categories of 
this variable. Left hand side of MODEL statement is the 
variable for event status as explained earlier and ex-
planatory variables are in the right hand side. Other op-
tion can be added to the above instructions (e.g., options 
for categorical variable). However first two lines should 
not be changed. Table 6 presents the selected output of 
logistic regression estimates by the above instructions.  

We can use the “SAS/IML” statements to compute the 
overall model test results as presented in Appendix 1. As 
the chi-square value for there models stored in “Asts” 
SAS WORK library, are inde endent chi-square, we can  p 
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Table 5. Distribution of occurrence or non occurrence of events for three sets. 

Outcome 

No Event Event Sets 

n % n % 

Total 

Transition (Set 1) 4658 60.6 3999 52.1 8657 

Reverse Transition (Set 2) 1288 16.7 2711 35.3 3999 

Repeated Transition (Set 2) 1746 22.7 965 12.6 2711 

 
Table 6. Selected SAS output of logistic procedure and overall model test results. 

The SAS System 13:49 Saturday, November 20, 2008 
Probability modeled is StateCode = “1”. 
The LOGISTIC Procedure 
Analysis of Maximum Likelihood Estimates 

TranType = 1 

Parameter DF Estimate Standard Error Wald Chi-Square Pr > ChiSq 

Intercept 1 −0.6526 0.1205 29.3270 <0.0001 

r1gender 1 0.0325 0.0435 0.5582 0.4550 

r1conde 1 0.0629 0.0182 11.8840 0.0006 

white 1 0.4318 0.1181 13.3648 0.0003 

black 1 0.3016 0.1274 5.6018 0.0179 

TranType = 2 

Intercept 1 1.5122 0.2104 51.6523 <0.0001 

r1gender 1 −0.1876 0.0704 7.0954 0.0077 

r1conde 1 −0.3924 0.0254 238.6272 <0.0001 

white 1 0.2182 0.2024 1.1615 0.2811 

black 1 0.1421 0.2166 0.4304 0.5118 

TranType = 3 

Intercept 1 −0.6124 0.2539 5.8182 0.0159 

r1gender 1 0.0271 0.0809 0.1125 0.7374 

r1conde 1 0.0328 0.0295 1.2351 0.2664 

white 1 −0.0888 0.2430 0.1334 0.7149 

black 1 0.0352 0.2600 0.0184 0.8922 

Overall Model Test 

 Chi-Square D.F p-value   

Likelihood Ratio 298.665809 15 0.000000   

Score 298.053620 15 0.000000   

Test for Significance Between Different Sets of Estimates 

Model A Model B Chi-Square D.F p-value  

1.000000 2.000000 1790.78254 5 0.000000  

1.000000 3.000000 304.919601 5 0.000000  

2.000000 3.000000 1499.11448 5 0.000000  
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add the chi-square value and degrees of freedom for all 
the models and compute the new probability. Overall 
model test results (Log likelihood ratio and Score) are 
presented in Table 6 (last part). In addition it will also 
perform the pair wise comparison between three sets 
(Table 6, last part) of models to see significant differ-
ences among them [9,10]. These tests are computed by 
using necessary information’s from “covm1” and “asts1” 
data set created by above SAS instructions. 

5.4. Mode of Availability  

In order to reduce the paper length we did not include the 
program code here. The full program is available on re-
quest. Any one, who is interested, can request the corre-
sponding author for the complete program. The program 
file and the necessary instruction for users will be sent as 
e-mail attachment. A hypothetical data set also will be 
provided for demonstration purpose. 

5.5. Limitations 

The program has been developed for Markov Models 
with transient states only. If there is any absorbing state 
the present version of our program will not work. Also, 
the present version works only for binary outcome vari-
able. Make sure that there is no data set named “Fdatres” 
in SAS WORK library; our program will overwrite the 
existing data set with this name. We are working to ex-
tend the program for inclusion of absorbing state [5]. We 
cannot provide the data set used here according to data 
use condition from HRS. However, the HRS data prod-
ucts are available to researchers and analysts with appro-
priate permission. The interested readers can visit the 
HRS website (http://hrsonline.isr.umich.edu/) for more 
details about this data set. 

6. Conclusion 

In this paper we explained the development of SAS/IML 
program for application to real life data, to estimate the 
parameters of logistic regression for transition, reverse 
transition and repeated transition model from follow-up 
data set. Using the hypothetical data set we have illus-
trated the algorithm for fitting the model with an applica-
tion to real data set. Despite the computational complexi-
ties, with the use of current state of highly efficient SAS/ 
IML statements (SAS/IML), the estimates of parameters 
pose no difficulties. Work is in progress to refine and 
extend the program for absorbing states and with multi- 

state outcome variable. We hope interested researchers 
will find it easy to use the function developed by us to 
estimate the parameters of the model. 
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Appendix: SAS/IML Code to Compute 
Overall Model Test Results 

proc iml; 
reset print; 
use Covm1; 
read all into xsc; 
use Asts; 
read all into xsc1; 
use Asts1; 
read all where(Description=:"Number of Observations") 
into modsc var{TranType nValue1}; 
 
grp=max(xsc1[,1]); 
ivar=ncol(xsc)-2; 
sconu=do(2,3*grp,3); 
loglik=xsc1[(sconu-1),2]; 
score=xsc1[sconu,2]; 
nrn=nrow(xsc); 
ncn=ncol(xsc); 
xsc=xsc[,2:ncn-1]; 
 
scon=do(1,nrn,ivar+1); 
tcou=0; 
 
do mxg = 1 to grp-1; 
co1=xsc[scon[1,mxg],]; 
sc1=xsc[scon[1,mxg]+1:scon[1,mxg]+ivar,]; 
nsn1=modsc[mxg,2]; 
do txg = mxg+1 to grp; 
co2=xsc[scon[1,txg],]; 

sc2=xsc[scon[1,txg]+1:scon[1,txg]+ivar,]; 
nsn2=modsc[txg,2]; 
pab=(((nsn1-1)#sc1)+((nsn2-1)#sc2))/(nsn1+nsn2-2); 
ch1=(co1-co2)*inv(pab)*t(co1-co2); 
chp1=1-probchi(ch1,ivar); 
tch=mxg||txg||ch1||ivar||chp1; 
tcou=tcou+1; 
if (tcou=1) then tch1=tch; 
else tch1=tch1//tch; 
end; 
end; 
ch1=sum(loglik); 
chp1=1-probchi(ch1,ivar*grp); 
ch2=sum(score); 
chp2=1-probchi(ch2,ivar*grp); 
chn2="Likelihood Ratio"//"Score"; 
tchim1=ch1||ivar*grp||chp1; 
tchim2=ch2||ivar*grp||chp2; 
tchim=tchim1//tchim2; 
hon1={"Chi-square","D.F","p-value"}; 
mattrib tchim colname=(hon1) rowname=(chn2) la-
bel={'Overall Model Test'} format=f10.6; 
print tchim; 
ton1={"Model A","Model 
B","Chi-square","D.F","p-value"}; 
mattrib tch1 colname=(ton1) label={'Test for Significane 
Between Different Sets of Estimates'} format=f10.6; 
print tch1; 
reset print; 
quit iml; 
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