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ABSTRACT 

Sensor network basically has many intrinsic limitations such as energy consumption, sensor coverage and connectivity, 
and sensor processing capability. Tracking a moving target in clusters of sensor network online with less complexity 
algorithm and computational burden is our ultimate goal. Particle filtering (PF) technique, augmenting handoff and 
K-means classification of measurement data, is proposed to tackle the tracking mission in a sensor network. The hand-
off decision, an alternative to multi-hop transmission, is implemented for switching between clusters of sensor nodes 
through received signal strength indication (RSSI) measurements. The measurements being used in particle filter proc-
essing are RSSI and time of arrival (TOA). While non-line-of-sight (NLOS) is the dominant bias in tracking estima-
tion/accuracy, it can be easily resolved simply by incorporating K-means classification method in PF processing with-
out any priori identification of LOS/NLOS. Simulation using clusters of sensor nodes in a sensor network is conducted. 
The dependency of tracking performance with computational cost versus number of particles used in PF processing is 
also investigated. 
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1. Introduction 

Sensor networks can be applied in a variety of areas such 
as target tracking, environment monitoring, military sur- 
veillance, medical applications, etc. [1,2]. However, the 
majority of sensor node platforms are operated using the 
low power 802.15.4 wireless technology, and its trans- 
mission range is extremely limited especially in an in- 
door environment [3]. The measurements used in the 
estimate of mobile locations in sensor network may in- 
clude received signal strength, time difference of arrival 
(TDOA), time of arrival (TOA), and angle of arrival 
(AOA) [4]. Eventually, the above propagation measure-
ment scenarios are divided into two categories, line-of- 
sight (LOS) and non-line-of-sight (NLOS). In multi-path 
propagation environments, particularly indoors or urban 
areas, the LOS path between nodes may be obstructed [5]. 
However, the NLOS propagation usually leads to a posi- 
tive bias and causes a serious error in the results of 
tracking estimation [6]. 

Lots of attentions have been focused on the identifica-
tion of LOS/NLOS condition and the mitigation of 
NLOS bias. A simple hypothesis test has been conducted 
to tell whether it’s LOS or NLOS by the fact that the 
standard deviation of the range measurement of NLOS is 
presumably larger than the LOS’ [6]. Using the individ-
ual measurement detection (IMD), basically a hypothesis 

test to identify whether an incoming measurement is 
LOS or NLOS and those NLOS ones being discarded, to 
do target tracking is proposed [7]; extended Kalman filter 
(EKF) algorithm is applied accordingly to do the target 
tracking job. The noise modeling of LOS/NLOS is for-
mulated by a two-state Markov process, and the degree 
of contamination by NLOS errors is correlated with the 
transition probability of the Markov process. A disad-
vantageous effect has been indicated, the number of se-
lected LOS measurements by IMD is different at each 
step, resulting in dimension validation of the recon-
structed LOS measurement vector being dynamic; slow 
convergence rate is also appearing in the tracking results 
when using EKF. A modified Kalman filtering technique, 
adopting the modification at the measurement update 
stage, is introduced to tackle the NLOS identifica-
tion/mitigation problem [8]. The NLOS positive bias is 
estimated directly throughout the constrained optimiza- 
tion method; no prior distribution knowledge of the 
NLOS error is needed, as claimed by the authors. 

Our proposed tracking algorithm utilizes clusters of 
sensor network with handoff scheme in a heterogeneous 
wireless environment. A handoff scheme specified in 
IEEE 802.11 network is the process whereby a mobile 
station shifts its association from one access point (AP) 
to another [9]. When a mobile station moves out of the 
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range of an AP and into another’s, the handoff occurs 
during which there is an exchange of management 
frames [10]. 

On the other hand, clustering analysis is the method of 
unsupervised learning. It may include two parts, namely, 
partitional clustering and hierarchical clustering. Parti-
tional clustering is a set of objects classified into K clus-
ters without hierarchical structure [11]. The clustering 
method with PF can reduce the degradation of NLOS 
propagation efficacy in tracking estimation results. 
Meanwhile, handoff scheme is applied in the clusters of 
sensor network. In clusters of sensor network, each clus-
ter has numbers of sensor nodes, including TOA and 
RSSI sensors. Figure 1 shows the proposed architecture 
that illustrates an event of target tracking in clusters of 
sensor network. 

The general approach to processing the LOS/NLOS 
signals in cellular communication network is to deter-
mine whether it’s a LOS or NLOS condition. Even the 
fuzzy inference scheme is introduced to tell whether it is 
LOS or NLOS before any processing jobs can be done 
[10]. It is combined with adaptive Kalman filter to estab-
lish mobile location estimator; undoubtedly, system and 
computational complexities are increasing so tremen-
dously, hindering the potentials in real-time applications. 

We present an architecture which utilizes clustering 
analysis method with particle filter (PF) to track a mov-
ing target. Particle filter implements sequential Monte 
Carlo simulation based on a set of particles to construct 
prior density with associated weights for the approxima-
tion of posterior density. 

The beneficial features of the proposed scenario are 
listed as bellows,  
 Intuitive but feasible for real-time applications due to 

its low system and computational complexity attrib-
utes 

 

 

Figure 1. The proposed architecture in clusters of sensor 
network. 

 No need to identify whether it is under LOS or NLOS 
condition prior to any processing of the target loca-
tion estimation 

 Only RSSI and TOA sensor measurements are re-
quired, practical and low-cost; fingerprinting scheme, 
the build-up of a “radio map” database [6], and extra 
hardware (sophisticated measurement devices) are not 
employed, always leading to a low complexity, cost- 
effective scenario. 

 Both K-means clustering and hand-off schemes are 
incorporated into the particle filter, minimizing the 
system complexity to the most. 

This analysis is set up as follows. The target’s motion 
model and the associated measurement equation and 
NLOS propagation are described in Section 2. Particle 
filter is described in Section 3. Section 4 discusses the 
proposed tracking algorithm which includes the handoff 
scheme. The proposed tracking algorithm with clustering 
method is derived in Section 5. The simulation and per-
formance analysis are presented in Section 6. Section 7 
includes the conclusion. 

2. Motion Models 

We assume a mobile target’s movement is on a two-di- 
mensional (2-D) plane. Besides, the measurement of 
signal propagation with LOS/NLOS conditions may be 
modeled as a two-state Markov process if the perform-
ance at transient stage is under investigation. 

2.1. Target Model 

The moving target’s state vector is defined as  
 T

1,k k k k k x x y y  x , consisting of position and velocity 
at a time instant k, where ()T stands for transpose opera-
tion of matrix. The target’s motion is modeled as 

1,11,11,1   kkk wA xx           (1) 

where  
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and I2 is the 2  2 identity matrix;  is the Kronecker 
product operator; A1 is the state transition matrix; sT is 
the sampling time; and  is a zero mean white 
Gaussian noise process with covariance matrix Q1, i.e., 
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where q1 is a scalar which determines the intensity of the 
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process noise and E[ ] is the expectation. 
An alternative motion model may be described as be-

lo

k          (2)

Here

w, 

2, 2 2, 1 2, 1k kA w  x x
 

 T

2,k k k k k k k x x x y y y    x ;  ,k k x y  represents 
e position of the target;  ,k kx y th and  ,k k x y 

 target 
denote the 

velocity and acceleration o ng along the x 
and y directions, respectively. The transition matrix A2 is 
given by 

f the movi
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Here . The covariance matrix Q2 is 
av

 2, 1 2~ 0,kw N Q

 transformingailable by  a continuous-time stochastic 
target model into an equivalent discrete-time model [12]: 

2 2 3 2sQ q I Q 
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Here q2 is a scalar determining the intensity of the 
pr

2.2. Measurement Model 

s stationary, and its state 

T

ocess noise. 

Assume that our sensor node i
vector is 

, , j j j
i x i y is s s     

the ith sensor node in the jth cluster zone. The measure-
ment equation corresponding to TOA data can be formu-
lated as: 

j
i TOA k ic D s   x           (3) 

where c is the propagation speed of the transmitted signal; 
xk is the state vector of the moving target; and i  is the 
propagation time. The measurement equation wi NLOS 
propagation error is shown as below, 

th 

  NLOSk k kz h  x k .          (4) 

The measurement function h() models t

      (5) 

Here the random variable nlos has been mo
large scale of covariance value, usually hund

v

he TOA through 
the ith sensor; vk is the measurement noise process inde-
pendent of w1,k−1, w2,k−1, and any other sensor noise 
source; and the measurement noise is modeled by a zero 
mean Gaussian white noise N (0,R). NLOSk is the NLOS 
propagation error at the sampling instant k, modeled by a 
two modes/states Markov process [13]. Therefore the 
propagation error, NLOSk, is 

0, i f  LOS present
NLOS

,  if  NLOS  present.k nlos
 


deled by a 
red of me-

ters, of statistical distribution. An alternative measure-
ment model may be employed [12], 

 k k k k kz h b nlos G n   x          (6)
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bk is a binary sequence, modeled by a two-state, LOS and 
NLOS, discrete-time Markov chain process and m is the 

mportance sampling 
ith some numbers of 

typical standard deviation of LOS. 

3. Particle Filter Processing 

Particle filter is based on sequential i
(SIS) to estimate the system state w
particles with their associated weightings. Particle filter-
ing can be arranged to process the nonlinear and non- 
Gaussian systems, and it has become an important alter-
native to the extended Kalman filter (EKF) [14]. There 
are five processing stages in the implementation of PF, 
i.e., initialization, particle propagation, weighting com-
putation, resampling, and estimation [14]. First of all, 
particles are drawn from a proposal distribution at the 
initialization step, where each particle possesses initial 
weights. Then, the particle propagation is based on the 
EKF to produce next state’s distribution. At the weight-
ing computation step, particle weights are set equal to the 
ratio of probability distributions from the proposal dis-
tribution. The update equation of particle weighting can 
be shown as [14] 

   
 

1 i i i
k k k ki i

k

p z x p x x
w w


 1

1 ,  
k i i

k k kq x x z




         (7)
 

where the quantity ()i
k denotes it is the ith

sampling time instant; q() is an importance density, 
 particle at kth 

which can generate particles xi; and the likelihood func-
tion  i

k kp z x is formulated by multivariate Gaussian 
distribution, 

 
 

   11 1
ˆ ˆexp

T

k kp z x z z R z z     22π
k k k k kn

kR  

 (8) 

where  ˆˆ kz h x  
utilize resam

with (^) standing for estimate value. 
Here we pling strategy to eliminate part

w weighti
icles 

with lo ngs, and duplicates particles with larger 
weighting. At the final step, it needs to calculate the cen-
ter of gravity from a group of samples. The PF algorithm 
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is summarized as below, 
Particle Filter Algorithm 

Step 1. Initialization 
Draw initial samples  ~0 0

ix q x . 
Set the weig  1/N where 

icles us  PF processing. 
agation 

on 

hting of particles, 0
iw , equal to

N is the number of part ed in
Step 2. Particle Prop
Predict the next state of particles and update each par-
ticle by using EKF technique. 
Step 3. Weighting Computati
Update the weightings with likelihood function 

 1
i i i
k k k kw w p z x . 

Normalize the weighting for each particle 

=1 .

k N i
ki

w

i
i w
 kw  

Step 4. Resampling 
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 particles and var() stands
is the effective num-

ber of  for taking the vari-
ance while Nthreshold is the prescribed threshold, usually 

as 2/3 of the particle num

k

chosen ber.  
Step 5. Estimation 
Calculate the mean of particles with their associated 

.
N

i i
weightings, ˆk

1i
kx w x  



 Tracking  



4. Algorithm

The handoff scheme is applied to clusters of sensor net- 
nal strength measurements 

, and each cluster of RSSI 
work, using the received sig
generated by the moving target
sensors provides the signal strength indications to switch 
on/off the handoff. 

For formulating the signal strength measurements, let 
j

k  be the signal strength received by a moving target 
from jth RSSI sensor at the kth sampling instant. The 
re
the

ceived signal strengths can be modeled as a function of 
 distance plus a logarithmic of the shadowing compo-

nent [15], i.e., 

dbmj j j
k k kp               (9)

 
10 logj j

k jp d    k          (10)
 

wher s the local signal power at
instan

e j
kp i

t; 
 the kth sampling 

  is the path loss index; j is a co
mined by transmitted power, waveleng

 t

nstant deter-
th, and antenna 

gain of he jth RSSI sensor; j
kd  is the distance between 

the moving target and the jth RSSI sensor; and j
k is the 

logarithm of the shadow fading, modeled by a zero mean 
Gaussian random process. 

Handoff is triggered only if the current signal strength 
drops below a user-defined threshold Δ, and any other 
RSSI sensor’s strength is str r than that of t 
on

c

onge

ifk r

 the curren
e. Here 1

kE  is defined as the event with handoff being 
triggered, and 0

kE  is the non-handoff situation [15,16], 
that is, 

1

0

ifk r cE

E

 
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 
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where c  
 to

is the receive  strength at m ng tar-
get due  current RSSI sen nd

d signal
sor a

ovi
 r  is the received 

 powe oving target owni o a nce R  sen-
r t

r at m ng t  refere SSI
sor othe han the current one. The conditional cost func- 
tion is therefore defined 

 1 1, if

0, if
c

r kC E





 
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         (12)
 

c
Handoff will be activated starting from t t 

RSSI sensor to the candidate , when t
he curren

one he cost function 
 1

r kC E is equal to 1 [15] oth Equations ) and
(1

The can

. If b  (11  
2) are not satisfied, it means that there is no handoff 

needed. 
didate cluster of sensor network is chosen by 

handoff decision, and measurements can be expressed 
as j

k kz z . Here the measurements follow Eq n (4), 
a

uatio
n

e to be

d the given TOA measurement would be used in parti-
cle filter processing. Through PF processing, likelihoods 
hav  changed accordingly with handoff decision for 
each particle,    j i

k k k kp z x p z x . 

5. Tracking with K-Means Algorithm 

The use of K-means method is to cluster th easure-
ing 

 2. 

-
ith nu i-

ial cent s, are 

e m
ack

ure

meric. In
roid

ment residual to be used in PF. The flowchart of tr
algorithm with clustering method is shown in Fig

5.1. K-means Clustering Method 

K-means clustering is an unsupervised learning, compu
tationally efficient for large datasets w
tially, K samples, serving as the init
chosen at random from the whole sample space to ap-
proximate the centroids of initial clusters. The cluster 
centroid is typically the mean of the data in the cluster. 

Let  1 2, , , Ly y y y  be the dataset; ml is the cen-
troid of cluster Cl with Nl data points. The calculation of 
the centroid of clusters is described as below, 

1
 , 1,2, , .l

l l

m l k
N C

 

 y

y
      (13)

 

where k is the number of clusters. First, initialize the  
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Figure 2. The block diagram of tracking estimation with 
clustering analysis. 
 
number of centroids k, specified by user and ndicating 

st cluster centroid. After assigning all 
ata points, we recalculate the position of the k centroids. 

e-
sidual data. Note that the number of clusters k has to be 
selected first, due to the fact that choosi
will results in different values for J. 

lgorithm. After per-
esidual, we 
he smallest 

 i
the desired number of clusters. Each data point is as-
signed to the neare
d
After all, the whole process iteratively updates the cen-
troids until no substantial changes of positions of all k 
centroids for each cluster. K-means clustering process is 
directed by an objective function. The sum of the squared 
error function is often served as an objective function, 

2

=1

|| || .
L

k

l
l C

J m


  
y

y          (14)
 

Here J is the sum of squared error of measurement r

ng a different k 

5.2. Tracking with Clustering Method 

The processing of particle evolution in PF actually up-
dates each particle by using EKF a
forming the clustering of the measurement r
choose one of the dataset clusters, having t
average value. Here the dataset cluster is the part of 
measurement residual dataset, and each cluster is chosen 
by K-means clustering algorithm, which can be ex-
pressed as Equations (17) and (18). The chosen dataset is 
utilized in extended Kalman filter, the intermediate step 
of the PF algorithm. The proposed method of K-means 
clustering with extended Kalman filter is described as 
follows: 

1) Prediction 

1 1 1
ˆ ˆ

k k k kx Ax              (15)

T
1 1 1k k k kP AP A Q            (16)

 

2) Residual clustering 

            (17)
 1

ˆk k k ke z h x  

e   _ meansk kk          (18)
 

3) Correction 

 k k1
ˆ ˆ arg Minkk k k kx x K e           (19)

 

  1
T T

1 1k k k k kP H HP H   R

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K

  1kk k k kP I K H P       

where H is the Jacobian of measurement matrix which
role is to correctly propagate the relevant com
the measurement information for the Kalman gain K
[2,17]; ek is the data of measurement resi

ulations are performed on a two-dimen- 
sional plane with 9 clusters of sensor network system. 

ving along a random trajectory with 

n as the sys-
tem state. The simulation parameters are summarized in 

     (21)
 

 
ponent of 

 k

dual for cluster-
ing analysis; k is the clustering dataset for correction 
step; Pk|k−1 is the error covariance matrix for the state x, 
processing at the time k given the prior value, Pk−1; and 
k_means() is the function of K-means clustering proc-
essing. The favorable clustering analysis can classify the 
measurement residuals with NLOS noise propagation, 
although possibly eliminating the residual data of LOS 
condition. 

6. Simulation 

To examine the applicability of the proposed tracking 
algorithm, sim

The target is mo
varying velocity and acceleration; hence, the target can 
move freely to any cluster. The positions of TOA sensors, 
s1, s2, ···, sn, are randomly deployed, and each cluster 
contains 20 TOA sensors. Besides, the coordinates of 
RSSI sensors are assumed to be at C1(70,50), 
C2(330,310), C3(330,310), C4(–190,320), C5(–190,–220), 
C6(70,400), C7(70,–300), C8(–270,50), and C9(420,50) in 
each cluster, respectively. In addition, each TOA sensor 
may have chance to involve NLOS propagation. Here the 
NLOS propagation errors are modeled as a random vari-
able, following the statistical distribution defined in Sec-
tion 2. Figure 3 is showing a realization of the random 
NLOS error distribution at a TOA sensor.  

6.1. Results of Tracking Estimation 

The motion model for simulation follows Equation (2), 
including position, velocity, and acceleratio

Table 1. 
The initial coordinates for the simulated and true (or 

actual) moving targets are  Tˆ 500, 10,0,400, 25,0ox      
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and  T410, 20,2,500, 15,1ox    , respectively. The 
initial error covariance is defined by a 6-by-6 diagonal 
matrix  ,100,100 diag 1000,100,10,1000P 

easurem
, and the 

m ent covariance matrix R is defined as a 20-by- 
20 diagonal matrix,  5, , 25

riation 

gnals ar

sings of

diag 25, 2
s the entire picture of the sim

ies. Figure 5 illustrates the va

hese received si

due to the cros

R   
show ulation scenario, in- 
cluding sensors positions and the actual and estimated 
trajector of received 
signal strengths, which are relayed to the activations of 
handoff events. Here t e measured 
by RSSI sensors, where the position of sensors C1, C2, ···, 
C9 are located at each cluster of sensors, respectively. 
Hence, with the variation of signal strength at each clus-
ter, the handoff event will be triggered based on Equa-
tions (11) and (12). 

According to the occurrences of handoff events, the 
switching among the clusters in the sensor network are 
shown in Figure 6. Noticed that the handoffs were trig- 
gering at those time periods around 50 and 130, switch- 
ing back and forth 

. Figure 4

 the cluster 
boundaries (#3, #4, and #9). Figure 7 illustrates the state 
tracking of position, velocity, and acceleration. Figure 8 
depicts the RMSE values of estimations along x- and 
y-axis, including position, velocity, and acceleration. 
 

Table 1. Simulation Parameters. 

Parameters Definition Remark 

Ts = 1/5 Sampling period 200ms 

T = 150 # of iteration 
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Figure 3. The variations of noise levels (m) with randomly 
toggling between LOS and NLOS conditions. 

6.2. Performance Analysis 

During the simulation, we found that using the tracking 
algorithm in combination with K-means clustering even- 
tually reduces the estimation error of position, velocity, 
and acceleration substantially. The comparison of root- 
mean-square errors (RMSE) are shown in Figure 9. 
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Figure 5. The signal strength at RSSI sensors from each 
cluster of network. 
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Figure 7. The estimations of acceleration, velocity, and posi- 
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Figure 9. Comparing the RMSE values for the estimation 
rrors of position, velocity, and acceleration with and 

without the augmentation of K-means clustering algorithm. 
 

In Figure 9, the performance of tracking algorithm 
with K-means clustering is outperforming the one with- 
out clustering. The comparisons of error distributions due 
to the scenarios with and without the introduction of 
K-means clustering algorithm are plotted in Figure 10. 
The average estimation errors after conducting 20 Monte 

Carlo runs are denoted by Error1, solely with PF proc- 
essing, whereas Error2 is incorporating with K-means 
clustering method. 

The probability that Error1 is strictly greater than Er- 
ror2 is 75% in average, while 25% is the case, Error1 < 
Error2. Similarly, assuming the possibility that Error1 
will be strictly less than two times of Error2, the results 
are shown in Figure 11 in the estimations of position, 
velocity, and acceleration. The robustness of the pro- 
posed PF and K-means clustering technique to mitigate 
the NLOS effect is verified as shown in both Figures 10 
and 11.  

As proposed above, the tracking algorithm is estab

e

- 
lished by particle filter, and particle numbers are set by 
user. Different particle numbers may affect the filtering 
ccuracy and processing speed for target tracking. Hence, a

we choose five sets of particle numbers to investigate the 
performance of tracking accuracy; there are 10, 50, 100, 
500, and 1000 particles used for performance analysis. 
Environments for simulation are surrounded with either 
LOS or NLOS propagation. 

We simulate the tracking estimation in a surrounded 
LOS propagation environment, and plot the means of 
estimation errors versus different numbers of particles, as 
shown in Figure 12. The results, with a surrounded 
NLOS propagation environment, are shown in Figure 13. 
In addition, Figure 14 illustrates the performance with 
the employment of K-means clustering. 
 

 

Figure 10. The probability of error distributions. 
 

 

Figure 11. The probability of error distributions with the 
assumption Error1 is less than two times of Error2. 
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Figure 12. The results, estimation errors versus numbers of 
particles, using solely particle filtering in a surrounded LOS 
propagation environment. 
 

 

Figure 13. The results, estimation errors versus numbers of 
particles, using solely particle filtering in a surrounded 
NLOS propagation environment. 
 

 

Figure 14. The results, estimation errors versus numbers of 
particles, using particle filtering with K-means clustering in 
a surrounded NLOS propagation environment. 

As the simulation results shown from Figure 12 to 
Figure 14, each figure is simulated with 1000 time in- 
stants, and we compute its associated estimation errors, 
position, velocity, and acceleration. 

As position, velocity, and acceleration are estimated, 
not too much benefit can we expect in a LOS propaga- 
tion environment when we vary the number of particles 
in PF processing. The number of particles we choose is 
50, being attractive in real-time tracking applications. 
The estimation errors gradually reduce with the increase- 
ing of particle numbers. On the contrary, situated in a 
NLOS environment, substantial improvement of estima- 
tion errors are illustrated in Figure 14 with K-means 
clustering scenario; eventually, the trade-off among the 
increment of particle numbers, estimation errors, and 

e particle filter process-
g job.  

7. Conclusions 

Sophisticated and high system/computational complexity 
algorithms are always proposed to mitigate the NLOS 
effect and estimate the mobile/target location. In this 
article, we propose a simple and feasible generic tracking 
algorithm to track the moving target in clusters of sensor 
network. The proposed tracking algorithm is the tech- 
nique that adds handoff decision to the ordinary tracking 
algorithm, based on TOA and RSSI measurements; the 
handoff decision is implemented on clusters of sensor 
network.  

Besides, K-means clustering is utilized, and it com- 
bines with particle filter to reduce the NLOS propagation 
effect. Finally, the proposed algorithm can accom

[1] P. M. Djuric, M. Vemula and M. F. Bugallo, “Tracking 

computational load is accomplished via the use of mod- 
erate number of particle, i.e., 50, and the augmentation of 
K-means clustering scheme in th
in

plish 
higher accuracy in tracking estimation for sure.  

Simulations illustrate that the estimation results of 
tracking trajectory is well predicted, even around the 
NLOS propagation environment. This analysis applies to 
any motion modes, even with varying acceleration. 
Moreover, we also compare the results of tracking algo- 
rithm with and without K-means clustering in statistics. 
Through the performance analysis, it demonstrates that 
the proposed tracking algorithm may find potentials in 
real-time tracking/localization applications as the particle 
numbers used are reducing to as low as 50.  
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Nomenclature 

Ai, i = 1, 2  State transition matrix 
bk, k = 1, 2 Binary sequence (LOS or NLOS) 

i
kE , i = 0, 1 Handoff/non-Handoff event 

NLOSk   Measurement error at time instant k  
p(|)  Conditional probabili
q()   Importance density 
Xi,k, i = 1, 2 Target state vector at time instant k  

i
kW           Weighting associated with ith particle at 

time instant k 
 


