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ABSTRACT 

In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives 
are s-convex and apply these inequalities to discover inequalities for special means. 
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1. Introduction 

The following definition is well known in the literature. 
Definition 1.1. A function  is 

said to be convex if  
 : ,f I      

        1 1f x y f x f        y  

holds for all ,x y I  and  0,1  . 
In [1,2], among others, the concepts of so-called quasi- 

convex and s-convex functions in the second sense was 
introduced as follows. 

Definition 1.2 ([1]). A function 
 is said to be quasi-convex if   0:f I     

 
0,

      1 sup ,f x y f x f    y  

holds for all ,x y I  and  0,1  . 

Definition 1.3 ([2]). Let  0,1 .s  A function 
 is said to be s-convex in the second sense 

if  
0:f  0

        1 1
ssf x y f x f        y  

for all ,x y I  and  0,1 


. 
If  is a convex function on :f I    ,a b  

with  and , Then we have Hermite-Har- 
damard’s inequality 

,a b I a b

     1
d

2 2

b

a

f a f ba b
f f x x

b a

        .  (1.1) 

Hermite-Hadamard inequality (1.1) has been refined or 
generalized for convex, s-convex, and quasi-convex fun- 
ctions by a number of mathematicians. Some of them can 
be reformulated as follows. 

Theorem 1.1 ([3, Theorems 2.2 and 2.3]). Let  
 be a differentiable mapping on :f I     I  , 

 with . ,a b I  a b

(1) If  f x  is convex on  ,a b , then 

     

      

1 b
d

2

8

a

f a f b
f x x

b a

b a f a f b






  



.     (1.2) 

(2) If the new mapping    1p p
f x

  is convex on  

 ,a b  for , then 1p 

     

 
        1 11 1

1

1
d

2

.
22 1

b

a

pp p p p

p

f a f b
f x x

b a

f a f bb a

p

 






    
   


 

Theorem 1.2 ([4, Theorems 1 and 2]). Let 
 be a differentiable function on :f I    I   and 

,a b I  with a b , and let . If 1q    q
f x  is con-

vex on  ,a b , then 

     

     
1

1
d

2

4 2

b

a

qq q

f a f b
f x x

b a

f a f bb a






    
 
 


    (1.3) 

and 

 

     
1

1
d

2

4 2

b

a

qq q

a b
f f x

b a

f a f bb a

     
x

    
 
 


    (1.4) 

Theorem 1.3 ([5, Theorems 2.3 and 2.4]). Let  

Copyright © 2012 SciRes.                                                                                  AM 



L. CHUN, F. QI 1681

:f I   .  be differentiable on I  , ,a b I  with 
, and let . If a b 1p     1p p

f x  is convex on 
 ,a b , then 

 

         

         

1
11 1

11 1

1
d

2

4
3

16 1

3

b

a

p
p pp p p p

p pp p p p

a b
f x x f

b a

b a
f a f b

p

f a f b

 

 

     

             
       



 

and 

 

    
1

1
d

2

4
.

4 1

b

a

p

a b
f x x f

b a

b a
f a f b

p

     
      


     (1.5) 

Theorem 1.4 ([6, Theorems 1 and 3]). Let  
 be differentiable on 0:f I    I   and ,a b I  

with . a b
(1) If   q

f x  is s-convex on  ,a b  for some fixed 
 0,1s  and , then 1q 

     

   
  

   

11
1

1

1
d

2

2 1 21

2 2 1 2

.

b

a

qs
q

qq q

f a f b
f x x

b a

b a

s s

f a f b








            
     



   (1.6) 

(2) If   q
f x  is s-convex on  ,a b  for some fixed 

 0,1s  and , then 1q 
     

 

 

 

 

 

1
1 1

1

1

1

1

1
d

2

1 1

4 2 1 1

2

2

2 2

.
2

b

a

q
q

qq
q

qq
q

qq
q

qq
q

f a  f b
f x x

b a

b a q

q s

a b
f a f

a b
f f b

b a a b
f a f

a b
f f b






           
        

   
        

     
         

   
        

     



  (1.7) 

Theorem 1.5 ([7, Theorem 2]). Let  
be an absolutely continuous function on 

:f I   
I   such that 

  , f L a b  for  with . If ,a b I  ,a b I   f x  
is quasi-convex on  ,a b , then 

     

   

 

4

d 4
6 2

max ,
1152 2

max ,
2

b b
a

a a b
f x x af f f b

b a a b
f a f

a b
f f b

          
        

   
      

   



 

In recent years, some other kinds of Hermite-Hadamard 
ty

r, we will find some new inequalities of 
H

2. A Lemma 

 new inequalities of Hermite-Hadamard 

pe inequalities were created in, for example, [8-17], 
especially the monographs [18,19], and related refer-
ences therein. 

In this pape
ermite-Hadamard type for functions whose third deri- 

vatives are s-convex and apply these inequalities to dis-
cover inequalities for special means. 

For finding some
type for functions whose third derivatives are s -convex, 
we need a simple lemma below. 

Lemma 2.1. Let :f I     
on 

be a three times dif-
ferentiable function I   with a,b I  and a b . If 

 ,f L a b , then 

         

       
3

1

0

1
d

2 12

1 2 1 1 d .
12

b

a

f a f b b a
f x x f b f a

b a
b a

t t t f ta t b t

     


    




 

(2.1) 
Proof. By integrating by part, we have 
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12 6 d 1

6
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f b f a
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The proof of Lemma 2.1 is complete. 

3. Some New Hermite-Hadamard Type 
Inequalities 

We now utilize Lemma 2.1, Hölder’s inequality, and 
others to find some new inequalities of Hermite-Ha- 
damard type for functions whose third derivatives are 
s-convex. 

Theorem 3.1. Let be a three times 
differentiable functio

0:f I R    
n on I   such that  ,f L a b  

for  with ,a b I a b . If 
q

f   is s-convex on 
 ,a b  for some fixed  0,1s  and q 1 , then 

         

   
   

   

1
2 23

1

1
d

2 12

2 6 2

192 2 3 4

.

b

a

q
s s

qq q

f a f b b a
f x x f b f a

b a

s sb a

s s s

f a f b

 

       

    
   
 

     



 

(3.1) 

Proof. Since 
q

f   is s-convex on  ,a b , by Lemma 
2.1 and Hölder’s inequality, we have 

         

        

 

      

       
    

3
1

0

3

1 2 1 1 d
12

1
1
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1

12

1 2 1

q
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0
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1 1
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1

d
2

1 d

1 2 1
12

1 d ,

a

q

qsq

q
q

1

2 1

bf a f b b a
f x x f b f a
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b a
A t t t t f a

st f b t



    



    

     

  







where 

b a

 




b a
t t t f ta t b t


    

b a
A

t t f t b t



  

 

   1

0 0

1
1 2 1 d

16
A t t t t     

and 

   

     

   

1

0
1 2 1 ds

sA t t t t t  
1

0

2

2

1 2 1 1 d

6 2
.

2 2 3 4

s

s

s

t t t t t

s s

s s s





   

 


  

  

Thus, we have 

         

 
   

   

   
    

   

1 13 1 2

2

1

1
2 23

1

1
d

2 12

1 6 2

12 16 2 2 3 4

2 6 2

192 2 3 4

.

b

a

q
sq

s

qq q

q
s s

qq q

f a f b b a
f x x f b f a

b a

b a s s

s s s

f a f b

s sb a

s s s

f a f b

 



 

       

              

     

    
    

     



 

The proof of Theorem 3.1 is complete. 
Corollary 3.1.1. Under conditions of Th rem 3.1,  
1) if 

eo
1s  , then 

         

     
3 1 1

1
d

2 12

1
;

192 2

b

a

q qq q

f a f b b a
f x x f b f a

b a

b a
f a f b

       

           


 

(3.2) 

2) if 1q s  , then 

         

     
3

1
d

2 12

.
384

b

a

f a f b b a
f x x f b f a

b a

b a
f a f b

       


    


 

Theorem 3.2. Let be a three times 
differentiable functio

0:f I R    
n on I   such that  ,f L a b  

 with a b . If 
q

f for ,a b I  is s-convex on 
 ,a b  for some fixed  0,1s  and q 1 , then 

         

   
   

1
113

1
d

2 12

2 2 11

96 1 1 2

b

a

q
s sp

f a f b b a
f

   
1

,
qq q

x x f b f a
b a

sb a

p s s



       

            

f a f b  

 





 

(3.3) 

where 

  

1 1 1.
q p
   

q
f Proof. Using Lemma 2.1, the s-convexity of  on 

 ,a b , and Hölder’s integral inequality yields 
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B
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w on gives 



here an easy calculati
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1 2 1 d

ppB t t t  


      

0

2 1

1

2 1p

t

p 


  (3.4) 

and 

 

  

1 1

0 0
2 1d 1 2 1 d

2 1
.

2 1 2

ss

s

s

t t t t t t

s

s s

   




 

 
        (3.5

Substituting Equations (3.4) and (3.5) into the above 
inequality results in the inequality (3.3). The pro

m 3.2 is complete. 
llary 3.2.1  Under conditions of Theorem 3.2, if 

) 

of of 
Theore

Coro .
1 , then 

  

s

      

     
13 1 1

1
d

2 12

1 1
.

96 1 2

b

a

p q qq q

f a f b b a
f x x f b f a

b a

b a
f a f b

p

       

                 


 



Theorem 3.3. Under conditions of Theorem 3.2, we 
have 

         

     

   

1 1
3

1

1
d
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( ) 1 2

24 1 3 2 3

b

a

p q

q

f a f b b a

.
q q

f x x f b f a
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b a

p p s s

       

   
             



 

(3.6) 
Proof. Making use of Lemma 2.1, the s-convexity of 

f a f b     

q
f 

         

      

 

       

 on  ,a b , and Hölder’s integral inequality leads 
to 



3 111

0
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1

1

0

1
d

2 12

1 1 d
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1 1
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a
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p

q qss

f a f b b a
f

1

d ,
q

x x f b f a
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b a
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C

t t t f a t f b

       

       




       







 

where 

b a

t

      
1

0

1
1 2 1 d

p
C t t t t       (3.7) 

2 1 3p p 

an



d 

     
1 1 11

0 0

1
1 d 1 d

2 3
sst t t t t t

s s
    

   .  (3.8) 

Substituting Equations (3.7) and (3.8) into the abov
inequality derives the inequality (3.6). The proof of 
Theorem 3.3 is complete. 

Corollary 3.3.1. Under conditions of Theorem 3.3, if s 
= 

e 

1, then 

         

 
  

   

13 1

1

1
d

2 12

1 1

24 1 3 6

.

b

a

p q

qq q
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Theorem 3.4. Under conditions of Theorem 3.2, we 
have 

         1
d

2 12

b

a

f a f b b a
f x x f b f a

b a
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oof. Since 




 is s-convex on  ,a b ,Pr
q

f   by Lemma 
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2.1 and Hölder’s inequality, we have 
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where a straightforward computation gives 
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3

   
  

1 1

0
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12 2 3s s 

Substituting these equalities into th

s
s s

t t t
s


  

 
  

e above inequality 
brings out the inequality (3.10). The proof of Theorem 
3.4 is complete. 

Corollary 3.4.1. Under conditions of Theorem 3.4, if 
, then 1s 
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4. Applications to Special Means 

For positive numbers  and , define 0a  0b 

 ,
2

a b
A a b


            (4.1

and 

) 

 

  

 

1
1 1

1

, 1,0;

, , 1;
ln ln

1
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r
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r
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r
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b
r
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1r b a
 

   


  


      

  (4.2) 

It is well known that A and  are respectively called 
the arithmetic and ic means of two 
positive number  and 

Now we are in a position to construct some inequali-
ties for special means A and by applyi g the above 
established inequalities of Herm e-Hadamard type. 

Let 



rL
generalized logarithm

a b . 

rL  
it

n

    
3

1 2 3

sx
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s s s




  

         (4.3) 

for 0 1s   and 0x  . Since   sf x x   and 

    1 1
s ss s sx y x y         

for , 0x y   and  0,1 ,   then   sf x x   is s-con- 
nctionve  on x fu 0  and 
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Applying the function (4.3) to Theorems 3.1 to 3.3 
immediately leads to the following inequalities involving 
special means A  and 

Theorem 4.1. Let 
rL . 

b a 0,   0 1s  , and 1q  . 
Then 
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Theorem 4.2. For 0b a  , 0 1s  , and 
we have 

1q  , 

   
      
      

3 3 3 4 4
3

2 1 2 2
1

13

12 , 12 ,

2 3 ,

3 1 2

8 1

s s s s s
s

s s s
s

p

A a b L a b

b a s s L a b

b a s s s

p

    


  




   

    
  

 

   (4.4) 

   1
2 12 2 1 , .

q
s s q sq sqs A a b   

Theorem 4.3. For 0b a  , 0 1s  , and 1q  , 
we have 

   
      

    
   
   1 ,qs a b

p p
  

 


2 1 2 2
1

1

3 1

2 3 ,

2 3
2 .

4 1 3

s s s
s

p

q s sq

b a s s L a b

s s
b a A

  
   

  
 
  

ements 

 w ported by Science Research 
Funding of Inner Mongolia University for Nationalities 
under Grant No. NMD1103. 

REFERENCES 
[1] S. S. Dragomir, J. Pecaric and L.-E. Persson, “Som

qualities of Hadamard Type,” Soochow Journal o
matics, Vol. 21, No. 3, 1995, pp. 335-341. 

[2]

 1  

[3]  R. P. Agar al, “Two ies fo
ppings and Applications to al

eans of Real Numbers and to Trapezoidal Form
Applied Mathematics Letters, Vol. 11, No. 5, 1998, pp.
91-95. doi:10.1016/S0893-9659(98)00086-X

3 3 3 4 4
312 , 12 ,s s s s s

sA a b L a b    


 

5. Acknowledg

The first author as sup

e Ine- 
e- f Math

 H. Hudzik and L. Maligranda, “Some Remarks on s-Con- 
vex Functions,” Aequationes Mathematicae, Vol. 48, No. 
1, 1994, pp. 00-111.

 S. S. Dragomir and w Inequalit r 
Differentiable Ma  Speci  
M ula,” 

 
 

[4] C. E. M. Pearce and J. Pečarić, “Inequalities for Differen-
tiable Mappings with Application to Special Means and
Quadrature Formulae,” Applied Mathematics Let ers
13, No. 2, 2000, pp. 51-55.  
doi:10.1016/S0893-9659(99)00164-0

 
 

t , Vol. 

 

[5] U. S. Kirmaci, “Inequalities for Differentiable Mappings
and Applications to Special Means of Real Numbers and 
to Midpoint Formula,” Applied Mathematics and Com- 
putation, Vol. 147, No. 1, 2004, pp. 137-146.  
doi:10.1016/S0096-3003(02)00657-4

 

  

. Bakula, . E. Ozde J. Pe
, “Hadamard-Type Inequalities for s-Convex Func-

tions,” Applied Mathematics and Computation, Vo
No. 1, 2007, pp. 26-35. doi:10.1016/j.amc.2007.03.030

[6] U. S. Kirmaci, M. K  M mir and - 
caric  

l. 193, 
 

[7] M. Alomari and S. Hussain, “Two Inequalities of Simp- 
son Type for Quasi-Convex Functions and Applications,” 
Applied Mathematics E-Notes, Vol. 11, 2011, pp. 110- 
117. 

[8] R.-F. Bai, F. Qi and B.-Y. Xi, “Hermite-Hadam
Inequalities for the m- and (α, m)-Logarithmically Con- 
vex Functions,” Filomat, Vol. 27, No. 1, 2013, 1-7. 

[9] S.-P. Bai, S.-H. Wang and F. Qi, “Some Hermite-Ha- 
damard Type Inequalities for n-Time Differentiable (α, 

ns,” Journal of Inequalities and Ap-
Press. 

. Jiang, D.-W. Niu, Y. Hua and F. Qi, “Generaliza- 
tions of Hermite-Hadamard Inequality to n-Time Differ- 
entiable Functions Which Are s-Convex in the Second 
Sense,” Analysis (Munich), Vol. 32, No. 3, 2012, pp. 209- 
220. doi:10.1524/anly.2012.1161

ard Type 

m)-Convex Functio  
plications, 2013, in 

[10] W.-D

 

[11] F. Qi, Z.-L. Wei and Q. Yang, “Generalizations and Re- 
finements of Hermite-Hadamard’s Inequality,” The Rocky 
Mountain Journal of Mathematics, Vol. 35, No. 1, 2005, 
pp. 235-251. doi:10.1216/rmjm/1181069779 

 F. Qi, “On Hermite-Hadamard 
)-Convex Functions,” Interna- 

. Qi, “Some New Inequalities 
of Hermite-Hadamard Type for n-Time Differentiable 
Functions Whi ysis (Munich), Vol. 
32, No. 3, 201

[12] S.-H. Wang, B.-Y. Xi and
Type Inequalities for (α, m
tional Journal of Open Problems in Computer Science 
and Mathematics, Vol. 5, No. 4, 2012, in Press.  

[13] S.-H. Wang, B.-Y. Xi and F

ch Are m-Convex,” Anal
2, pp. 247-262.  

doi:10.1524/anly.2012.1167 

[14] B.-Y. Xi, R.-F. Bai and F. Qi, “Hermite-Hadamard Type 
Inequalities for the m- and (α; m)-Geometrically Convex 
Functions,” Aequationes Mathematicae, 2012, in Press.  
doi:10.1007/s00010-011-0114-x 

[15] B.-Y. Xi and F. Qi, “Some Hermite-Hadamard Type Ine-

with Appli- 

qualities for Differentiable Convex Functions and Appli-
cations,” Hacettepe Journal of Mathematics and Statistics, 
Vol. 42, 2013, in Press. 

[16] B.-Y. Xi and F. Qi, “Some Integral Inequalities of Her- 
mite-Hadamard Type for Convex Functions 
cations to Means,” Journal of Function Spaces and Ap- 
plications, Vol. 2012, 2012, 14 pp.  
doi:10.1155/2012/980438 

[17] T.-Y. Zhang, A.-P. Ji and F. 
of Hermite-Hadamard Type for s-Geo

Qi, “On Integral Inequalities 
metrically Convex 

Functions,” Abstract and Applied Analysis, Vol. 2012, 
2012, 15 pp. doi:10.1155/2012/560586 

[18] S. S. Dragomir and C. E. M. Pearce, “Selected Topics on 
Hermite-Hadamard Type Inequalities and App
RGMIA Monographs, Victoria Univer

lications,” 
sity, Melbourne, 

k, 

 

2000. 

[19] C. P. Niculescu and L.-E. Persson, “Convex Functions and 
Their Applications: A Contemporary Approach (CMS 
Books in Mathematics),” Springer-Verlag, New Yor
2005.  

http://dx.doi.org/10.1016/S0893-9659(99)00164-0
http://dx.doi.org/10.1016/S0893-9659(99)00164-0
http://dx.doi.org/10.1016/S0893-9659(99)00164-0
http://dx.doi.org/10.1016/S0096-3003(02)00657-4
http://dx.doi.org/10.1016/S0096-3003(02)00657-4
http://dx.doi.org/10.1016/S0096-3003(02)00657-4
http://dx.doi.org/10.1016/S0096-3003(02)00657-4

