
Applied Mathematics, 2012, 3, 1689-1696 
http://dx.doi.org/10.4236/am.2012.311234 Published Online November 2012 (http://www.SciRP.org/journal/am) 

Exact Distributions of Waiting Time Problems of Mixed 
Frequencies and Runs in Markov Dependent Trials 

Bruce J. Chaderjian, Morteza Ebneshahrashoob*, Tangan Gao 
Department of Mathematics and Statistics, California State University, Long Beach, USA 

Email: *morteza.ebneshahrashoob@csulb.edu 
 

Received September 7, 2012; revised October 7, 2012; accepted October 15, 2012 

ABSTRACT 

We study waiting time problems for first-order Markov dependent trials via conditional probability generating functions. 
Our models involve   frequency cells and   run cells with prescribed quotas and an additional   slack cells 

without quotas. For any given    and   , in our Model I we determine the waiting time until at least   

frequency cells and at least   run cells reach their quotas. For any given     , in our Model II we determine 

the waiting time until   cells reach their quotas. Computer algorithms are developed to calculate the distributions, 
expectations and standard deviations of the waiting time random variables of the two models. Numerical results 
demonstrate the efficiency of the algorithms. 
 
Keywords: Inverse Sampling; Multinomial Stopping Problem; Soonest through Latest Waiting Time Variable; 

Probability Generating Function; First-Order Markov Dependent Trial 

1. Introduction 

Over the past few decades numerous studies have been 
made concerning waiting time random variables with 
stopping rules involving frequencies, runs, and patterns 
(e.g., [1-3]). The book [1] provides a thorough overview 
of many waiting time problems and their applications up 
to 2001. The book [2] uses the finite Markov chain 
imbedding technique to deal with certain waiting time 
problems involving frequency, run, and pattern quotas. 
The compilation [3] contains papers that use various 
techniques to deal with waiting time problems and their 
applications. Sooner and later waiting time problems as 
well as Markov dependent trials are discussed in many 
articles (e.g., [4-8]). 

A model which incorporates many specific models in 
the above research was proposed by [9] for independent 
multinomial trials. The Dirichlet methodology was used 
as a computational tool in [9], but in general the Dirichlet 
method is not computationally efficient. The main goal 
of this paper is to introduce two efficient algorithms 
which use conditional probability generating functions 
(pgf’s) to solve certain generalizations of the model in [9] 
to the case of first-order Markov dependent trials. 

The first-order Markov dependent  , ,

of a specific outcome in a sequence of first-order Markov 
dependent trials. The first   cells are designated as fre- 
quency cells and are prescribed integer frequency quotas 

1, ,f f . Each frequency cell tracks the total number of 
times (frequency count) that its associated outcome has 
occurred. The cell is said to have reached its quota if its 
frequency count has reached its prescribed quota value. 
The next   cells are run cells and are prescribed 
integer run quotas 1, ,r r . Each run cell tracks the 
number of consecutive times (run count) that its asso- 
ciated outcome has occurred during the current run. A 
run cell is said to have reached its quota if its run count 
has reached its prescribed quota value. The last   cells 
are slack cells that have no prescribed quotas. These cells 
may be used if some of the outcomes are not of interest 
for a specific experiment. For certain special cases, such 
as independent multinomial trials, the   s ck cells may 
be reduced into one single slack cell. 

la

The models discussed in this paper are the following: 
Model I: The scheme is to stop sampling when at least 

  (  ) frequency cells and at least   (  ) run 
cells have reached their given quotas. Let ( , )

( , , )WT  
    

denote the waiting time until at least   frequency quotas 
and at least   run quotas have been reached.     models 

studied in this paper involve      disjoint cells. 
Each cell tracks exclusively the number of occurrences  

Model II: The scheme is to stop sampling when any 
combination of   (    ) frequency or run cells 
have reached their given quotas. Let  , ,WT 

    denote  *Corresponding author. 

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1690 

the waiting time until a total of   frequency or run quo- 
tas have been reached. This model includes all cases 
from the soonest ( 1  ) through the latest (    ). 

Our algorithms calculate the exact distributions, ex-  

pectations, and standard deviations of  
 ,

, ,WT
 
    of 

Model I and  , ,WT 
    of Model II. Our work gene-  

ralizes [9] in the following ways: 1) Model I uses 
stopping rules that distinguish between frequency quotas 
and run quotas as in [9], but for the case of first-order 
Markov dependent trials; 2) Model II introduces stopp- 
ing rules that do not distinguish between frequency 
quotas and run quotas, again for first-order Markov de- 
pendent trials; 3) Although specific examples have been 
solved for the models in [9], we believe that our com- 
puter programs are the first that are capable of solving 
the general models; 4) Our models allow for multiple 
slack cells, whereas only one slack cell is necessary in 
the case of independent multinomial trials. 

Various special cases of our models have been dis-  

cussed in the literature. For example,  and  
1 2,
S

k kT  
1 2,
L

k kT   

in Chapter 6 of [1] are the special cases of Models I and 
II with 0   , 2   , and no slack cell. 

Remark 1: Due to the similarity of Model I and 
Model II, the algorithm for Model II can be adapted from 
that of Model I, and thus the details of the algorithm for 
Model II are omitted in this paper. Numerical results for 
Model II are presented in Section 4. 

Recently, the use of sparse matrix computational me- 
thods applied to the pgf method has opened a new phase 
for the method as a computational tool for solving va- 
rious problems (e.g., [10-12]). In Section 2, we briefly 
describe the pgf method for solving Model I. In Section 3, 
we outline the details of our algorithm for Model I. 
Numerical results for both Model I and Model II are 
presented in Section 4. Monte Carlo simulation algorithms 
are also developed for both models to demonstrate the 
efficiency of our algorithms. 

2. PGF Method for Model I 

For the first-order Markov dependent trials of Model I, 
let  1 1 1, , , , , , , ,p p q q o o       be the initial pro- 
babilities that the first outcome occurs in the corre- 
sponding frequency, run, or slack cell, with  

1 1 1
1.i j li j l

p q o
  
  

      If the current outcome is  

in the k-th cell, 1 k      
 , , , , ,q q o

, let 
1 1 1 k, , ,k k k k kp p o     be the transition 

probabilities that the next outcome occurs in the corre-  
 

sponding cell, with . 
1 1 1

1ki kj kli j l
p q o

  
  

    

f

We now describe the states of Model I. 

Definition 1: Let 1, ,f   and 1, ,r r  be, respec- 
tively, the integer quotas prescribed to the   frequency  
cells and the   run cells of Model I. Suppose that in 
Model I the current outcome is in cell ,  k
1 k     
0 i im f

 , the current frequency counts are i , m
   for 1, ,i   , and the current run counts 

are jn 0, j jrn   for 1, ,j   . We denote this 
state by  

1 1; , , ; , , .k m m n n              (1) 

The initial state is denoted by  ;0, ,0;0, ,0    
with   indicating “the initial state”. 

Definition 2: We define a frequency (or run) cell that 
has not reached its quota to be incomplete. If the cell has 
reached its quota we say it is complete. Given    
and    in Model I, if a state s of Model I contains 
fewer than   complete frequency cells or fewer than 
  complete run cells, we say s is an incomplete state. 
Otherwise, s is a complete state. 

For simplicity, since the actual subsequent count be- 
comes irrelevant in a complete cell, we use its prescribed 
quota value to represent a complete cell’s subsequent 
count. For this reason we had in (1) that i  for 0 im f 

1, ,i   , and 0 j jn r   for 1,j ,  . It will be 
seen in Section 3 that all non-initial states of Model I can 
be represented by a (possibly proper) subset of elements 
of the form (1). 

Let  ;0, ,0;0, ,0t     denote the (unconditional)  

pgf of  
 ,

, ,WT
 
    at the initial state  ;0, ,0;0, ,0    

and  1 1; , , ; , ,t k m m n n     denote the conditional 

pgf of  
 ,

, ,WT
 
    at the state ,  1 1; , , ; , ,m n n    k m

where t is the parameter of the pgf’s. If a pgf is expanded 
in a standard power series in t, say 
  2 3

1 1 0 1 2 3; , , ; , ,t k m m n n a a t a t a t         , 
the coefficient n  equals the probability that at least a   
frequency quotas and at least   run quotas will be 
reached in n steps given that the experiment is currently  

at the state 1 1; , , ; , ,k m m n n      (see the Remark on  

page 464 in [12]). Therefore, the set of coefficients of the 
power series of  ;0, ,0;0, ,0t     gives exactly 
the probability distribution of the waiting time random  

variable  
 ,

, ,WT
 
    that we wish to solve for. 

The system of equations for the pgf’s of Model I 
comes from Equations (2) and (3) with the boundary 
conditions in (4) applied. Equations (2) and (3) are based 
on the well-known total probability formula and the 
boundary conditions (4) simply mean that a pgf is constant 
when at least   frequency quotas and at least   run 
quotas are satisfied. 

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1691

Beginning with the initial state we have 

 
 
 
 
 
 
 

1

1

1

;0, ,0;0, ,0

1;1,0, ,0;0, ,0

;0, ,0,1;0, ,0

1;0, ,0;1,0, ,0

;0, ,0;0, ,0,1

1;0, ,0;0, ,0

;0, ,0;0, ,0 .

t

p t t

p t t

q t t

q t t

o t t

o t t











 

 

  

  

   



 



  

 

   

  

 

  

 

  

 

  

 

    (2) 

To develop a similar equation for the other incomplete 
states, observe that the count in a run cell is  if and 
only if both the cell is incomplete and the current 
outcome is not in that run cell. Observe also, from our 
earlier conventions, that no cell can have a count that 
exceeds its quota. Let 1 1   be any 
non-initial incomplete state. Bearing in mind our above 
observations, for 

0

  ; , , ; , ,k m m n n 

,1,i   , define 

min 1,i i iM m f  , and for 1, ,j   , define 

min 1, j j jN n  r , and define j jn r  if j jn r  
(the -th run cell is complete) and  otherwise. 
We then have  

j 0jn 

 
 
 
 
 
 

1 1

1 1 1

1 1

1 1 1 2

1 1 1

1 1 1

1 1

; , , ; , ,

1; , , ; , ,

; , , ; , ,

1; , , ; , , ,

; , , ; , , ,

1; , , ; , ,

; , , ; , ,

k

k

k

k

k

k

t k m m n n

p t t M m n n

p t t m M n n

q t t m m N n n

q t t m m n n N

o t t m m n n

o t t m m n n

 

 

  

 

 

 

 





 

 

  

  

   







 

 

  

  

 

   

  

  

  

  

   .

 













 (3) 

The boundary conditions which correspond to constant 
pgf’s are defined by  

 1 1; , , ; , , 1t k m m n n          (4) 

if  is a complete state. 1 1; , , ; , ,k m m n n  
N

 
Let  be the total number of non-constant pgf’s of 

Model I (or the total number of equations in (2) and (3)). 
We will see in Section 3.3 how to calculate the value of 
N by (17). Let  be the N-dimensional vector of the 
N non-constant pgf’s arranged in a prescribed order with 



 t

 ,0;t ;0, 0, ,0   as its first entry. Then the system 
of equations in (2) and (3) with the boundary conditions 
(4) applied can be written as  

   t tA t tb              (5) 

where N NA R  is a constant matrix whose nonzero 
entries are the initial or transition cell probabilities 
(coefficients of the non-constant pgf’s) and NbR  is a 

constant vector made up from sums of cell probabilities 
(from the coefficients of the constant pgf’s). 

It is well-known (e.g., Theorem 3.4.1 in [13]) that 

     
  ,

, ,0 ;0, ,0;0, ,0 ! ,

0,1, 2, ,

k k P WT k

k

 
    



 




 (6) 

where the left-hand side is the k-th derivative of 
 ;0, ,0;0, ,0t     at . Note that 0t   0 0  . 

By repeatedly taking derivatives in (5), we have  

         10 and 0 0 , 2,3,k kb kA k        

and thus 

    10 ! , 1, 2,3,k kk A b k   .     (7) 

Since the pgf  ;0, ,0;0, ,0t     is the first entry 
of the vector  t , by (6) and (7),  

 
  
 


  

,

, ,

,

, ,

1

0 0

the first component of

, for all = 1,2, .k

P WT

P WT k

A b k

 
  

 
  



 

 



  (8) 

Instead of obtaining symbolically the pgf of 
 ;0, ,0;0, ,0t    , our algorithm uses the simple 

formula (8) to calculate the exact distribution of the  

waiting time variable  
 ,

, ,WT
 
   . Therefore, the primary  

focus of our algorithm is to efficiently generate A and b. 
The details of how we generate A and b will be discussed 
in Section 3. 

Since the matrix A is very sparse with each row having 
no more than      nonzero entries, the calculation 
of Ab involves no more than N     

k
 multip- 

lications of real numbers. Since A b  can be calculated  

from  1kA A b  and  
  ,

, ,T k
 
   P W  equals the first  

component of 1kA b , the calculation of  

 
  ,

, ,P WT k
 
     for all   = 0,1, ,k n

(i.e.,  
  ,

, ,P WT n
 
    ) involves no more than  

   1N n         multiplications of real numbers. 
By the nature of the problem, it can be shown that the 
spectral radius  A  of the matrix A  is less than 1 
which ensures the stability of calculating kA b , 

= 1, , 1k n  . 

3. Generating A and b for Model I 

In this section we will discuss how to efficiently generate 
the matrix A and the vector b in (5). To do this, we will 
generate and order the initial state  ;0, ,0;0, ,0    
and all incomplete states of Model I of the form 

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1692 

1 1  
non-constant pgf’s at the left-hand sides of the equations 
in (2) and (3). (Recall that i

; , , ; , ,k m m n n     in (1) which correspond to the  

0 im f   for 1, ,i   , 
0 j jn r  1, ,j for   , and the current event occurs 
in the k-th cell for some k, 1 k       .) Our 
process will first generate all necessary arrangements 
 1, ,m m

1, ,n  
, called frequency states, and all necessary  

arrangements , called run states, for the  n 
states in (1). Then the frequency states, run states, and 
possible values of k will be combined to form all 
incomplete states of Model I. 

3.1. Generating Frequency States 

The efficiency of our algorithm ultimately depends on its 
ability to identify the element in  in (5) that 
corresponds to each state. This efficiency is facilitated by 
the ordering of the elements in 

 t

 t . In this section we 
will generate and order all the frequency states  
 1, ,m m

 1v

 needed to construct the states in Model I. 
The frequency states are first grouped into disjoint sets 

whose elements have in common precisely the same 
complete cells. Each set corresponds to exactly one 
binary base vector , ,v  in which if  1, ,m m

i im f
 

is a frequency state in the set, then  if 1iv    (a 
complete cell) and  otherwise. 0iv 

To generate all the frequency states, we first generate 
all the base vectors necessary to form a one-to-one corre- 
spondence between the base vectors and the sets of fre- 
quency states. By the nature of Model I, once the goal of 
reaching   frequency quotas has been achieved, the 
actual subsequent counts become irrelevant in the fre- 
quency cells. All frequency states containing at least   
complete cells are thus reduced to a single frequency 
state representing “at least   frequency quotas reached”. 
For simplicity, we use  1, ,f f  to denote this fre- 
quency state and we associate it with the base vector 

. Thus, only the base vectors which have less 
than 
1, ,1 

  1’s and the base vector   are needed 
for Model I and there are  

1, ,1

1
0 1 1

  


     
             

  

such base vectors. 
We now order the base vectors, followed by an ordering 

of the frequency states associated with each base vector. 
The base vectors are grouped according to their number 
of 1’s. The groups themselves are then numbered and 
arranged in ascending order according to the number of 
1’s present in each of the base vectors within the groups. 
The base vectors within each group are then arranged by 
the lexicographic order. For example, from the leftmost 
column of Example 1 in Section 3.2 with 2   ,  

Group    0 0,0  (only the zero vector),   Group

    1 0,1 , 1,0  in this order, and  Group   2 1,1 . 
As a second example, for 4   and 2  ,  2  Group

contains 
4

6
2

 
 

 
 base vectors which contain exactly  

two 1’s. The six base vectors in  2 have the 
lexicographic order 

Group
 0,0,1,1 ,  0,1,0,1 ,  0,1,1,0 , 

 1,0,0,1 ,  1,0,1,0 , and . Let  0, 01,1, fV  be the 
vector containing all the necessary base vectors of the 
frequency states, arranged in the order just described. 
Standard back-tracking techniques are used to generate 

fV . 
We now generate and order the frequency states. Let 
 1, ,v v v   be a given base vector, fv V . Let v

fS  
be the set of all frequency states associated with . Note 
that the frequency states 

v
 1, ,m m  in v

fS  all satisfy 
0 i im f   if 0iv   and i i  if . We order 
these frequency states by the lexicographic order of their 
values i  for which i i

m f

m f

1iv 

m   (and thus the complete 
cells with i 1v   have no role in the lexicographic 
order). Standard back-tracking techniques are used to 
generate all frequency states in v

fS  in the lexicographic 
order just described. In the same way, we generate all the 
frequency states of Model I by repeating this generating 
process as we proceed through fV  sequentially to each 
base vector in fV . Let FS  be the vector of all 
frequency states arranged in the order in which they were 
generated. 

As an example of our ordering of the frequency states, 
see the “ FS ” column of Example 1 in Section 3.2. 

Let  1, ,v v v  , fv V , with not all 1iv  . The 
local position of a given frequency state  1, ,m m  in 

v
fS  can be calculated by  


1

1: 0, 0 1: 0

1 ,
ll

j i l
j v m i j vj j i

m f m


     

 
   

 
      (9) 

where  is the largest index with . There is a  l 0lv 

total of 
1: 0 ii vi

f


   frequency states in v
fS . 

Similarly, the vector FS  of all frequency states 
contains a total of  

1: 0
f i

v V i vf i

N f


  

    

frequency states, where we adopt the convention that  

1: 0
1ii vi

f


 
  when  1, ,1v    (which corresponds  

to the single frequency state  1, ,f f ). Thus,  

 1 2, , , N f
FS FS FS FS  .       (10) 

For any frequency state    1 1, , , ,m m f f   , its 

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1693

global position in the vector FS  can be calculated by  

 

1

: 1: 0, 01: 0 1: 0

1 ,

ll

i j i
v V v v j v mi v i j vf j ji i

l

f m f

m

 

      

 
   

 
 

  
    (11) 

where  1, ,v v v    is the base vector associated with 
 1, ,m m , v v  means that the base vector  

 1, ,v v v   precedes v  in the vector fV , and  is 
the largest index with 

l
0l . The second part of this 

formula is from (9). The frequency state 
v 

 1, ,f f  is 
naturally at the last position fN  in FS . 

Our ordering of the frequency states and the validity of 
Equations (9) and (11) are illustrated in the four leftmost 
columns of Example 1 in Section 3.2. 

3.2. Generating Run States 

All necessary run states of Model I can be generated and 
ordered similarly to the frequency states. For run states  

1, ,n n   , base vectors  1v , ,v  are defined by  

1jv   if j jn  (a complete cell) and  other- 
wise. Thus, each base vector corresponds to a set of run 
states which have in common precisely the same 
complete run cells. Once 

r 1jv 

  run cells have reached their 
given quotas, all subsequent run states are reduced to one 
single state representing “at least   run quotas reached”.  

This run state, denoted by 1, ,r r  


, is associated with  

the base vector . Thus, there are  1, ,1

1
0 1 1

 

    

  

1n

          
 

base vectors needed to generate the run states of Model I. 
Let r  be the vector containing these base vectors 
arranged in the same manner as the base vectors in 
Section 3.1, i.e. they are collected into groups which are 
arranged in ascending order of their number of 1’s, and 
then lexicographically ordered within their group. 

V

To facilitate the description of our ordering of the run 
states, we make the following definitions: 

Definition 3: Let , ,rs n    be a given run  

state. The -th run cell for the state  is called active 
if its current run count 

j rs

jn  satisfies 0 j jn r  ; 
otherwise, the run cell is inactive ( jn  or 0 j jn r ). If 

 contains an active run cell,  is an active run state. 
Otherwise,  is inactive. 
rs rs

rs
Let  1, ,v v v    be a given base vector, rv V ,  

and let  be the set of run states  asso-  vSr 1, ,n   n 
ciated with . Note that since no more than one run can 
be in progress at any one time, exactly one run cell is 
active in an active run state. Also, recall that once a run 
cell becomes complete (has reached its quota) its run 

count is fixed at its quota value. Thus, the only inactive 
run state in  is given by  if 

v

v
rS 0jn  0jv   and 

j jn r  if j 1v  . All other run states in  are active 
(with one active cell). The run states in  are arranged 
in the lexicographic order of all the values 

v
rS

v
rS

j jn r  for 
all the values of j of the incomplete run cells (and thus 
the complete run cells with j  have no role in the 
lexicographic order). Note that the first run state in this 
arrangement is the inactive run state in . For any  

1

n

v

, , 

v
rS

given active run state 1n  
v
rS


1: 0va j





  in , its local posi-  

tion in  can be calculated by  v
rS

jr1 1 ,i
j i

n
 

a
          (12) 

where  is the index of the active run cell. There is a  ai

total of  0 jr
 1:

1
j v j


1 

v
r

 run states in . Standard  v
rS

back-tracking techniques are used to generate all run 
states in  in the lexicographic order described above. S

In the same way as in Section 3.1, we generate all the 
run states of Model I by repeating the above generating 
process as we proceed through r  sequentially to each 
base vector in rV . Let  be the vector of all run 
states arranged in the order in which they are generated. 

V

 
0

1 1r jN r


 
 
 
 

RS

It can be verified that  contains a total of  RS

1:j vr j



 
v V 

    

run states. These are the run states needed for generating 
all the states of Model I. We have  

 1 2, ,RS , Nr
RS .

1, ,r

RS RS        (13) 

Note that for the last run state in , RS r   ,  

associated with  1, ,1 
r

v
N

, the second sum in the for- 
mula above for  is zero vacuously. It can be verified  

that for any run state 1n , , n   , its global position in  

RS  can be calculated by  

 
: 0

jr


 

: 1

1
vr j



 1 1,
v V v v j 

 
 


        (14) 



if 1n , , n    is inactive, or  

 

 

: 1

1:

v v j vr j

a
j i





 

 



  

 



 : 0

0

1 1

1 1

j

i j
va j

r

n r





 
  
 



v V 
 
 
 
 

       (15) 

if 1, ,n n    is active, where  v v1, ,v   is the base 

base vector associated with , 1, ,n n   v v  means  

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1694 

that the base vector  1, ,v v v    precedes v  in the 
vector , and  is the index of the active run cell in  rV ai

1, ,n n   . The second part of the sum in (15) is from  

(12). 
Our ordering for both frequency and run states and the 

validity of the Equations (9), (11), (12), (14), and (15) to 
identify their positions in FS  and  are illustrated 
in Example 1 below. 

RS

Example 1: Let 2  , 3  , 2   ,  
, and . The results 

discussed in Sections 3.1 and 3.2 can be summarized in 
the following table: 

  1 2, 2,f f  3  1 2 3, ,r r r  2,3, 2

  
For frequency cells For run cells 

fV  FS  L G rV  RS  L G 

[0,0] 1 1 [0,0,0] 1 1 

[0,1] 2 2 [0,0,1] 2 2 

[0,2] 3 3 [0,1,0] 3 3 

[1,0] 4 4 [0,2,0] 4 4 

[1,1] 5 5 

(0,0,0) 

[1,0,0] 5 5 

(0,0) 

[1,2] 6 6 [0,0,2] 1 6 

(0,3) 1 7 [0,1,2] 2 7 
(0,1) 

[1,3] 2 8 [0,2,2] 3 8 

(2,0) 1 9 

(0,0,1) 

[1,0,2] 4 9 

[2,1] 2 10 [0,3,0] 1 10 (1,0) 

[2,2] 3 11 [0,3,1] 2 11 

(1,1) [2,3] 1 12 

(0,1,0) 

[1,3,0] 3 12 

    [2,0,0] 1 13 

    [2,0,1] 2 14 

    [2,1,0] 3 15 

    

(1,0,0) 

[2,2,0] 4 16 

    (1,1,1) [2,3,2] 1 17 

 
where columns “ fV ” and “ rV ” contain the necessary 
base vectors for the frequency states in column “ FS ” 
and the run states in column “ ” respectively, the 
values in the columns “L” and “G” are the local positions 
(within the set of frequency or run states associated with 
the same base vector) and the global positions in 

RS

FS  or 
 of the corresponding frequency states or run states 

according to the formulas (9), (11), (12), (14), and (15). 
RS

For example, consider the run state  2,1,0  in 
Example 1. Its local position in the group associated with 
the base vector  1,0,0  is 3. The combined count from 
the base vector groups ,  0,0,0  0,0,1 , and  00,1,


 

that precede the base vector group  is 12. Thus, 
the global position of the run state 

1,0,0
2,1,0  in vector 

 is . Note that the run state RS


3 12 1   5G
  1 2 3  represents “at least , , r 2, 3, 2r r 2   run 

quotas reached” and thus the run base vector  1,1,1  

also represents the base vectors   , and 0,1,1 , 1,0,1
 1,1,0 . 

3.3. Generating All States for Model I 

A given frequency state  1, ,iFS m m   in (10) and  

a given run state 1, ,jRS n n   

1, ; , ,m n n

  in (13) can be com- 

bined to form a group of states of Model I of the form  

1; ; ; ,i jk FS RS k m        

1

      (16) 

as in (1), where the current outcome occurs in the -th 
cell for some k , 

k
1 k     

k
. However, we will 

see that only a subset of values of  taken from 
 1, 2, ,     are possible in (16). For the fixed  

pair ;i jFS RS   , let ;N FS RSi j    be the number of  

states in the group (16), i.e. the number of possible 
values of k. Let  iNnz FS  be the number of nonzero  

entries in  1, ,m m  and 1, ,n nNc   

, , n  

 be the 

number of complete cells in . If 1n jRS

1

 is an 

active run state, ;i jRSN FS     since the current  

outcome must be in the active run cell of jRS , allowing 
only one value for  in (16). If k jRS  is inactive, the 
current outcome can occur in any nonzero frequency cell 
in iFS , any complete run cell in jRS , or any slack cell. 
Therefore, if jRS  is inactive, (16) represents a group of  

 ;N FSi j iRS Nnz FS Nc RS j          different states  

of Model I. We arrange the states in this group in 
ascending order of the values of k. 

In addition to the initial state  ;0, ,0;0, ,0   , we 
generate all other incomplete states of Model I by  

for 1, , fi N 
1, ,j N

  
for r    

generate states in (16) and  
arrange them in ascending order of the values of k 

end  
end 

but we exclude the combining of the frequency state  

 1, ,N f
FS f f   and the run state 1Nr

RS r , , r      

which corresponds to the complete state “at least   
frequency quotas reached and at least   run quotas 
reached”. The complete state corresponds to the constant 
pgf in (4) and are not part of the vector  in (5).  t

Let  1, , NS S S   be the vector of all incomplete 
states of Model I arranged in the order they are generated 
above but preceded by the initial state  
 ;0, ,0;0, ,0   as its first entry. Note that the initial 
state is the only state with  since it has no current 
outcome. The initial state is immediately followed in  
by the group of states 

k  
S

 ; ,0k 0, ,0;0,  for  

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 1695

1, ,k         

,S



. The total number of incom- 
plete states for Model I is given by  

1 1

1 1 1

1 ; ;
N N Nf r r

i j N jf
i j j

N N FS RS N FS R
 

  

             (17) 

where the leading 1 corresponds to the initial state. 

For any given state 1 1; , , ; , ,k m m n n S      , let  

1i  be the position of  1, ,m m  in the vector FS   
determined by (11) with the exception that 1 fi N  if  

   1 1, , , ,m m f f   ; let  be the position of  1j

1, ,n n  

 

 



 in the vector  determined by (14) or  RS

(15); and let  be the local position of  1l

1 1; , , ; , ,k m m n n   , by ascending order on , in 

the group (16). The position of   

k

1 ,n1; , , ; ,k m m n  
in the vector  can be determined by  S

1 11 1

11
1 1 1

1 ; ;
i N jr

i j i j
i j j

N FS RS N FS RS l
 

  

        .   (18) 

This formula is extremely useful when we generate the 
matrix A and the vector b. 

3.4. Generating A and b 

The matrix A and the vector b in (5) are initialized to 
zero. For each non-initial state  ( ) in  iS 1i 

 1, , NS S S  , say , the  1 1; , , ; , ,iS k m m n n     

i -th row of A and element  b i  of b will be determined 
as follows: From the equation for 

 1 1; , , ; , ,t k m m n n     in (3), if 

 1 11; , , ; , ,t M m n n       is a constant pgf according  

to the boundary conditions (4), then the value of  b i  is 
increased by ; otherwise 1kp   1, kA i j p

, , ; , ,

 where j is  

the position of the state 1 11;M m n n       in S as  

determined by (18). All other pgf’s on the right-hand side 
of (3) are then similarly processed to complete the -th 
row of A and 

i
 b i . If more than one constant pgf is 

present on the right-hand side of (3),  equals the 
sum of the probabilities of the cells corresponding to the 
constant pgf’s. Similarly, the first row of A and 

 b i

 1b  
are determined from (2). The matrix A is stored in sparse 
matrix format for our computer program (e.g., Section 
3.4 of [14]). 

Remark 2: The states used in our algorithm are suffi- 
cient and necessary for solving the general Model I. For 
special cases (e.g., independent multinomial trials) cer- 
tain groups of states in our algorithm can be reduced to a 
single state, further enhancing the efficiency of the 
algorithm. 

4. Numerical Results 

Our computer program for Model I is in C++ and is 
based on the methods discussed in Sections 2 and 3 for 
calculating the distribution, expectation, and standard  

deviation of the waiting time variable  
 ,

, ,WT
 
   . Similar  

computer program for Model II is also developed. The 
programs have been successfully implemented and tested 
with various combinations of the parameters , ,   , 

if s , jr s ,  ,  ,   and various probabilities. Monte 
Carlo simulation algorithms for both models were also 
developed for comparison to the pgf method. 

Example 2: Consider tossing one fair die initially. In 
every subsequent trial, we toss one of six unfair dice 
labeled 1 through 6. The die which is selected for the 
next trial matches the count on the face of the die from 
the current trial. Suppose we are looking for frequency 
quotas of 20 and 21 for faces 1 and 2, run quotas of 3 and 
4 for faces 2 and 3, and faces 5 and 6 are considered 
slack cells. The initial cell probabilities (tossing a fair die) 
are  1 6,1 6,1 6,1 6,1 6,1 6  and the transition cell 
probabilities (tossing one of six unfair dice) are  

 
 
 
 
 
 

2 12,3 12,3 12,1 12,2 12,1 12

3 12,3 12,1 12,2 12,2 12,1 12

1 12, 2 12, 2 12,3 12,3 12,1 12

2 12,2 12,3 12,3 12,1 12,1 12

3 12,1 12,2 12,2 12,3 12,1 12

1 12, 2 12, 2 12,3 12,3 12,1 12

 

In Example 2 2     . For the waiting time  

variables  
 ,

, ,WT
 
   and  , ,WT 

   , Table 1 lists the  

expectations (E), standard deviations (sd), sizes of the 
matrix A (N), and computation times (CPU, “m” stands 
for minutes and “s” for seconds) produced by the pgf 
method and those produced by the Monte Carlo method 
with 1,000,000 simulations for each possible com- 
bination of  ,   and each possible value of  . The 
numerical values are rounded to two digits after the 
decimal point. The algorithm for the pgf method was 
terminated when, say for Model I, the condition  

 
  , 8

, ,0
1

n

k
P WT k

 
  




  10  was satisfied for some 

 since 1n   
  ,

, ,P WT k
 
     is much smaller than  

810  for 1, 2,k n n    . Computation of the results 
was carried out on a 3.6 GHz Intel Xeon Pentium IV 
with 2 Gb memory running RedHat Enterprise Linux 
operating system. 

The case    , ,     for Model I and the case 
     for Model II are mathematically identical 
which is reflected in the results of the pgf method in  

Copyright © 2012 SciRes.                                                                                  AM 



B. J. CHADERJIAN  ET  AL. 

Copyright © 2012 SciRes.                                                                                  AM 

1696 

 
Table 1. Expectations and standard deviations for example 2. 

 Model I: pgf Method  Monte Carlo Method 

( ,  ) E sd N  CPU  E sd CPU 

(1,1) 555.74 537.61 6228 3.8 s  556.01 538.88 44.9 s 

(2,1) 561.59 532.82 6839 4.3 s  561.33 531.93 45.4 s 

(1,2) 1767.33 1382.43 12,461 21.8 s  1764.83 1383.14 2 m 25 s 

(2,2) 1767.63 1382.08 13,683 22.8 s  1765.10 1379.56 2 m 26 s 

 Model II: pgf Method  Monte Carlo Method 

  E sd N  CPU  E sd CPU 

1 87.53 24.37 3740 0.05 s  87.56 24.31 7.4 s 

2 120.86 20.96 10,325 0.2 s  120.82 21.03 10.2 s 

3 561.28 533.07 13,424 8.5 s  561.23 533.88 47.2 s 

4 1767.63 1382.08 13,683 22.6 s  1764.49 1380.89 2 m 31 s 

 
Table 1. Note that the sizes N of the A matrices are quite 
large in the pgf method, but the matrices are extremely 
sparse. For example, the size of the matrix A is 

 for the parameter 13,683N  4   of Model II in the 
table. A dense matrix with this size is already too large to 
be handled by the computer used for the calculation in 
this section. But, by utilizing the sparsity of the matrices, 
our algorithm can efficiently solve the problem within 23 
seconds and our algorithm is more than six times faster 
than the Monte Carlo Method. Moreover, our algorithms 
obtain their results by direct solution rather than by 
estimation based on simulations. To our knowledge, such 
direct solution methods were not previously available for 
the general Model I or Model II. The results demonstrate 
that our algorithms are efficient compared to the Monte 
Carlo simulation method. 

REFERENCES 
[1] N. Balakrishnan and M. V. Koutras, “Runs and Scans with 

Applications,” John Wiley & Sons, New York, 2002. 

[2] J. C. Fu and W. Y. Lou, “Distribution Theory of Runs 
and Patterns and its Applications,” World Scientific Pub- 
lisher, Singapore City, 2003. 

[3] A. P. Godbole and S. G. Papastavridis, “Runs and Pat-
terns in Probability: Selected Papers,” Kluwer, Dordrecht, 
1994. doi:10.1007/978-1-4613-3635-8 

[4] S. Aki and K. Hirano, “Sooner and Later Waiting Time 
Problems for Runs in Markov Dependent Bivariate Tri-
als,” Annals of the Institute of Statistical Mathematics, 
Vol. 51, No. 1, 1999, pp. 17-29.  
doi:10.1023/A:1003874900507 

[5] K. Balasubramanian, R. Viveros and N. Balakrishnan, 
“Sooner and Later Waiting Time Problems for Markovian 
Bernoulli Trials,” Statistics & Probability Letters, Vol. 18, 
No. 2, 1993, pp. 153-161.  

doi:10.1016/0167-7152(93)90184-K 

[6] Q. Han and S. Aki, “Waiting Time Problems in a Two- 
State Markov Chain,” Annals of the Institute of Statistical 
Mathematics, Vol. 52, No. 4, 2000, pp. 778-789.  
doi:10.1023/A:1017537629251 

[7] N. Kolev and L. Minkova, “Run and Frequency Quotas in 
a Multi-State Markov Chain,” Communications in Statis- 
tics—Theory and Methods, Vol. 28, No. 9, 1999, pp. 
2223-2233. doi:10.1080/03610929908832417 

[8] K. D. Ling and T. Y. Low, “On the Soonest and Latest 
Waiting Time Distributions: Succession Quotas,” Com- 
munications in Statistics—Theory and Methods, Vol. 22, 
No. 8, 1993, pp. 2207-2221.  
doi:10.1080/03610929308831143 

[9] M. Sobel and M. Ebneshahrashoob, “Quota Sampling for 
Multinomial via Dirichlet,” Journal of Statistical Plan- 
ning and Inference, Vol. 33, No. 2, 1992, pp. 157-164.  
doi:10.1016/0378-3758(92)90063-X 

[10] M. Ebneshahrashoob, T. Gao and M. Sobel, “Double 
Window Acceptance Sampling,” Naval Research Logis- 
tics (NRL), Vol. 51, No. 2, 2004, pp. 297-306.  
doi:10.1002/nav.10119 

[11] M. Ebneshahrashoob, T. Gao and M. Sobel, “Sequential 
Window Problems,” Sequential Analysis: Design Methods 
and Applications, Vol. 24, No. 2, 2005, pp. 159-175.  
doi:10.1081/SQA-200056194 

[12] M. Ebneshahrashoob, T. Gao and M. Wu, “An Efficient 
Algorithm for Exact Distribution of Scan Statistics,” 
Methodology and Computing in Applied Probability, Vol. 
7, No. 4, 2005, pp. 459-471.  
doi:10.1007/s11009-005-5003-0 

[13] M. J. Evans and J. S. Rosenthal, “Probability and Statis-
tics, the Science of Uncertainty,” W. H. Freeman and 
Company, New York, 2004. 

[14] Y. Saad, “Iterative Methods for Sparse Linear Systems,” 
SIAM: Society for Industrial and Applied Mathematics, 
Philadelphia, 2003. doi:10.1137/1.9780898718003 

 

http://dx.doi.org/10.1007/978-1-4613-3635-8
http://dx.doi.org/10.1023/A:1003874900507
http://dx.doi.org/10.1016/0167-7152(93)90184-K
http://dx.doi.org/10.1023/A:1017537629251
http://dx.doi.org/10.1080/03610929908832417
http://dx.doi.org/10.1080/03610929308831143
http://dx.doi.org/10.1016/0378-3758(92)90063-X
http://dx.doi.org/10.1002/nav.10119
http://dx.doi.org/10.1081/SQA-200056194
http://dx.doi.org/10.1007/s11009-005-5003-0
http://dx.doi.org/10.1137/1.9780898718003

