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ABSTRACT 

When dielectric elastomers sandwiched between compliant electrodes and high electric voltage is applied to the dielec-
tric elastomers. Then due to the electrostatic force between the electrodes the elastomers expands in plane and contract 
out of plane so that it becomes thinner. As the thickness decreases we observe the increase in the applied electric volt-
age with the positive feedback effect. This positive feedback leads the electrical as well as mechanical breakdown of 
elastomer. By applying a mechanical pre-stretch the mechanical stability of dielectric elastomers gets also increased. In 

this paper, a new generalized set of strain/stretch variables N
rq  has been introduced to get the expression for second 

order elastic moduli for the ideal electro elastic material deformed to orthorhombic structure. The strength of a loaded 
crystal determined from the new moduli has been compared with the strength of classical (Green, Stretch) moduli. It has 
been observed that the use of incorrect formula by ignoring shear strain leads to incorrect estimation of stability. This 
problem has been resolved by considering stretch variable in tensor form as generally observed in the process of elec-
trostriction in the elastomers.  
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1. Introduction 

Dielectric elastomer is a sub-category of Electroactive 
polymer. Dielectric elastomers are the materials with 
special mechanical and electrical performance, which can 
produced many kinds of mechanical responses with ap-
plied electric field [1-4]. Dielectric elastomers show 
large deformation (380%), high elastic energy density 
(3.4 J/g), high efficiency, high responsive speed, good 
reliability and durability. With these features dielectric 
elastomers have been intensely studied in these years due 
to their wide range application in different field’s for 
example medical, energy harvesting, soft robots, adaptive 
optics and electric generators [5]. In recent years, the 
stability analysis of dielectric elastomers is most popular 
issue, especially after Suo et al. proposed the electrome-
chanical stability theory of dielectric elastomers [6-12]. 
In their research they discussed the case, when a layer of 
dielectric elastomer is sandwiched between two compli-
ant electrodes and voltage applied between the electrodes 
then as the voltage ramps up, the layer thins down, so the 
same voltage produces a higher electric field which fur-
ther thins down the elastomer as a positive feedback till 
the electrical breakdown of dielectric elastomer hap-
pen .It hinders the realization of large stable deformation. 
For removal of this instability, researchers used the pre- 

stretch conditions with material constants. With the posi-
tive feedback as a result of equation E = V/d where d is 
the thickness of dielectric elastomer, as the voltage in-
creases then there is a possibility of mechanical break-
down of the elastomer at very high voltage after crossing 
the elastic limit. 

In this paper, we discuss the mechanical stability of a 
dielectric elastomer under the influence of electric field. 
And we try to show that what will happen if we consider 

ij  as stretch in case of elastomer [13-17]. 
In this work, we have adopted a new generalized set of 

strain variables N
rq  to get the expression for second 

order elastic constant for a form deformed to orthorhom-
bic structure [18-19]. The strength of a loaded system 
determined from the new moduli has been compared 
with the strength of Green and Stretch moduli. 

N
rq is a generalised variable containing ij  which 

show that when field is applied on dielectric elastomer 
then effect of it not only produced the deformation only 
in one direction but it will also affect the perpendicular 
positions. So ij  is the tensor notation of the stretch   
which is used by researcher for explaining the electrical 
stability of dielectric elastomers. This concept of gener-
alised co-ordinate is introduced for explaining the me-
chanical stability of bcc iron structure but here it is used 
for the dielectric elastomers. 
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2. Theoretical Approach 

Consider a dielectric elastomer with three mechanical 
forces from three perpendicular directions and stretch λij. 

Now we consider a new set of generalized geometric 
variable for a deformed structure 

  
2

N
ij ik kj ij ij ij

K
q K         
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where ij  the Kroneckerdelta, K is can assume any 
suitable value and ij  are the elements of stretch tensor. 

The stretch variable defined by 

 , 1, 2,3i ij jjX X i j            (2) 

where Xj and Xi are the reference and current rectangular 
co-ordinates of any lattice vector respectively. 

The co-ordinates corresponding to new set of strain 
variables for an orthorhombic structure may explicitly be 
expressed by 
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where the tensor notation (ij) in Equation (1) are con-
verted into matrix notation (r) 
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23 4, 31 5, 12 6.
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Depending upon K, the Equation (3) leads to a desired 
set of strain variables. For K = 0 and K = 1 the expression 
results to stretch and Green variables which are &s G

r rq q  
respectively. 

The generalized set of elastic moduli Crs, can be de-
fined by 
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                (4) 

where qr (r = 1, 2, 3,···, 6) are generalized co-ordinates. 
Using Equations (3) and (4), we obtain the expression for 
the set of new moduli N

rsC  i.e. N
iiiiC , N

iijjC  , N
ijijC  for 

example 
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Depending upon the value of K, Crs is capable of re-
producing any desired set of elastic moduli. 

And if Hessian (H) 

0rs r sC q q    is positive definite i.e. energy is mini-
mum at equilibrium state. Then system must be stable. 

3. Stability Condition 

The difference between S-strength (corresponding to K = 
0) and N-strength (corresponding to new defined variable) 
of a deformed crystal may be shown to be given by 
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        (6) 

(r, u, v = 1,2,···,6) 

In this equation using Equation (3) we show that for 
cubic crystal deformed to orthorhombic structure 
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Hill and Milestein calculated the values of S-G which 
can also be obtained from Equation (7) for K = 1 
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From above equations, we obtain  
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Equations (7)-(9) enable the stability to be compared 
via the respective convexity criteria. A comparison of 
various strength for different loads and value of K' is 
given by 

Case 1: P1, P2, P3 ≥ 0; K   ≥ 0: S ≥ N ≥ G 
Case 2: P1, P2, P3 ≥ 0; K   ≤ 0: S ≥ G ≥ N 
Case 3: P1, P2, P3 ≤ 0; K   > 0: G ≥ S ≥ N 
Case 4: P1, P2, P3 ≤ 0; K   < 0: N ≥ G ≥ S 
In the above whole explanation E is the internal energy 

per unit reference cell and also function of generalised 

variable and G
ii G

i

E
P

q




 . 

4. Conclusion & Discussion 

The above whole explanation is based on the condition 
that the elastomer experience only the mechanical forces. 
But actuation in an elastomer consist effect of electric 
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and mechanical field. So for explaining the mechanical 
stability it is considered that two mechanical forces are 
applied perpendicularly to each other and from third 
perpendicular direction electric field is applied to elas-
tomer. The two mechanical forces behave as pre-stretch 
in elastomer. So P1 and P2 are equivalent to stresses pro-
duce in the elastomers due to these forces in their direc-
tions and P3 is the change in elastomer due to applied 
electric field in its direction. On basis of the above four 
conditions it is clear that the system becomes stable with 
theoretically explained generalised variable. 
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