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ABSTRACT 

The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not 
easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with 
heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to 
attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results com- 
paring to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm 
which we call “Multiple Impulse Method (MIM)”, where the principle is to search codewords locally around the 
all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will 
most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum dis- 
tance of the linear code.  
 
Keywords: Minimum Distance; Error Impulse Method; Heuristic Methods; Genetic Algorithms; NP-Hardness; Linear 

Error Correcting Codes; BCH Codes; QR Codes; Double Circulant Codes 

1. Introduction 

The Minimum distance of a linear error correcting code 
has a practical and theoretical interest. It provides a great 
deal of information on the code capability in detecting 
and in correcting errors or erasures.  

Since, to date, these problems cannot be solved mathe- 
matically because it is in general a NP-hard problem, it 
becomes necessary to physically search the codewords of 
a code in order to find the codeword with the minimum 
weight. Unfortunately, as the size of the code increases, 
the size of the search space becomes prohibitively large. 
The number of information bits in a code, k, defines the 
size of a search space. Note that k is also the number of 
basis vectors in the code and thus the size of the search 
space is 2 k. Thus, an exhaustive search is not feasible, 
but a heuristic search may provide valuable information 
and, in some cases, perhaps a solution. We propose sev-
eral different algorithms and heuristic search techniques 
such as Genetic Algorithm (GA) [1-4], and search local 
error using a Soft-In decoder when applied to the prob-
lem of determining the true minimum distance of a linear 
block code [5].  

In the past, many excellent studies have found the 
minimum weight for Quadratic Residue (QR) codes or its 
extended codes were presented in [6-10], in [11] we have 

estimated the minimum distance of Double Circulant 
Codes (DCC) using genetic algorithm, and Wallis et al. 
[12] have presented a different genetics techniques ap- 
plied to find an estimate of the minimum distance for 
some Bose-Chaudhuri-Hocquenghem (BCH) codes, In 
[13], Nouh et al. have used genetic algorithms for finding 
a likelihood weight enumerator of some linear block 
codes, in particular their minimum weights.  

Other works interest to the distance measurement me- 
thods have been introduced: Garello’s true distance spec- 
trum method [14], Berrou’s error-impulse method [15], 
Garello’s all-zero iterative decoding method [16] and 
Crozier’s double (and triple) impulse method(s) [17]. 

Furthermore, there are also other works [18-20] based 
on artificial intelligence, trying to solve problems related 
to coding theory.  

In this paper, we deal with finding a good estimate of 
minimum distance of linear block codes using genetic 
algorithms to BCH, QR, and DCC codes and which we 
denote dt, and we compare our results to previous works. 
Finally, we present results obtained by using our search 
local error method published in a previous work [5], 
where we use a Soft-In Ordered Statistics decoder 
(OSD).  

The remainder of this paper is organized as follow: in 
Section 2, we introduce the genetic algorithms; Section 3 
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describes the proposed heuristic methods to find a tight 
minimum distance, Section 4 reports the simulation re- 
sults and discussions. Finally, Section 5 presents the 
conclusion and future trends. 

2. Genetic Algorithms 

Genetic Algorithms was first proposed by John Holland’s, 
as a means to find good solutions to problems that were 
otherwise computationally intractable. Holland’s schema 
theorem [21], and the related building block hypothesis, 
provided a theoretical and conceptual basis for the design 
of efficient GA. It also proved straight forward to im- 
plement GA due to their highly modular nature. As a 
consequence, the field grew quickly and the technique 
was successfully applied to a wide range of practical 
problems in science, engineering and industry. GA the- 
ory is an active and growing area, with a range of ap- 
proaches being used to describe and explain phenomena 
not anticipated by earlier theory. In tandem with this, 
more sophisticated approaches for directing the evolution 
of a GA population are aimed at improving performance 
on classes of problem known to be difficult for GA, [21]. 
The development and success of GA contributed greatly 
to a wider interest in computational approaches based on 
natural phenomena. It is now a major stand of the wider 
field of computational intelligence, which encompasses 
techniques such as neural networks, and artificial immu- 
nology. Genetic algorithms are search methods that can 
be used for both solving problems and modelling evolu- 
tionary systems.  

Since it is heuristic (it estimates a solution), GA differs 
from other heuristic methods in several ways. The most 
important difference is that it works on a population of  

possible solutions, while other heuristic methods use a 
Another important difference is that GA is not a determi- 
nistic but a probabilistic one.  

A genetic algorithm is defined by (see Figure 1): 
Individual or chromosome: a potential solution of 

the problem, it’s a sequence of genes. 
Population: a set of points of the research space.  
Environment: the space of research.  
Fitness function: the function to maximize/minimize.  
Encoding of chromosomes: it depends on the treated 

problem, the famous known schemes of coding are: bi- 
nary encoding, permutation encoding, value encoding 
and tree encoding.  

Stochastic Operators: 
 Selection: replicates the most successful solutions 

found in a population at a rate proportional to their 
relative quality.  

 Crossover: Decomposes two distinct solutions and 
then randomly mixes their parts to form novel solu- 
tions.  

 Mutation: Randomly perturbs a candidate solution. 
In the selection process, some individuals are selected 
to be copied into a tentative next population. Individ-
ual with higher fitness value is more likely to be se-
lected. The selected individuals are altered by the 
mutation and crossover and form a new population of 
solutions. The GA is simple yet provides an adaptive 
and robust optimization methodology [22].  

3. Estimation Methods for Finding the 
Minimum Distance 

3.1. Methods Based on Genetic Algorithms 

In the sequel of this paper, we use the following nota- 
 

 

Figure 1. The basic structure of the genetic algorithm.  
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tions: 
 Ni the cardinal of the population. 
 Coding the encoding function. 
 Ng the number of generations.  
 Ne the number of elites (better parents). 
 Ngmax is the maximum number of generations and C(I) 

is the codeword obtained by coding the information 
vector I. 

In order to use genetic algorithms, in our work, we use 
binary encoding which consists to treat an individual as a 
binary sequence. We proposed Two GA variants A and 
B.  

3.1.1. Genetic Algorithm: Variant A 
This algorithm permits to find a minimum weight in a 
linear code C. It is known in field of coding theory that 
there exists always a linear systematic code equivalent to 
C. For the purposes of this paper we suppose that the 
generator matrix G of the code C is systematic; this 
chose permits to initialize the initial population by words 
of weight less than the global upper bound corresponding 
to the length n and the dimension k. the algorithm ex- 
pects as inputs the probability of mutation pm of a single 
bit, and the crossover probability pc.  
 Algorithm Steps 

The steps of the algorithm are organized as follow:  
Step 1: randomly generate an initial population 
Seed uniformly, randomly the initial population with a 

Ni, and where each individual is a word of length k with 
a random weight. We initiate the number of generation 
Ng to 1. 

Step 2: while (Ng < Ngmax) do 
Step 2.1: Compute the fitness of each individual in 

the population 
An individual i represents an information vector of k 

bits which is encoded by the code generator to an n-bit 
code vector. The fitness is the weight of the encoded in- 
dividual if this last is different to zero otherwise, the fit- 
ness is equal to n as a maximum value. 

 
( 0)

dividual

f if f

n otherwise



p p

p p

 



  

f weight Coding in

fitness individual




 


 

Step 2.2: Sort population in increasing order of fit- 
ness 

Step 2.3: Insert the best Ne = 50% individuals in the 
intermediate population 

Step 2.4: For i = Ni/2 to Ni  
Step 2.4.1: Randomly select two individuals p1 and p2 

for reproduction 
Step 2.4.2: 1  = mutate (p1) and 2  = mutate (p2): 

Flip each bit of p1 and p2 with probability pm 
Step 2.4.3: Cross ( 1 , 2 ) with probability pc to pro- 

duce two children ch1 and ch2 

Step 2.4.4: f1  weight (Coding (ch1)); f2  weight 
(Coding (ch2)) 

Step 2.4.5: if (f1 < f2) then insert ch1 in the interme- 
diate population else insert h2 

End For 
End while 
Step 3: output the first individual in the last popula- 

tion 
 Description of the Algorithm 

In this entire paper, the crossover and the mutation 
stochastic operators operate only on the information bits 
represented as k-dimensional vectors. An alternative 
strategy is to represent individuals as n bit codewords. 

In Step 2.1, to evaluate the fitness of an individual, it 
is necessary to first encode it by multiplying it with gen- 
erator matrix G or by the generator polynomial if the 
code is cyclic as in some cases of our study. If the weight 
of the encoded vector is not null, the fitness is equal to 
weight (Coding (vector)) otherwise the fitness is equal 
to n. An individual is better than another if its weight is 
the smallest. 

In Step 2.2 and Step 2.3, we use a Linear Ranking Se- 
lection strategy where individuals in population are 
sorted by non-decreasing order of weight of encoded 
individual vector, and we select the best Ne = 50% indi- 
viduals to yield the intermediate population. 

In Step 2.4, we use a single crossover point strategy, 
in which both parents organism strings is selected. All 
data beyond that point in either organism string is 
swapped between the two parents organisms. The result- 
ing organisms are the children (see Figure 2).  

Concerning selection, we use the random selection, in 
that only Ne individuals are preserved in the next genera- 
tion, and we select randomly two parents to reproduce a 
best offspring that is more likely to contain good schema. 
The mutation step is done bit-wise on offspring with 
probability pm. 

3.1.2. Genetic Algorithm: Variant B 
 Algorithm Steps 

The steps of the algorithm are organized as follow: 
Step 1: randomly generate an initial population 
Seed uniformly, randomly the initial population with a 

Ni, and where each individual is a word of length k with 
a random weight. We initiate the number of generation 
Ng to 1. 
 

Parents 

Children  

Crossover Point 

 

Figure 2. The single crossover structure. 
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Step 2: while (Ng < Ngmax) do  

Two point Crossover 

Parents 

Children  

 

Uniform Crossover 

Step 2.1: Compute the fitness of each individual in 
the population 

An individual i represents an information vector of k 
bits which is encoded by the generator code to an n-bit 
code vector. The fitness is the weight of the encoded in- 
dividual if this last is different to zero otherwise, the fit- 
ness is equal to n as a maximum value. 

  f weight Coding individual  

Step 2.2: Sort population in increasing order of fitness 
Step 2.3: select the best Ne individuals in the inter- 

mediate population 
Step 2.4: i = Ne to Ni 
Step 2.4.1: tournament select of two parents p1 and p2 

for reproduction 
Step 2.4.2: If (rand_value < pc) {Cross p1 and p2 to 

generate ch1 and ch2; Mutate ch1 and ch2 and introduce 
them in the next population} Else introduce p1 or p2 
into the next population with equal probability. 

End For 
Step 2.5: Let currbest = fittest of the intermediate 

population. If (fitness (best) < fitness (currbest)) best = 
currbest 

End while 
Step 3: output best 

 Description of the Algorithm 
There are many differences between variant A and this 

variant in strategies of selection, order of stochastic op- 
erators, and the method of offspring reproduction. 

In Step 2.4.1, we use the tournament selection, in that 
only one of two possible parents is preserved to repro- 
duce two children whose will be inserted in the next 
generation. 

Step 2.4.2, in this variant, the crossover operation de- 
pends on pc, and it is done before the mutation step 
which is done bit-wise on offspring with probability pm. 
In case of no-cross we insert the two initials parents in 
the next generation. We have used three strategies of 
crossover: a single crossover point (depicted in Figure 2), 
two point crossover, and uniform crossover. The two- 
point Crossover that randomly selects two crossover 
points within a chromosome then interchanges the two 
parent chromosomes between these points to produce 
two new offspring (see Figure 3). The Uniform Cross- 
over uses a fixed mixing ratio between two parents. 
Unlike one- and two-point crossover, the Uniform Cross- 
over enables the parent chromosomes to contribute the 
gene level rather than the segment level. An example of 
this operation is depicted in Figure 4. 

3.2. A New Algorithm Based on Error Impulse 
Method 

This method is not based on the analysis properties of the  

 

Figure 3. Two-point crossover structure. 
 

Parents 

Children  

 

Figure 4. Uniform crossover structure. 
 
code but on the correction capability of the decoder. To 
obtain a good estimate of the minimum distance of a 
code, it is critical to apply a noise as possible to the 
all-zero codeword, so that the noise energy brings the 
decoder marginally away from the all-zero codeword. 

The nature of the noise is so important, and it depends 
on the decoder used, for this, Berrou has proposed in [15] 
the Error impulse Method to excite the MLD decoder for 
turbo codes, and Xiao et al. [23] has proposed the Bit 
Reversing to excite the iterative decoder IRB proposed 
by Fossorier for LDPC codes. Another recent approach, 
by Garello et al. [24], is called the “all-zero iterative de- 
coding algorithm”. Here, this approach will be referred to 
as the “single impulse method” for reasons that will be- 
come apparent. This approach is similar to the error im- 
pulse method in that an impulse is again placed at a spe- 
cific data index in the all-zero codeword. The main dif- 
ference is that the amplitude of the impulse is intention- 
ally set very high so that the decoder cannot correct it, 
but rather is forced to converge to (or at least select) a 
non-zero data pattern. 

 1, 1 1, , 1, 1XWe denote by        the word as- 
sociated to the “all-zero” codeword modulated by the 
BPSK. 

3.2.1. Berrou’s Algorithm 
The noise pattern proposed by Berrou et al. in [15] called 
Error Impulse, which was originally proposed for com- 
puting the minimum distance of Turbo codes.  

In [15] C. Berrou developed and justified an algorithm 
with the MLD decoder to compute the minimum distance 
especially for Turbo codes, the principle of the idea is to 
send an “all-zero” codeword and adding gradually the 
level of noise and watch the capability of the decoder to 
return the “all-zero” codeword. Otherwise, this approach 
is based on inserting a (low-amplitude) error impulse into 
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the all-zero codeword at a specific data index to see if the 
Turbo decoder can correct it. The amplitude of the error 
impulse is increased until the decoder fails. The highest 
amplitude that could be corrected provides an estimate of 
the minimum distance associated with that specific data 
index. An estimate of the overall minimum distance is 
obtained by testing all of the data indices in this manner. 
It was shown in [15] that this approach is guaranteed to 
find the true dt if the decoder is a true maximum likely- 
hood (ML) decoder. Of course, Turbo decoders are not 
true ML decoders. Thus, there is no guarantee that the 
error impulse method will find the true dt. Further, al- 
though this approach is usually pessimistic, there is no 
guarantee that the result will be a true lower bound on dt. 

3.2.2. The Proposed Multiple Impulse Method (MIM) 
The proposed algorithm produces a tight minimum dis- 
tance based on true (low-weight) codewords found by a 
fine-tuned local search. 

We assume that dt is in the range [d0, d1] where d0 
and d1 are two integers. Then dt can be determined as 
follows: 

Step 1: set Amin = d1 + 0.5 and dt = n − k1; nb_test. 
Step 2: For i = 1 to nb_test 
Step 2.1: A = d0 – 0.5; 
Step 2.2: Set [(x ) = TRUE]; = x

= x

x
 

=x x

i

Step 2.3: While [(x ) = TRUE] & [A ≤ Amin – 1.0] 
Step 2.3.1: A = A + 1.0 
Step 2.3.2: For nb_error = error_max to 1 
Step 2.3.3: Subdivide A randomly on nb_error posi- 

tions 
Step 2.3.3.1: OSD decoding of Y   
Step 2.3.3.2: If (weight (x ) ≤ dt) then dt = weight (x ) 
Step 2.3.3.3: If ( ) then [( ) = TRUE] =x x
End for 
End while 
Step 2.4: Amin = A; 
End for 
Output: dt is the minimum distance 
We changed the Soft-In MLD decoder used in Ber-

rou’s [15] Algorithm by a Soft-In OSD decoder which is 
very fast, by injecting a noise iteratively in a random 
positions, the decoder word will be mostly near than the 
“all-zero” codeword, and the minimum distance of the 
code will be the minimum weight of the decoded words 
and is not the magnitude A  of the noise as we have in 
Error Impulse Method. 

4. Results and Discussions 

4.1. Parameters Optimization of Genetic  
Algorithms 

In Tables 1-4, we analyze the impact of genetic opera- 
tors on the minimum distance. 

Table 1. Effect of elitism operator. 

Minimum distance 
Codes 

Without elitism With elitism 

BCH (255, 99, 47) 58 52 

BCH (255, 107, 45) 53 53 

BCH (255, 115, 43) 46 46 

QR (193, 97, 27) 28 27 

QR (199, 100, 31) 35 31 

QR (223, 112, 31) 36 32 

 
Table 2. Effect of crossover operator types. 

Minimum distance 
Codes 

1-point 2-point Uniform 

BCH (255, 99, 47) 58 52 57 

BCH (255, 107, 45) 51 53 52 

BCH (255, 115, 43) 48 46 46 

QR (193, 97, 27) 30 27 30 

QR (199, 100, 31) 31 31 32 

QR (223, 112, 31) 35 32 35 

 
Table 3. Effect of selection types. 

Minimum distance 
Codes 

Tournament Random Roulette 

BCH (255, 99, 47) 52 53 53 

BCH (255, 107, 45) 53 50 53 

BCH (255, 115, 43) 46 46 46 

QR (193, 97, 27) 27 30 30 

QR (199, 100, 31) 31 31 31 

QR (223, 112, 31) 32 35 32 

 
Table 4. Effect of mutation operator types. 

Minimum distance 
Codes 

Classic mutation Non classic mutation

BCH (255, 99, 47) 52 57 

BCH (255, 107, 45) 53 57 

BCH (255, 115, 43) 46 48 

QR (193, 97, 27) 27 32 

QR (199, 100, 31) 31 35 

QR (223, 112, 31) 32 40 
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4.1.1. Effect of Elitism 
It appears that elitism significantly improves the per- 
formance of genetic algorithm for QR codes and BCH 
codes. 

4.1.2. Effect of Crossover  
These results explain that 2-point crossover seems to 
perform significantly better than uniform and 1-point 
crossover for QR codes and BCH codes. 

4.1.3. Effect of Selection  
As shown results in the Table 3, in general, the tourna- 
ment selection gives a very close upper bound to the 
minimum distance for QR codes and BCH codes. 

4.1.4. Effect of Mutation  
In this paragraph, we compare the impact of the classic 
mutation with other type of mutation. This last alters an 
individual by bit inversion of chromosome. However, 
such an inversion takes place only in one bit and only 
when an improvement in the individual’s fitness is 
achieved. If it is not possible to improve the individual‘s 
fitness, then no alteration is performed. The algorithm 
simply goes through every chromosome’s gene to deter- 
mine which of them must be changed in such a way as to  
 

improve individual’s fitness. 
According to the results of this study, we concluded 

that the best parameters for this algorithm are: Elitism 
operator, tournament selection, 2-point crossover, and 
classical mutation.  

4.2. Results of Various Genetic Algorithms 

All simulations were made with default GA parameters 
outlined in the Table 5. 

The Table 6 shows that the proposed algorithms out-  
 
Table 5. Parameters of implementation of genetic algo-
rithms. 

Parameter Wallis’s GA GA-A GA-B 

Probability of Crossover 80% 93% 80% 

Probability of Mutation 2% 1% 2% 

Crossover Type 2-point 1-point 2-point 

Selection Type Tournament Random Tournament

Tournament Size 3 - 2 

Generation Number 75 75 75 

Individuals Number 10,000/1000 10,000/1000 10,000/1000

 
Table 6. Comparaison of our GA algorithms with other works for some BCH codes. 

Codes BCH 
(n, k, d-design) 

dt GA-A 10000 
individuals 

dt GA-B 10000 
individuals 

Wallis’s GA Hill-Climbing Tabu Search 

BCH (127, 64, 21) 21 21 21 28 24 

BCH (127, 57, 23) 23 23 23 28 23 

BCH (127, 50, 27) 27 27 27 32 31 

BCH (255, 71, 59) 64 63 66 79 79 

BCH (255, 79, 55) 57 57 60 74 64 

BCH (255, 87, 53) 57 58 57 70 66 

BCH (255, 91, 51) 58 53 59 72 69 

BCH (255, 99, 47) 51 52 55 64 61 

BCH (255, 107, 45) 53 49 51 64 62 

BCH (255, 115, 43) 48 45 50 57 55 

BCH (511, 304, 51) 87 74 79 90 85 

BCH (511, 286, 55) 98 84 84 96 92 

BCH (511, 238, 75) 113 103 105 118 112 

BCH (511, 220, 79) 112 109 111 123 117 

BCH (511, 184, 91) 111 127 128 135 140 

BCH (511, 166, 95) 143 135 137 152 140 

BCH (511, 121, 117) 159 155 152 163 163 

BCH (511, 103, 123) 164 160 164 179 179 

BCH (511, 76, 171) 176 176 176 195 184 

BCH (511, 58, 183) 183 184 185 207 199 
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performed the other optimization techniques. 

The Table 7 shows the computational results of mini- 
mum distance via GA-A, GA-B, and the Simulated An- 
nealing (SA) developed by authors in [25]. 

In the Table 7, for the three first BCH codes listed, 
these algorithms found the true minimum distance. 
However, for the two last BCH codes, the gap between 
the minimum distance obtained by the SA algorithm and 
the true value is still large, while our genetic algorithms 
found this true minimum distance.  

The Table 8 shows that our two variants of GA give 
the same estimate of the minimum distance for Quadratic 
residue codes where the length is less than 223. 

The Table 9, we validate our estimate minimum dis- 
tance by the exhaustive method for some random DCC 
defined by their binary header. 
 
Table 7. Comparaison between our two GA variants with 
simulated annealing.  

Codes BCH 
 (n, k, d-design) 

dt GA-A 10000 
individuals

dt GA-B 10000 
individuals 

Simulated 
annealing

BCH (15, 11, 3) 3 3 3 

BCH (31, 26, 3) 3 3 3 

BCH (63, 24, 15) 15 15 15 

BCH (127, 64, 21) 21 21 27 

BCH (255, 91, 51) 51 51 75 

 
Table 8. Comparaison between our two variants applied to 
QR codes. 

Codes QR 
(n, k, d) 

dt GA-A 1000  
individuals 

dt GA-B 1000 
individuals 

QR (47, 24, 11) 11 11 

QR (71, 36, 11) 11 11 

QR (73, 37, 13) 13 13 

QR (79, 40, 15)  15 15 

QR (89, 45, 17)  17 17 

QR (97, 49, 15) 15 15 

QR (113, 57, 15)  15 15 

QR (127, 64, 19)  19 19 

QR (137, 69, 21)  21 21 

QR (151, 76, 19) 19 19 

QR (191, 96, 27) 27 27 

QR (193, 97, 27) 30 30 

QR (199, 100, 31) 31 31 

QR (223, 112, 31) 32 32 

4.3. Validation and Results of Multiple Impulse 
Method 

4.3.1. Validation of the Multiple Impulse Method 
All simulations have been done using a simple configu- 
ration machine: Intel® CoreTM 2 CPU T5600 @ 1.83 
GHz, RAM: 2.00 GHz.  

As a first step, we validated the algorithm by verifying 
the minimum distance for some linear codes: BCH codes, 
Quadratic residue Codes, and Quadratic Double-Circu- 
lant Codes in their Bordered form, for which the mini- 
mum distance is known.  

The results are summarized in the Tables 10-12, in 
which “OSD_EI” denotes the Order Statistic Decoding 
with Error impulse and “TTE” denotes the Time of exe- 
cution in seconds. As it is shown in these tables our algo- 
rithm is successfully validated. 

Let p be a prime that is congruent to ±3 modulo 8. A 
binary [2(p + 1), p + 1] quadratic double-circulant code 
(QDC) [26], denoted by B, can be constructed using the 
following defining polynomials:  

 
 
 

1+ if  p 3 mod 8 and

if  p 3 mod 8

r
r Q

r
r Q

x
b x

x





  
 




2 .d n

    (1) 

Q is the set of quadratic residues modulo p. 
The generator matrix G of B can be written as de- 

scribed in Figure 5. 
We find exactly what Tomlinson has found in [26]. 

4.3.2. New Experimental Results 
In this section we present an application of the proposed 
algorithm to find the true unknown minimum distance of 
some residue quadratic codes (QR and QDC see Tables 
14-16) and some BCH codes (see Table 13) comparing 
respectively to some known upper bounds, and to the 
designed distance or comparing to the Grassl table [27]. 

By MacWilliams and Sloane in [28], for QR codes, we 
compare our estimation by this inequality  

By the Pless’s identity [29], the minimum weight in 
Quadratic Residue codes is always odd. This means that 
when we find a codeword with a pair weight w, it is nec- 
essary to have a codeword with an odd weight w-1. 

In the Table 14 we give some QR codes where the 
length is like the form n = 8 m + 1. 

In our knowledge the Krasikov Bound [30] is the best 
upper bound for comparing our estimation of the mini-
mum distance. In the Table 15 we give some QR codes  
 

1 0

1 0

0 0 0 1 1 1

pI B
G 

 

 

 

Figure 5. The quadratic double circulant form.    

Copyright © 2012 SciRes.                                                                                IJCNS 



M. ASKALI  ET  AL. 781

  
Table 9. Comparaison between our two variants applied to QR codes. 

Double Circulant 
Codes (DCC) 

Binary Header of DCC 
dt Our GA-A 

1000 Individuals 
dt Our GA-B 

1000 Individuals 
Exhaustive Method 

C (20, 10) 1001111110 6 6 6 

C (22, 11) 00010110111 7 7 7 

C (24, 12) 101000110111 8 8 8 

C (26, 13) 1000100111100 7 7 7 

C (28, 14) 00101001111111 8 8 8 

C (30, 15) 001110111111101 8 8 8 

C (32, 16) 1010100100100110 8 8 8 

C (34, 17) 10011001011010011 8 8 8 

C (36, 18) 101000100011111111 8 8 8 

C (38, 19) 110010000011111101 8 8 8 

C (40, 20) 000111001100110101011 9 9 9 

C (42, 21) 000101111011110011110 10 10 10 

C (44, 22) 1100011101010101001111 10 10 10 

C (46, 23) 01101101111101011110000 11 11 11 

C (50, 25) 1001000111111001011000000 10 10 10 

C (52, 26) 11000100110110001110110010 10 10 10 

C (54, 27) 011000110000111111101101000 11 11 11 

C (58, 29) 00011011111000110010010010010 12 12 12 

C (62, 31) 1100001010100011100000011010110 12 12 12 

 
Table 10. Validation of some QR codes with known mini- 
mum distance. 

Codes QR (n, k, d) dt OSD_EI TTEs 

QR (41, 21, 9)  9 1.12 

QR (47, 24, 11)    11 0.61 

QR (71, 36, 11)  11 0.71 

QR (73, 37, 13) 13 0.75 

QR (79, 40, 15)  15 1.29 

QR (89, 45, 17)  17 3.66 

QR (97, 49, 15) 15 0.99 

QR (113, 57, 15)  15 4.23 

QR (127, 64, 19)  19 11.08 

QR (137, 69, 21)  21 14.33 

QR (151, 76, 19) 19 33.01 

QR (191, 96, 27) 27 213 

QR (193, 97, 27) 27 220 

QR (199, 99, 31) 31 145 

QR (223, 112, 31) 31 124 

 
where the length is like the form n = 8m − 1, and we 
have: . 0.166315 nd 

For the class of QDC codes we give in the next table 
some codes with unknown minimum. 

Table 11. Validation of some BCH codes with known mini- 
mum distance. 

Codes BCH (n, k, d-design) dt OSD_EI TTEs 

BCH (31, 16, 7) 7 0.02 

BCH (31, 21, 5) 5 0.01 

BCH (63, 18, 21) 21 0.04 

BCH (63, 24, 15) 15 0.06 

BCH (63, 36, 11)  11 0.07 

BCH (63, 39, 9) 9 0.05 

BCH (63, 30, 13) 13 0.04 

BCH (63, 45, 7) 7 0.06 

BCH (63, 51, 5) 5 0.05 

BCH (63, 57, 3) 3 0.01 

BCH (127, 8, 63) 63 0.67 

BCH (127, 15, 55) 55 0.7 

BCH (127, 22, 47) 47 0.37 

BCH (127, 29, 43) 43 0.51 

BCH (127, 71, 19) 19 2.85 

BCH (127, 78, 15) 15 2.08 

BCH (127, 92, 11) 11 1.37 

BCH (127, 106, 7) 7 0.74 

BCH (255, 45, 87) 87 57 

BCH (255, 55, 63) 63 49 
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Table 12. Validation of some QDC codes with known mini- 
mum distance. 

Codes QDC 
(2(p + 1), p + 1, d) 

dt OSD_EI TTEs 

QDC (24, 12, 8) 8 0.97 

QDC (28, 14, 8) 8 1.02 

QDC (40, 20, 8) 8 1.4 

QDC (60, 30, 12) 12 2.86 

QDC (76, 38, 12) 12 6.61 

QDC (88, 44, 16) 16 9.88 

QDC (108, 54, 20) 20 34.98 

QDC (120, 60, 20) 20 33.33 

QDC (124, 62, 20) 20 33.18 

QDC (136, 68, 24) 24 57 

QDC (168, 84, 24) 24 1052 

 
Table 13. Tight bound for unknown minimum distance of 
some BCH codes. 

Codes BCH  
(n, k, d-design) 

dt OSD_EI TTEs 

BCH (127, 64, 21) 21 10 

BCH (127, 57, 23) 23 1 

BCH (127, 50, 27) 27 4 

BCH (255, 71, 59) 62 530 

BCH (255, 79, 55) 55 631 

BCH (255, 87, 53) 53 5915 

BCH (255, 91, 51) 51 7617 

BCH (255, 115, 43) 43 8283 

BCH (255, 123, 39) 39 7098 

BCH (255, 131, 37) 37 7570 

BCH (255, 139, 31) 31 7051 

BCH (255, 147, 29) 29 4626 

BCH (255, 155, 27) 27 4177 

BCH (255, 163, 25) 25 2612 

BCH (255, 171, 23) 23 2847 

BCH (255, 179, 21) 21 1653 

BCH (255, 187, 19) 19 65 

BCH (255, 191, 17) 17 1198 

BCH (255, 199, 15) 15 384 

Table 14. Tight bound of the unknown minimum distance 
of some QR codes. 

Codes QR Square (n) dt OSD_EI TTEs 

n = 233 k = 117 15.26 25 198 

n = 241 k = 121 15.52 31 835 

n = 257 k = 129 16.03 33 5851 

n = 281 k = 141 16.76 35 40435 

n = 313 k = 157 17.69 45 51498 

n = 337 k = 169 18.35 51 45539 

 
Table 15. Tight bound of the unknown minimum distance 
of some QR codes. 

Codes QR 
Krasikov 

bound 
dt OSD_EI TTEs 

n = 239 k = 129 39.74 31 308 

n = 263 k = 132 43.74 35 66173 

n = 271 k = 136 45.07 39 65659 

n = 311 k = 156 51.72 35 62286 

n = 359 k = 180 59.70 55 60621 

n = 367 k = 184 61.03 59 74650 

n = 383 k = 192 63.69 59 81810 

n = 431 k = 216 71.68 67 101409 

n = 439 k = 220 73.01 71 90579 

 
Table 16. Tight bound of the unknown minimum distance 
of some QDC codes. 

Codes QDC 
(2(p + 1), p + 1) 

dt OSD_EI TTEs 

QDC (204, 102) 24 5886 

QDC (216, 108) 24 1421 

QDC (220, 110) 30 7595 

QDC (264, 132) 40 27547 

QDC (280, 140) 36 24683 

QDC (300, 150) 44 28371 

QDC (316, 158) 46 35892 

QDC (328, 164) 48 53135 

5. Conclusion and Perspectives 

In this paper we have used genetic algorithms to find a 
good estimate of minimum distance for BCH, DCC, and 
QR codes. The implementation of proposed genetic algo- 
rithms shows that they are more efficient comparing to 
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competitor genetic algorithm developed by Wallis.  
For the same goal, we have proposed the Multiple 

Impulse Method based on Soft-In OSD decoding algo- 
rithm by generalization of the method proposed initially 
by Berrou et al. The MIM technique is highly performing 
as a good tool for computing the minimum distance of 
linear codes, especially for a large code where the length 
is so long. In the perspectives of this work, we have to 
apply these powerful tools to construct good linear block 
codes, and to test the effect of other Soft-In decoders in 
terms of complexity and performances. 
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