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ABSTRACT 

The thermal pressure coefficients in liquid n-Pentadecane (C15), n-Heptadecane (C17), n-octadecane (C18) and n-non- 
adecane (C19) was measured using pVT data. The measurements were carried out at pressures up to 150 MPa in the 
temperature range from 293 to 383 K. The experimental results have been used to evaluate various thermophysical 
properties such as thermal pressure coefficients up to 150 MPa with the use of density and temperature data at various 
pressures. New parameters of the linear isotherm regularity, the so-called LIR equation of state, are used to calculate of 
thermal pressure coefficients of n-Pentadecane (C15), n-Heptadecane (C17), n-octadecane (C18) and n-nonadecane 
(C19) dense fluids. In this paper, temperature dependency of linear isotherm regularity parameters in the form of a first 
order has been developed to second and third order and their temperature derivatives of new parameters are used to 
calculate thermal pressure coefficients. The resulting model predicts accurately thermal pressure coefficients from the 
lower density limit at the Boyle density at the from triple temperature up to about double the Boyle temperature. The 
upper density limit appears to be reached at 1.4 times the Boyle density. These problems have led us to try to establish a 
function for the accurate calculation of the thermal pressure coefficients based on the linear isotherm regularity theory 
for different fluids. 
 
Keywords: Thermal Pressure Coefficient; Petroleum Industry; Molecular System; The Helmholtz Energy;  

Lennard-Jones (12,6) 

1. Introduction 

A study of the thermophysical properties as a function of 
pressure and temperature in a homologous series of che- 
mical compounds is of great interest not only for indus-
trial applications for example, in the petroleum industry, 
but also for fundamental aspects for understanding the in- 
fluence of the chain length of the components on the liq-
uid structure and then developing models for an accurate 
representation of the liquid state. With this aim in mind, a 
research program of thermal pressure coefficients (TPC) 
measurements under pressure on most paraffins between 
decane and triacontane was initiated as a part of a project 
on crude oil characterization [1-3]. 

One of the most difficult problems within the context 
of the thermodynamics lies in the shortage for experimen- 
tal data for some basic quantities such as thermal pressure 
coefficients (TPC) which are tabulated for extremely nar-
row temperature ranges, normally around the ambient 
temperature for several types of liquids. Furthermore, the 
measurements of the thermal pressure coefficients made 
by different researchers often reveal systematic differ-

ences between their estimates [4,5]. 
The idea has been presented a simple method that use 

to calculate thermal pressure coefficient directly in place 
of using equations of state to analysis experimental pVT 
data [6-8]. The equation of state described in papers is 
explicit in Helmholtz energy A  with the two independ-
ent variables density   and T . At a given temperature, 
the thermal pressure coefficient can be determined by 
Helmholtz energy [9-15]. 

Another work has led to try to establish a correlation 
function for the accurate calculation of the thermal pres-
sure coefficients for different fluids over a wide tempera-
ture and pressure ranges. The most straightforward way to 
derive the thermal pressure coefficient is the calculation 
of thermal pressure coefficient with the use of the princi-
ple of corresponding states which covers wide tempera-
ture and pressure ranges. The principle of corresponding 
states calls for the reduced thermal pressure at a given 
reduced temperature and density to be the same for all 
fluids. This is true, since the corresponding-states ap-
proach is appropriate for conditions of low density in 
which the fluid molecules are far apart and thus have little 
interaction. Moreover, at low density, the gas behaves *Corresponding author. 
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ideally and its thermal pressure coefficient is temperature 
independent and approaches R  in the zero-density 
limit. However, as density increases, molecular interac-
tions become increasingly important and the principle of 
corresponding states fails. The leading term of this corre-
lation function is the thermal pressure coefficient of a 
perfect gas, which each gas obeys in the low density 
range. Using this condition it can predict the thermal 
pressure coefficient of different supercritical fluids and 
refrigerants up to densities C  . As mentioned before, 
as density increases, molecular interactions become in-
creasingly important and the principle of corresponding 
states fails. It found out “empirically” that at high densi-
ties it is possible to apply the principle of corresponding 
states to different fluids according to the magnitude of 
their critical densities versus 10C 

  21

 mol·dm–3 [16]. 
A general regularity was reported for pure dense fluids, 

namely testing literature results for pVT for pure dense 
fluids, according to which Z V

2
 is linear with re-

spect to   for each isotherm, where Z pv RT

  21

 is 
the compression factor. This equation of state works very 
well for all types of dense fluids, for densities greater 
than the Boyle density but for temperatures below twice 
the Boyle temperature. The regularity was originally sug- 
gested on the basis of a simple lattice-type model applied 
to a Lennard-Jones (12,6) fluid. The purpose of this pa-
per is to examine whether the regularity extends to cal-
culation of the thermal pressure coefficients in liquid n- 
Pentadecane (C15), n-Heptadecane (C17), n-octadecane 
(C18) and n-nonadecane (C19) [17,18]. 

At present work, linear isotherm regularity has been 
used to calculate the thermal pressure coefficient. The 
purpose of this paper is to point out an expression for the 
thermal pressure coefficient of dense fluids using the lin-
ear isotherm regularity. In this article, in Section 1, we 
present a simple method that keeps first order temperature 
dependency of parameters in linear isotherm regularity 
versus inverse temperature. Then, the thermal pressure 
coefficient is calculated by linear isotherm regularity. In 
Section 2, temperature dependency of parameters in linear 
isotherm regularity has been developed to second order. 
In Section 3, temperature dependency of parameters in 
linear isotherm regularity has been developed to third 
order and then thermal pressure coefficient is calculated 
by linear isotherm regularity in each state. 

2. Theory 

A general regularity which was reported for pure dense 
fluids, according to which Z V

2
 is linear with re-

spect to  , each isotherm as,  

 1 2 2Z V A B                 (1) 

where Z pv RT  is the compression factor,  

is the molar density, and A and B are the temperature- 
dependent parameters. 

1 V 

2 41
p

A B
RT

            (2)  


  

2.1. First Order Temperature Dependency of 
Parameters 

We first calculate pressure by linear isotherm regularity, 
and then use first order temperature dependency of pa-
rameters to get the final the thermal pressure coefficient 
for the dense fluid. Where 

1
2

A
A A

RT
                   (3) 

1B
B

RT
                      (4) 

Here 1A  and 1  are related to the intermolecular at-
tractive and repulsive forces, respectively, while 2

B
A  is 

related to the non-ideal thermal pressure and  has its 
usual meaning. 

RT

3 3 5
2 1 1p RT A RT A B

In the present work, the starting point in the derivation 
is Equation (2). By substitution of Equation (3) and 
Equation (4) in Equation (2) we obtain the pressure for 
dense fluid. 

      

 0
LIRTPC

       (5) 

We first drive an expression for the thermal pressure 
coefficient using first order temperature dependency of 
parameters. The final result is   

3
2

p
R A R

T 

      
                (6) 

According to Equation (6), the experimental value of 
density and value of 2A  from the Table 1 can be used 
to calculate the value of the thermal pressure coefficient. 

For this purpose we have plotted A  versus 1  that 
intercept shows value of 2

T
A . Table 1 shows the 2A  val-

ues for four fluids of C15H32, C17H36, C18H38 and C19H40. 
Then we obtain the thermal pressure coefficient of 
C15H32, C17H36 , C18H38 and C19H40 dense fluids. C17H36 

serve as our primary test fluids because of the abundance 
of available pVT data. Such calculations are similar to the 
other fluids examined. Because plots are subject to ex-
perimental error, we also show the coefficient of deter-
mination R2, which is simply the square of the correlation 
coefficient. Here R2 should be within 0.005 of unity for a 
straight line to be considered a good fit [4,18]. In result, 
the linear limit is estimated by a limit of . 
Thus, in according with the square of the correlation co-
efficient in Table 1, the thermal pressure coefficient us-
ing the LIR(0) model yields inaccurate results for the liq-
uid phase. Also, this deviation exists significantly for the 

2 0.995R 
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Table 1. The calculated values of A2 for different fluids us-
ing Equation (3) and the coefficient of determination (R2). 
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Fluid A2 (Tmin – Tmax)/K R2 

C15H32 3.8465 303.15 - 383.15 0.9931 

C17H36 3.8855 313.15 - 383.15 0.9874 

C18H38 2.9676 313.15 - 383.15 0.9737 

C19H40 7.4784 323.15 - 383.15 0.9983 

 
supercritical phase. Whereas, we predict that deviation 
concern to be inaccurate values of A2. For this purpose 
we have plotted A versus 1 T  that intercept shows 
val  of 2ue A . Figures 1(a) and (b) show plots of A and B 
versus inverse temperature for C17H36. It is clear that A 
and B versus inverse temperature are not first order. 

2.2. Second Order Temperature Dependency of 
Parameters 

In order to solve this problem, the linear isotherm regular-
ity equation of state in the form of truncated temperature 
series of A and B parameters have been developed to sec- 
ond order for dense fluids. Figures 2(a) and (b) show plots 
of A and B parameters versus inverse temperature for 
C17H36 fluid. It is clear that A and B versus inverse tem-
perature are second order. Thus, we obtain extended pa-
rameters A and B resulted in the second order equation, as 

32
1 2

AA
A A

T T
                   (7) 

32
1 2

BB

T T
  B B                 (8) 

The starting point in the derivation is Equation (2) 
again. By substitution of Equations (7) and (8) in Equa-
tion (2) we obtain the pressure for dense fluid.  

3
3 3 3

5
3

1 2

5 5
1 2

A R
A R

T

B R

T

p RT A RT

B RT B R


 

 

  

 









 1
LIRTPC

        (9) 

First, second and third temperature coefficients and 
their temperature derivatives were calculated from this 
model and the final result is for the thermal pressure co-
efficient to form . 

3
3 3

2

5
3

2

1

5
1

A R
R

T

B R

T

p
R A

T

B R




 



     

 




1 3 1 3, , ,

      (10) 

As Equation (10) shows, that it is possible to calculate 
the thermal pressure coefficient at each density and tem-
perature by knowing
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Figure 1. (a) Plot of A versus inverse temperature. The solid 
line is the linear fit to the A data points, for C17H36; (b) Plot 
of B versus inverse temperature. The solid line is the linear 
fit for C17H36. 
 
have plotted extending parameters of A and B versus 
1 T

1 3 1 3, , ,
 that intercept and coefficients show the values 

of A B B  that are given in Table 2. A

2.3. Third Order Temperature Dependency of 
Parameters 

In another step, we test to form of truncated temperature 
series of A and B parameters to third order (Figures 3(a) 
and (b)). A A B B . For this purpose we     
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Figure 2. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for C17H36; (b) Plot of B 
versus inverse temperature. The solid line is the linear fit for C17H36 . 
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Figure 3. (a) Plot of A versus inverse temperature. The solid line is the linear fit to the A data points, for C17H36; (b) Plot of B 
versus inverse temperature. The solid line is the linear fit for C17H36 . 
 
Table 2. The calculated values of A1, A3, using Equation (7) and B1, B3, using Equation (8) for different fluids and the coeffi-
cient of determination (R2). 

Fluid A1 A3 R2 B1 B3 R2 

C15H32 10.9156 816865.8686 0.9961 –0.7634 –76880.7076 0.9933 

C17H36 17.7236 1653515.0792 0.9950 –1.2741 –142952.2089 0.9909 

C18H38 24.7654 2604637.9359 0.9965 –1.7380 –207122.0903 0.9933 

C19H40 19.3144 1507260.4826 0.9993 –1.9978 –212489.3619 0.9987 
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32 4
2 3

A
1

A A

T T T
 A A                (11) 

32 4
2 3

BB B

T T T
 1B B                 (12) 

The starting point in the derivation is Equation (2) 
again. By substitution of Equations (11) and (12) in 
Equation (2) we obtain the pressure for dense fluid. 

3 3
4

2

5
4

2

A R3 3 3
1 2

5
5 5 3

1 2

A R

T

B R

T


p RT A RT A R

T

B R
B RT B R

T


  


 

   

  






 2
LIRTPC

    (13) 

The final result is for the thermal pressure coefficient 
to form . 

3
3 3

1

5
5 3

1

2

3
4

2 3

5
4

2 3

2A R A R

T T

B R

T T

p
R A R

T

B R
B R



 
 




      

 






4 1 3 4, , ,

       (14) 

That based on Equation (14) to obtain the thermal 
pressure coefficient, it is necessary to determine values 

1 3, ,A A A B B B

 0

 1TPC

 2TPC

 that these values are given in Table 
3. 

3. Experimental Tests and Discussion 

Specific experiments on heavy hydrocarbons to set up a 
base which can then be used to define new models spe-
cially adapted to these complex mixtures. With this aim 
in mind, an investigation was carried out on pure hydro-
carbons with more than 16 carbon atoms, as hexadecane 
is the crucial point beyond which data in the literature 
become very fragmentary [1,3]. This paper describes the 
behavior of the thermal pressure coefficients, measured 
between pressures of 0.1 and 150 MPa and temperatures 
of 313.15 and 383.15 K, for liquid n-Pentadecane (C15), 
n-Heptadecane (C17), n-octadecane (C18) and n-non- 
adecane (C19). When measurements of this property are 
carried out over a sufficiently wide range of pressures (as 
is the case in this work), the thermal pressure coefficients 
data can be integrated so as to generate other thermo-
physical properties (including density), provided that an  

appropriate set of initial conditions is available [19-23]. 
These include knowledge of the density and the thermal 
pressure coefficients data at a reference pressure (the 
most convenient being atmospheric pressure). As these 
additional measurements have already been performed, 
we were able to deduce, by means of numerical integra-
tion algorithms which have already been tested on vari-
ous occasions [1,3], the behavior up to P = 150 MPa of 
the following properties: density, thermal pressure, in-
ternal pressure and internal energy. 

The thermal pressure coefficient is computed for dense 
fluids of liquid and super critical using three different 
models. C17H36 serve as our primary test fluids because 
of the abundance of available pVT data. When we re-
stricted temperature series of A and B parameters to first 
order it has been seen that the points from the low densi-
ties for LIRTPC  deviate significantly from the experi-
mental data [24,25]. To decrease adequately deviation 
thermal pressure coefficient from the experimental data, 
it was necessary to extension temperature series of A and 
B parameters to second order [5]. Nevertheless, for some 
mono atomic fluid similar to Ar that the temperature de-
pendencies of the A and B parameters themselves are 
satisfactory to first order. The present approach to ob-
taining the thermal pressure coefficient from pVT data 
contrasts with the experimental data by extension tem-
perature series of A and B parameters to second order and 
its derivatives. That, the thermal pressure coefficient give 
to form . LIR

We also considered an even more accurate estimates 
namely, extension temperature series of A and B pa-
rameters to third order. Then we introduce the explicit 
parameters and temperature dependencies resulting from 
the pVT data. The final result is for thermal pressure co-
efficient to form LIR . In contrast, Figures 4 to 7 
show the LIR(0) values of the thermal pressure coefficient 
versus density for C15H32, C17H36, C18H38 and C19H40 of 
liquid that are compared with the thermal pressure coef-
ficient using the LIR(1) and LIR(2) at 333.15 and 343.15 K, 
respectively. Although all three models capture the qua- 
litative features for dense fluids, only the calculated val-
ues of the thermal pressure coefficient using the LIR(1)  
and LIR(2) model produce quantitative agreement. 

 
Table 3. The calculated values of A1, A3, A4, using Equation (11) and B1, B3, B4 using Equation (12) for different fluids and the 
coefficient of determination (R2). 

R2 B4 B3 B1 R2 A4 A3 A1 Fluid 

0.9977 –320115246 2759206 7.3985 0.9991 4092639689 –35442209 –93.4342 C15H32 

0.9982 –595426635 5039286 13.1535 0.9990 7650580115 –64932579 –167.6568 C17H36 

0.9976 –378708409 3088930 7.4384 0.9992 5199955241 –42652676 –101.234 C18H38 

0.9998 –1356688401 11207165 27.8504 0.9998 11571460287 –95893208 –235.2681 C19H40 
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Figure 4. The thermal pressure coefficient values using 
LIR(0), versus density for C18H38 fluid compared with the 
thermal pressure coefficient using LIR(1) and LIR(2) at 
333.15 K. 
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Figure 5. The thermal pressure coefficient values using 
LIR(0),versus density for C18H38 fluid compared with the 
thermal pressure coefficient using LIR(1) and LIR(2) at 
343.15 K. 

4. Results 

In this paper, we derive an expression for as the thermal 
pressure coefficient of C15H32, C17H36, C18H38 and C19H40 
dense fluids using the linear isotherm regularity[1,3,18]. 
Unlike previous models, it has been shown in this work 
that, the thermal pressure coefficient can be obtained  
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Figure 6. The thermal pressure coefficient values using 
LIR(0), versus density for C19H40 fluid compared with the 
thermal pressure coefficient using LIR(1) and LIR(2) at 
333.15 K. 
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Figure 7. The thermal pressure coefficient values using 
LIR(0),versus density for C19H40 fluid compared with the 
thermal pressure coefficient using LIR(1) and LIR(2) at 
343.15 K. 
 
without employing any reduced Helmholtz energy [9-15]. 
Only, pVT experimental data have been used for the cal-
culation of the thermal pressure coefficient. Comparison 
of the calculated values of the thermal pressure coefficient 
using the linear isotherm regularity with the values ob-
tained experimentally show that validity of the use of the 
Linear isotherm regularity for studying the thermal pres- 
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sure coefficient of dense fluids of the monatomic is 
doubtful [18]. The validity of the use of the linear iso-
therm regularity equation state for calculating the thermal 
pressure coefficient of dense fluids of the polyatomic is 
not also precise [5]. In this work, it has been shown that 
the temperature dependences of the intercept and slope of 
using linear isotherm regularity are nonlinear. This prob-
lem has led us to try to obtain the expression for the ther-
mal pressure coefficient using the extending the intercept 
and slope of the linearity parameters versus inversion of 
temperature to 2 order. The thermal pressure coefficient 
are predicted from this simple model are in good agree-
ment with experimental data. The results show the accu-
racy of this method is general quite good. 
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