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ABSTRACT 

We show a result of symmetry for a big class of problems with condition of Neumann on the boundary in the case one 
dimensional. We use the method of reflection of Alexandrov and we show one application of this method and the 
maximum principle for elliptic operators in problems with conditions of Neumann. Some results of symmetry for 
elliptic problems with condition of Neumann on the boundary may be extended to elliptic operators more general than 
the Laplacian. 
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1. Introduction 

The maximum principle is one of the most used tools in 
the study of some differential equations of elliptic type. It 
is a generalization of the following well-known theorem 
of the elemental calculus “If f is a function of class  
in 

2C
 ,a b  such that the second derivative is positive on 

(a, b) then the maximum value of f attains at the ends of 
 ,a b ”. It is important to point out that the maximum 
principle gives information about the global behavior of 
a function over a domain from the information of quali- 
tative character in the boundary and without explicit 
knowledge of the same function. The maximum principle 
allows us, for example, to obtain uniqueness of solution 
of certain problems with conditions of the Dirichlet and 
Neumann type. Also it allows to obtain a priori estimates 
for solutions. These reasons make interesting the study of 
the maximum principle on several forms and its gene- 
ralizations and the Hopf lemma. For example a geometric 
version of the maximum principle allows us to compare 
locally surfaces that coincide at a point. On the other 
hand, the maximum principle and the Alexandrov re- 
flection principle in [1] have been used to prove sym- 
metries with respect to some point, some plane, sym- 
metries of domain and to determine asymptotic-sym- 
metric behavior of the solutions of some elliptic prob- 
lems. (See Serrin [2], Gidas, Ni and Nirenberg [3], Gidas, 
Ni and Nirenberg [4], Caffarelli, Gidas and Spruck [5], 
Berestycki and Nirenberg [6]). The first person in use 
this technic was Serrin. Serrin proved that: “If  is a 
positive solution of the problem  

u

1 enu     

which is zero on the boundary and its outer normal 
derivative on the boundary is constant, then  is a ball 
and  is radially symmetric with respect to the center 
of 


u

 ”. Using the ideas of Serrin and a version of the 
maximum principle for functions that do not change of 
sign, Gidas Ni and Nirenberg proved that: “If   is a 
ball,  1f C   and u  is a positive solution of the 
problem, 

  0 onu f u     

which is zero on the boundary, then u is radially sym- 
metric with respect to the center of the ball”. Using the 
method of reflection and a version of maximum principle 
for thin domains Berestycki and Nirenberg made a gene- 
ralization of this statement. Our proof shows that the 
technic used by Berestycki and Nirenberg for the study 
of symmetries of solutions of the elliptic problem with 
Dirichlet condition, can be applied in elliptic problems 
with Neumann conditions with nonlinear term 

  ,f x u x .  

2. Maximum Principle and Hopf Lemma 

Our result is based on the well known maximum prin- 
ciple and on the Hopf lemma for the differential operator 
of the form (see [7-9]) 

       L u a x u b x u c x u        (1) 

where x  is in  , .a b  We suppose that the coefficients 
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   ,a x b x

  0,a x 
 and  are bounded on  and  c x

0
 ,a b

  for all  c x  , .x a b  

Theorem 2.1. (Maximum principle) 
Let  be such that   ,a b 2u C   > 0L u

 
.

,a b
Then  

cannot attain its maximum value in  
u

Lemma 2.2. (Hopf)  

Suppose     2 0,u C b C a b  ,a


 satisfies 

  0 in ,a b .L u 


 

Let  ,0x a b  be such that   
 u  is continuous at ,0x   
  0 u x  for all  u x  , ,x a b   

  0

u
x




 existe. 

Then  0 0.
u

x



 

3. Main Result 

Theorem 3.3. Let      2 01,1 1u C   1,C 

 ,f x

 be a 
solution of 

           
 

 
on 1,1

,

a x u x u x c x u x u x

u u

   
 
   

 

 
,

1 1

b x



 

where  , :a c 1,1    are bounded functions and 
symmetric with respect to the origin such that   0a x    

and  for all   0c x   1,1 ; x   is   ,f C   
such that  ,f x t  is strictly increasing in t  for all 

 1,1x   and is symmetric to  for all 0x  ,t   
and  : 1,1b

u
   is a bounded function and odd. 

Then  is symmetric with respect to the origin. 
Proof: Define the reflected function of  in u  1,1  

by 

     , 1x x    ,1 .

 , .x

,f x

  w x

v x u

u 

 


,

1 1

b x



 w x

 
  

 
 

1,1

1 =

w x

u x

w w





 

 

Hence,  Then v 
satisfies 

     v x x v x u   

            
 

  
on 1,1

,

a x v x v x c x v x v x

v v

   
 
   

 

Define 

   .u x v x   

Then  satisfies w

      
  

 

, ,

on

1 = 0.

a x b x w x c x

f x f x v x

  

 


 

 

Since  is continuous in w  , there are ,M mx x   
such that  

   min and maxm Mw x w w x w
 

   

Suppose that Mx  or  then if   1,1 ,mx  
   w1,1 , 0M Mx x    since  Further   0w 0 .

   0, 0.M Mw x w x    Therefore  

     , ,M M M Mf x u x f x v x 0.   

Since  .,f t  is strictly increasing in   t

  0.Mw x   

Then 

  0.Mw x   

Therefore 

   0 for all 1,1 .w x x    

If  1,1 ,mx    using a similar argue we demonstrate 
that  0 onw  1,1  and we obtain the same con- 
clusion. Suppose that  then  1,1 ,mx     0.w xm   
since w(0) = 0 Further  There- 
fore  

  0,mw x  w x 0.m 

     , ,m m m mf x u x f x v x 0.   

Since  .,f t  is strictly increasing in   t

  0.mw x   

Then  

  0.mw x   

Therefore  

   0 for all 1,1 .w x x    

We conclude  

 0 on 1,1 .w    

So  is symmetric with respect to the origin.  u
We will prove that ,m Mx x  do not belong to 
 1,1 .   Suppose now that  and  , 1  ,1m Mx x

     m Mw x w x w x  for all  then   1,1 , x

  0Mw x   and   < 0.mw x  If  and 1mx   1,Mx    

then    0 in 1,w x    and    0 in ,1 ,w x   
where  , 1,1     are such that   is the first zero 
of w and   is the last. Since  .,f t  is strictly in- 
creasing in , then  t

      
 

0 in 1, ,

1 = 0,

a x w b x w c x w

w

    


 
 

and 

      
 

0 in ,1 ,

1 = 0.

a x w b x w c x w

w
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