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ABSTRACT 

In plasmonic systems, the response of nanoobjects under light illumination can produce complex optical maps. Such 
plasmonic or resonant systems have interesting characteristics such as sensitivity on parameters and initial conditions. 
In this paper, we show how these complex maps can be cryptographically improved and associated in order to design a 
secure pseudo random number generator. 
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1. Introduction 

Pseudo-random number generators (PRNGs) are fun- 
damental blocks in various domains of applications such 
as Monte Carlo simulation algorithms, communications 
and many cryptographic systems which depend on the 
quality of the pseudo random sequences. The generated 
numbers are mainly used as simple pseudo random se- 
quences, private or secret keys or secret signatures. The 
development of PRNGs has impassioned the researchers 
for few decades and since then, many techniques to pro- 
duce such PRNGs have been studied [1-9]. The robust- 
ness of such pseudo random generators is crucial to 
ensure secure applications in cryptograhy and to avoid all 
the various and existing attacks. A large family of 
PRNGs is based on sequences generated by single chaotic 
system or combination of chaotic maps [4,8,10,11], 
through a one-way function. Such a combination of 
several maps by a one-way function improves the se- 
curity of the PRNG. In this paper, we propose a PRNG 
based on the use of complex maps produced by the 
electromagnetic response of plasmonic systems. The 
study of plasmonic or resonant systems has shown the 
possibility to produce complex electromagnetic field 
patterns, with strong gradients and high confinement, 
superimposed with interference patterns. These local 
physic effects have opened the experimental and theore- 
tical ways of designing efficient systems in various new 
applications (sensors, imaging and burning biomedicine 
applications, security) [12-15]. For cryptographic appli- 

cations, the main question concerns the ability of such 
plasmonic systems, due to their high sensitivities to 
parameters in the neighbouring of the resonances, to 
serve as the basis of pseudo random number generator 
with high efficiency. 

Therefore, we propose a method to generate long se- 
quences of numbers, with high quality of randomness, 
based on the complex nature of plasmon simulations. The 
nanosystems permit to produce complex optical maps 
and provide inherent tamper-evidence due to their sen- 
sitivities to the initial parameters and initial conditions. 
We show how these complex maps, through a numerical 
process, can produce sequences that have high level of 
randomness, in compliance with the classical tests of 
randomness on binary sequences [16]. This can be used 
as a base of secret key between two parties in a sym- 
metric cipher (e.g. One-time pad). The high level of 
security of this inspired-plasmonic system is related to 
the number of freedom degrees used to generate the 
pseudo random sequence and the physical complexity of 
the plasmonic structures. These degrees of freedom can 
be grouped into two categories of parameters, of com- 
pletely different origin. The first one ( P ) can be related 
to the physical parameters required to model the nano- 
structures (materials, shapes). From the constructed 3D 
spatial maps of the electromagnetic field, a second set of 
parameters ( N ) can be assigned to a numerical pro- 
cesses consisting in an adaptive remeshing process and a 
modular transformation. These processes ensure quality 

Copyright © 2012 SciRes.                                                                                  AM 



M. FRANÇOIS  ET  AL. 1665

targets of a maximum Shannon’s entropy [17] as well as 
increasing disorder in the sequences. We analyse the ran- 
domness quality [16] and the correlation of sets of pseudo 
random sequences. We show that only weak correlation 
can be exhibited. This weak correlation between pseudo 
random sequences is an essential condition to be fulfilled 
for more secure uses. 

This paper is structured as follows. The description of 
the method as well as the plasmonic functions analysis 
are given in Section 2. Section 3 presents results for con- 
structed pseudo random sequences and statistical analysis 
applied on the sets of generated pseudo random se- 
quences. The security analysis of the PRNG is also 
discussed, before concluding in Section 4. 

2. The Proposed Cryptosystem 

The core of the PRNG algorithm is based on the con- 
truction of two plasmonic maps obtained by computing 
the electromagnetic field interacting with metallic nano- 
particles. 

2.1. Nanoworld as Source of Complex Maps 

The process of production of pseudo random sequences 
we propose, is based on a model of plasmonic resonance 
[14,18]. The interest here is the interaction of the 
coupling of light-matter at a nanometric scale which is 
kwown to induce strong gradient of the field and com- 
plex interference patterns. The resonance of the interac- 
tion between light and matter is very sensitive to all phy- 
sical parameters: size of the nanoobjects, materials and 
illumination characteristics. The numerical simulated sig- 
nals on which we work is the total electromagnetic field 
in the vicinity of such metallic nanostructures. It comes 
from the numerical resolution of the vectorial Helmholtz’ 
equation governing the electric field vector and the 
Maxwell’s equations relating both electric and magnetic 
field vectors E and H satisfying:  
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with 0 2πk  ,   the wavelength in vacuum, r  
and r , the relative permittivities and permeabilities, 
respectively. The electric and magnetic fields E and H 
satisfy the orthogonality condition 0H E . The 
resolution of such a system of equations can be achieved 
numerically in a 3D spatial domain  and the physical 
electromagnetic fields 


 , ,x y zE ,  , , x y zH  and their 

associated intensities  

     , , , , , ,EI x y z x y z x y z E E

     , , , , , ,HI x y z x y z x y z H H  are computed. The  

characteristics of the 3D spatial maps are intrinsically 
dependent on a large number of parameters which relates 
to the entire physical system. It is moreover why, the 
exact reproducibility of this map is almost impossible for 
an attacker without additional information about the used 
physical and meshing parameters P  and N . The 
physical parameters can be grouped as a key set P  
containing:  

1) Optical parameters: the wavelength of the li  
so

ght
urce 02π k   in  , the incident angle of illu- 

mination i  in  , the choice of material permitivitties 
 p   in   d m an   in   for the surrounding 

medium; 
2) Geome cal par eters: e radii of the nano- 

sp
tri am  th

heres { pr  in  }, the number of nano-sphere pN  in 
  and their spatial coordinates   , , , 1i i i px y z i N  , 
in 3 . 

The theoretical dimension of th  
pa

e space of the physical
rameters P  is 

2 4 1p pN N  
 

   . At this stage, 
the complex spatial fields

 

 , ,x y zE ,  , ,x y zH  and  

their associated intensities  , ,EI x y z  a

 and 

nd  ,,HI x
 order to

y z  
necessitate a specific num ess in  
transform these maps to an efficient pseudo random 
sequence 

erical proc

 out n . The aim is to obtain a sequence 
 out n  with igh level of randomness and which 

satisfy the basic cryptographic properties. 

2.2. Construction of the Generator 

a h

The “physical” 3D maps  , ,x y zE ,  , ,x y zH ,  
 , ,EI x y z  and  , ,HI x y  b used

pseudo random sequences eys in an encryption 
scheme, because the distribution of the spatial intensities 
is not random enough relatively to the requirements of a 
random sequence. Therefore a renumbering of the spatial 
nodes is necessary to be able to create more disorder in 
these intensity maps, which will give us a stronger 
derived sequence 

z  cannot
 or secret k

e directly  as 

 out n . A two-steps numerical pro- 
cess is achieved on the d and intensity maps in order 
to satisfy both criterion of maximum entropy and ran- 
domness statistical characteristics. 

The first step consists in an homogenization of occur- 
rence of fields and intensities thro

fiel

ugh the redistribution 
of intensity level by a 3D adaptive meshing process [19] 
with an a posteriori error estimator based on the maxi- 
mum entropy. This adaptive scheme of remeshing of the 
domain  , ,x y z  uses selected frequencies of each in- 
tensity levels occurrence as target. For this goal, second 
order polynomials are used to interpolate intensity levels, 
to generate additional points in the tomography map (or 
equally to suppress the nodes corresponding to too 
numerous intensity levels). Each point of the domain 
 , ,x y z  is labeled by an integer n  (the node number) 
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and the intensity levels of the maps  , ,EI x y z , 

,H  ,I x y z  are translated to E I n ,  HI n  before  

transformed  the maps  into E X n ,  HX n
 maps are gi

 in the 
 this new basis C , th n by:  basis  InC . e ve
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with   and  fixed integers (e.g.  and 
). This nsformation of the m

C
 tra

710 
aps 256C   EI n  to 

E X n resp.  H ( I n  to  HX n ) drasti fects 
nal structure of the sequence. These t aps 

E

cally af
wo the in


ter


m
X n  and  HX n

 sat

 pro irectly random-like 
images (i.e. images that seem to be random in appearence 

necess isfying cryptographical random- 
ness requirements). That comes from the physics struc- 
ture of the fields E and H and the remeshing process 
which were not intended to randomize the initial maps by 
only to control the occurencies of the intensity levels in 
respect to the entropy criteria. This part of the space of 
parameters consists in a set of numerical parameters 

duce d

but not arely

N  
associated to the remeshing process and are summary by: 

the adaptive remeshing process parameters minh , 
h , max   in     , the minimum, the maxi- 
mum distance between nodes after remeshing  

a um t between the levels of signal 
at two adjacent nodes, respectively. The number of 
nodes after computation is nN  in   and their spa- 
tial coordinates   , , ,1

 and
the m xim olerance 

j j j nx y z j N  , in 3 . 

With such numer ensi of
ace 

ical para ters, the dimme on  the 
sp N  is 3 . 

The second step consists in applying a xor operator by 
matchi Eng X n  and  HX n

 

 in order to produce a 
new map  ou n . This matching benefits from the 
differences en E

t

 betwe I n  and  HI n  (i.e.  EI n  
exhibits stro tions whenever  Hng varia I n  is smother) 
and coming from the onality een th  
metric and antisymmetric parts of t ctromagnetic 
tensor, respectively. This map is given by:  

orthog  betw e sym-
he ele

     out ,E Hn X n X n         (5) 

Such a produced numerical pseudo random
 is therefore deduced from the plasm

 sequence 
onic  out n

pr
cal signa

ocess. The complexity of the plasmonic simulated opti- 
l of nano-objects and the various parameters 

used are the assets of this cryptosystem and the global set 
of parameters P N     of dimension 

5 4 1p pN N     . 

In principle arameters used sthe physical p eem to take 
an infinity of values (i.e.  or even non exist- 
in

 ,   , 
g materials can be used in the model). With all this 

parameters package, the exact reproducibility of the 
sequence  out n  is almost impossible if the exact 
parameters used are unknown. Indeed, in the vicinity of 
the plasmon re nce, an error on one of the used para- 
meters can produce enough variations in the produced 
image map (in term of the exact value of the pixels in the 
formed image). Due to the high internal complexity and 
without a robust reverse engineering method, this con- 
struction process is now a good candidate for a PRNG 
permitting to produce a long pseudo random sequence. 

A fundamental advantage of any kind of PRNG is the 
quality of pseudo random sequences. According to th

sona

e 
K

ion 

 produced pseudo ran- 
Moreover, the analysis 

eration of a Subspace of Pseudo Random 
Sequences 

befo These sequences are obtained from the 

erckhoffs’ principle [20], the security of a cryptosystem 
only depends on its keys. In any cryptosystem, a poor 
key or a limited key space   induces a weakness of the 
cryptosystem (i.e. which can be easily broken by testing 
all possibilities: brute-force tacks). Indeed, the limit of 
brute-force attacks on the parameter space depends on 
the entropy of this space. For a given today’s computer 
speed-up, it is commonly admise that a key space (space 
of parameters) of size 128 382 10   (i.e. smaller than 
128 bits) is not sufficiently secure [21]. In the present 
case, the generated key rmits to overpass 
the lower limit of 128 bits of entropy. Each key is corre- 
sponding to two kinds of input data related to numerical 
or physical characteristics. 

3. Results and Discuss

 at

pace  s   pe

In this section, the results on the
dom sequences are presented. 
methods based on the randomness and correlation pro- 
perties are discussed and applied to the generated se- 
quences. 

3.1. Gen

A subspace of pseudo random sequences is produced 
re analysing. 

simulation of a plasmonic device and the numerical 
remeshing process in the construction of the pseudo 
random sequence  out n . This analysis puts forward 
the quality of the outputs produced following a change of 
consecutive parame  consider the electromagnetic 
images of the interaction of light with gold nano-particles 
of radius 

ters. We

pr  in [5.0; 210.0] nm embeded in a surround- 
ing medium of permittivity m  in [0.999; 2.500] under 
light illum tion wavelength ina   in [480; 1200] nm and 
incident angle i  in  0;2π he number of considered  

nano-particles is 

. T

pN  in 1;1 50    (which can be com-  
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pared to exper enta ctures). With the selected  im l stru
g procparameters of the remeshin ess, minh  in [0.1; 1.0] 

nm, maxh  in [2.0; 20.0] nm and   in [0.001; 0.100],  

n 4 81 the number of computing nodes nN  i 0 ;10  and 

the spatial positions of nodes 

 

 , ,
n

1

N

j j j j
x y z  are adapted  



in order to satisfy the maximum error   in the whole 
computational domain  . 

To illustrate, we consider gold nano-particle of radius 

pr  in {10.0, 11.0, 12.0, 13.0} nm em eded in sour- 
ro

b
unding medium of permittivity m  in {0.999, 1.000, 
01 } illuminated at wavelength 1.0   in {500, 501, 502, 

503} nm. The gold permitivitty is 
     p r ij        and diffe nt values are con-  

sidered:         0.01, , 0.01r r r       , 

re

and 

r  

       .01, , 0.01     . With   0 i i    i i

such phy eters sical parameters and the remeshing param
 and minh 0.1 nm , max 20.0 nmh  0.05  , the total 

number of nodes is 243200nN  , producing sequences 
 n  of 1,945,600 bits. Therefore, the total number 

of generated sequenc 432  (corresponding to 
4 values of 

out

es is kN

pr , 4 values of  , 3 values of m , 3 3  
values for both real and imaginary parts of p ). Each 
sequence has a size of 1,945,600 bits. The produced maps 

 , ,EI x y z ,  EX n  (resp.  , ,HI x y z ,  HX n ) and 
 out n , can be viewed as vectors made up of all the 

numbers f nodes ranked in a precise rde oreover, 
se vectors can be viewed on a 2D map 

(i.e. the corresponding images in gray levels of the 
generated maps, see Figure 1). Figure 1 shows an 
example of the corresponding 2D images of the maps 

 , ,E

o
the elements of the

 o r. M

I x y z ,  , ,HI x y z ,  EX n ,  HX n  and the 
pseudo random sequence  out n . The Figures 1(a) 
and (b) le appear ct s and have lo hannon’s 
entropy. This mainly comes that there are 
many missing levels of intensities. We also remark the 
non regularity in the occurency of the zero-bit value (0) 
relatively to one-bit value (1) in the corresponding binary 
sequence of this image (62.51% against 37.49% for the 
image of Figure 1(a)). The output sequence 

t  low stru ure
from

w S
e fact  th

 out n , 
obtained after a xor operation between  EX n  and 

 HX n , presents the characteristics of randomnes (see 
Figure 1(e)) and pass all the NIST tests successfully (see 
Section 3.2.1). 

3.2. Statistical Analysis 

In order to analyse the qualities of the produced pseudo 
oaches are developped and random sequences, two appr

used. These qualities are investigated following both 
aspects: randomness properties of the individual se- 
quences and correlation between multiple sequences. 

  
(a)                        (b) 

  
(c)                        (d) 

 
(e) 

Figure 1. The corresponding 2D images, in gray levels, of 
the maps (a)  , ,EI x y z , (b)  , ,HI x y z , (c)  EX n , (d) 

 HX n  obtai numbe  and ned after re ring, homogenization

projection in basis C. The map (e)  out n  is obt ined 

e xor operator between  E

a

from th X n  and  HX n . The 

total size of each image is 243,200 pixe 512 ), each 
pixel being expanded on 8 bytes (256 lev

3.2.1. Randomness Analysis 
The goal of this approach is to evaluate th

ls (
els). 

475

e randomness 
level of the sequences out  produced by the algorithm. 

rough statistical tests suite 

The 

The sequences are evaluated th
NIST (National Institute of Standards and Technology of 
the US Government). NIST statistical test battery 
have been chosen for the following reasons. Firstly, it 
contains many famous tests from the Diehard battery 
with some extra tests. Secondly, it was used in the AES 
evaluation process to check the randomness of the output 
sequences of each candidate algorithm. Moreover, the 
NIST tests have also shown their ability to ckeck pseudo 
random number generators in smart cards [22]. This 
NIST suite consists in a statistical package of fifteen tests 
developped to quantify and to evaluate the randomness 
of (arbitrarily long) binary sequences produced by either  
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pecially the binary correlation between the produced se- 
quences. 

hardware or sotware based cryptographic random or 
pseudo random number generators [16]. For each stati- 
stical test, a set of valuep  is produced and is compared to The results obtained on the 432 sequences are given in 

Table 1. We notice that the results of the tests are 
satisfactory for the whole set of tested outputs. The 
sequences pass successfully the NIST tests for individual 
sequences and for the constructed concatened sequence. 
These results show the quality of the produced sequences 
with the PRNG. 

a fixed significance level 0.01   (i.e. only 1%  of 
the sequences are expected to fail). Therefore, a sequence 
passes a statistical test for valuep   and fails otherwise. 
In case of testing multiple sequences at the same me, 
each test define a proportion 

 ti
  as the ratio of sequences 

passing succesfully the test relatively to the total number 
of sequences kN  (i.e.  value kn p N   ). This pro- 
portion   is compared to n acceptable proportion 

accept

a
  which corresponds to the ratio of sequences which 
should pass the test [16]. These NIST tests are achieved 
on the o following kind of sequences: individual 

nces and the concatened sequence. 
1) Individual sequences: The randomness level of each 

sequence belonging to a subset of sequences is analysed 
directly by NIST tests. The kN  sequ k

3.2.2. Correlation Analysis 
In this second approach the purpose is to check the 
correlation between the produced pseudo random se- 
quences. Compared to the previous approach (Approach 
1.2), the correlation between sequences are analysed 
globally by computing the correlation coefficients of 
each pair of sequences [23]. Let the two sequences 

 1, , Nx x x   and  1, , Ny y y  , we have: 

tw
seque

ences out  of 
binary size M (with 1 kk N  ) are individually tested 
and the results are given as ratio of success   compared 
to a fixed threshold. The provided information is the 
randomness of each se

2) Concatened sequence: A new sequence is con- 
structed by concatening all the individual sequences:  

 1
cat out out

kN     of binary 

   

   

1
1 2 1 2

2 2

1 1

,

N

i i
i

xy
N N

i i
i i

x x y y
C

x x y y



 

  


quence.  

size . The ran-  

 is 
the randomness of sequen

 kN M
domness quality of this new sequence is also analysed 
directly by the NIST tests. The provided information

the concatened ce and es- 

          



 
   (6) 



where 
1

N

i
i

x x N


   and 
1

N

i
i

y y


  N  are the mean  

values of x  and , respectively. A strong correlation 
occurs between two sequences for  and no 

y
1xyC 

 
Table 1. Results of the NIST tests using Approach 1 on th
sequence. The ratio 

e 432 generated individual sequences and on the concatened 
  of valuep  concerns the individual sequ valuep  ences while the concerns the concatened sequence. 

Test Name Individual Sequence out  Concatened Sequence cat  

   Result valuep  Result 

Frequency 99.07 Pass 0.654 Pass 

Bl y 98.61 Pass 0.848 Pass 

Cumulative Sums (1) 99.53 Pass 0.626 Pass 

Cum  (2) 

N g 

Over

Univer

Appr  

Ran ns 

Ran ant 

ock-Frequenc

ulative Sums 99.07 Pass 0.973 Pass 

Runs 99.30 Pass 0.486 Pass 

Longest Run 98.14 Pass 0.232 Pass 

Rank 98.38 Pass 0.743 Pass 

FFT 99.07 Pass 0.109 Pass 

on-Overlappin 97.98 Pass 0.109 Pass 

lapping 99.07 Pass 0.091 Pass 

sal 99.53 Pass 0.204 Pass 

oximate Entropy 99.76 Pass 0.566 Pass 

dom Excursio 98.37 Pass 0.150 Pass 

dom E-Vari 97.39 Pass 0.147 Pass 

Serial (1) 99.30 Pass 0.344 Pass 

Serial (2) 99.07 Pass 0.232 Pass 

Linear Complexity 98.14 Pass 0.856 Pass 
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correlati sponds to he coefficients on corre  xyC  0 . T

xyC  
distr

her

the 

are d for eac quences and the 
alues i  by a histogram. 

efore the coefficients correlation between each 

e rand

produced pseud

btai  with the

compute h pair 
s pres

of 
nces

of se
ibution of their v ented

T
pair of the 432 generated seque  are computed and 

distribution of these coefficients ,out out
C    is pre- 

sented in Figure 2. 
The result exhibits a very weak correlation between  

the sequences and ,out out
max C  

 
   in [–0.008; 0.008].  

This confirms the decorrelation and th omness 
quality of the tested individual sequences. Finally, we 

b), the distribution show, on Figure 2( of occurencies of 
the 0-bit for each o random sequence. 
This distribution is uniform around the value 0.50. Each 
sequence out

i  (1 432i  ) can be now viewed as a 
pseudo random octal sequence. The outputs of PRNG 
must have both strong quality of randomness and strong 
independence between these outputs. The results of the 
analysis, o ned  two approaches, show the 
randomness level of the pseudo random sequences and 
the quasi independence that may exist between a group 
of produced pseudo random sequences. 
 

 
(a) 

 
(b) 

Figure 2. (a) Histogram of distribution of the correlation 
coefficients on the interval , out out

C    0.008;0.008

ated pseudo ran

; (b) 

Distributio t in th  gener dom
sequences 

.3. Security Ana

he security analysis of any PRNG should also be eva- 
ated against attacks as well as its applic  domain. 

requirem  present case

 the randomness quality of the ouputs. These 
ugh the two following attacks: 

n of the 0-bi
,out 1 i i

e  
432 . 

3 lysis 

T
lu ation
Therefore, the analysis must take into account all the 
critical points of the cryptosystem and must meet cry- 
ptographic ents [24]. In the , the 
investigated points are: the size of the key space, the key 
sensitivity,
points are investigated thro
Heuristic Guess-and-Determine Attack [25], Distinguish- 
ing Attack [26]. 

3.3.1. Key Space 
A good generator of (pseudo) random sequences should 
have a large key space in order to make brute-force 
attacks infeasible. It is generally accepted that a key 
space of size smaller than 1282  is not secure enough [21]. 
The theoretical size of the key space given in the (Sec- 
tion 2) is 

5 4 1p pN N      or 
5 4 2 2p pN N     . 

For 1N
 

p  , the theoretical entropy of the key space is 
real physics measurements, the size of 

ts (i.e. strong res es and interfe

equal to 448. For 
the space of input parameters is smaller. Indeed, the 
parameters do not take all the possible values in  ,   
or  , which can decrease the size of the key space. In 
fact, with such limitation of parameter space, we already 
assure to be in the region of near-field inducing plas- 
monic effec onanc  re

st

nce

 a

patterns in the electromagnetic field). For example, by 
taking into account the available physical measures (see 
the sizes of intervals for each parameter given in Section 
3.1), the values of parameters can be limited at lea  on  
12-  16-bits encoding. With such limited bits encoding, 
the entropy of the key space is 156 bits (or 224 bits for a 
16-bits encoding) with only one considered nano-sphere 
(i.e. 1pN

 to

 ). This clearly overpass the lower limit of 
128 bits. Therefore, the size of the key space is large 
enough to resist brute-force attacks. Such a large space of 
keys is a necessary condition, but not sufficient. Indeed, 
all the keys must be equiprobable and the corresponding 
outputs must also be cryptographically strong. 

3.3.2. Key Sensitivity 
The s s ity on the key is an essential factor for the 
pseudo random generation based on optical system. 
Indeed, only a small deviation in the input should cause a 
large change in the output. Here, the key is given by 
various kinds of inputs (physical parameters) such as the 
radius of the nano particle 

en itiv

pr , the permittivity of the 
materials p , the number of particles pN

 m

, the per- 
und mediummittivity of the surro ing  , the illu- 

minating angle i  and the illuminating wavelength  . 
The numerical parameters (i.e. minh , maxh  and  ) de- 
fine the h he pseu nces )   lengt  of t do random seque  ( nN
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and the spatial positions where the fields are computed 
(  , ,i i ix y z , with 1 ni N  ). The key sensitivity 
analysis must be normally achieved on all these para- 
meters (physical and nume al parameters). Never- 
thless, the ain sensitive parameters concern physical 
ones. Therefore, we can limit this analysis to mainly four 
physical parameters: the radius of the nano-particles 

ric
 m

pr , 
the surrounding medium m , t com ivitty he plex permit

p  (i.e. the real and imaginary parts p r ij    f ) o
the nano-particle material and the illuminating wave- 
length  . 

Actually, in the study of correlation (Section 3), the sen- 
sitivity was already indirectly tested due to the selected 
near values of input parameters. Here, the analysis is 
achieved on individual physical parameters in order to 
analyse the sensitivity of these parameters through e 
computing of the correlation coefficient values. To analyse 
the sensitivity to the physical parameters, w r the 
generation of large pseudo random sequences out

th

e conside
  of 

size 243,200N   (i.e. 1,945,600Mn   bits with h  
= 

min

0.1 nm, max 20.0 nmh   and 0.05  ) obtained for 
1pN   spherical nanoparticle. 

1) Radius Value Sensitivity: 
The first parameter concerns the radius pr  of the 

nano-particle. The fixed parameters are: the permittivity 
of the surrounding medium 1.000m  , the permittivity 
of the gold nano-sphere 2.6252 3.5563p j     at the 
illuminating wavelength 501 nm  . With three ightly 
differing radi lues ar  and 12c

pr
 s

p 11
l

us va 10 , b
pr   , 

the produc are   and out
ced sequences out

b
out
a ,   , 

ively. If the cryptosystem is sensitive to trespect
va
be

h

out
c

e 
d 

d

radius 
 should lue then the produced outputs out

a  an

 Table 2
 out

c

 very different from out
b  and not correlated. The 

correlation coefficients between these three produced 
sequences are presented in . The produced 
sequences out

a , out
b  an   are very different for 

near radius pr  values an ry weak correlation 
is detected. 

2) Surrounding Medium Permit y Va  Sensitivi
The second parameter is the value of the surrounding 
medium permittivity m

d only a ve

tivit lue ty: 

 . The fixed parame are: the 
radius of the nano-sphere 11 nm

ters 

pr  , the permittivity of 
the gold nano-sphere 2.6252 3.5563p j     at the 
illuminating wavelength 501 nm  . With these fixed 
parameters th  slightly differing permittivity 
values 999a

m  , 1.000b
m   and 1.001c

m  , the pro- 
duced seque a b

and e three

e 
0.
nces ar out , out  and out , rc espec- 

tiv  ely. The correlation coefficients between these three
produced sequences are presented in Table 3. For near 
permittivity values m , the produced sequences out

a , 

out
b  and out

c  are also d only a weak cor- 
relation is detected. 

3) Sensitivity of the re he material permi- 

Table 2. Correlation coefficients between the three pseudo 
random  pr ith sligh ent radius 
values a

different an

al part of t
tivity: 

 sequences oduced w tly differ

pr , b
pr  and c

pr . 

Outputs 1/2 out out

a b   out out

a c   out out

b c   

Corr. Coef. 0.00 6 –0.00022 0.000913 4 

 
Table 3. Correlation coefficients between the three pseudo 

ndom sequences produced with slightly different sur- 
rounding me
ra

dium values  and aε , m m m

Outputs 1/2 

bε cε . 

out out

a b   out out

a c   out out

b c   

Corr. –0. 33  Coef. 002 0.00060 0.00061 

 
parameter is the valu e real  

co mitti the go articl
The third 
mplex per

e of th
ld nano-p

part of the
e vity of r . The 

fixed parameters are: the radius of the nano-sphere 
11 nmpr  , the permittivity of the surrounding medium 
1.000m   and the imaginary part of the permittivity of 

gold nano-sphere 3 63.55i   at the i mllu inati wave- ng 
length 501 nm  . With these fi

ng real pa
52

nces are out
a

xed p meter d e 
rt of the permit

 the 

ara s an
tivity values 

 th
three slightly differi

r
roduced se

2.6152a   ,  
que

2.62b
r   and  2.c

r   6352,  
p  , out

ely. The correlation coefficients between these three 
produced sequences are presented in Table 4. The crypto- 
system is also sensitive to the value of real part of the 

rmitivitty. 
itivity to the imaginary part of the material 

permittivity: 
The f eter is the value of the imaginary part 

of the complex permittivity of the gold nano-particle i

b  and out
c , respec- 

material pe
4) Sens

ourth param

tiv

 . 
m radius here 

11 nmpr
The fixed para eters are: the of the nano-sp

 , the permittiv f urround  medium 
1.000m

ity o the s ing
   and the real part of the permittivity of gold 
nano-sphere 2.6252r    at the illuminating wave- 
length 501 nm  . With these fixed parameters and the 
three slightly differing imagin

equences are 

ary part of the permittivity 
values 3.5463a

i  , 3.5563b
i   and 3.5663c

r  , 
the produced s out out out

a , b  and c , res-

he 

 
pectively. The correlation coefficients between these 
three produced sequences are presented in Table 5. T
tested sequences out

a , out
b  and out

c  are uncor- 
e cryptosystem is sensitive to the value of 

part of the material permitivitty. 
5) Illumina th value sensitivity: 
The last parameter concerns the illuminating wave- 

length values 

related. Th
imaginary 

ting waveleng

 . The fixed parameters are: the radius of 
the nan 1po-sphere 1 nmr  , the pe ty of the surrmittivi - 
rounding medium 1.0m 00   d th lexan e comp  per- 
mittivity of gold nano-sphere 2.6252 3.5563p j    . 
With these fixed parameters and the three slightly di- 
ffering illuminating wavelength a , 501b    500
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Table 4. Correlation coefficients between the three pseudo 
random sequences produced with slightly different values of 

a
rε , b

rε  and c
rε  retated to the real part of the permitivitty 

of gold nanosphere. 

Outputs 1/2 out out

a b   out out

a c   out out

b c   

Corr. Coef. –0.00 –0.00022 –0.00062 218 

 
Table 5. Correlation coefficients between the three pseudo 
random sequences produced with slightly ent val f  differ ues o

a
iε , b

iε  and c
iε  retated to the imaginary part of the perm- 

itivitty. 

Outputs 1/2 ou

a b   t out out out

a c   out out

b c   

Corr. Coef. 0.00066 –0.00288 0.00312 

 
an  t ed se re d 50c  2 , he produc quences a out

a , out
b  

ents be- and , respectively. The correlation coe

 very different. The results obtained here show 
that the sequences seem ry different and also 
illustrate the sensitivity of the cryptosystem relatively to 
the wavelength v

. Quality s 
athem

In this paper, the NIST tests are used to evaluate the 
equences. 

out

tween these three produced sequences are presented in 
Table 6.  

These coefficients are closed to 0 then the tested out- 
puts are

c ffici

 to be ve

alue. 

3.3.3  of Pseudo Random Sequence
A m atical analysis would be necessary to deter- 
mine is the PRNG is robust or not before being used. 
Indeed, whichever way the cryptosystem is designed, the 
produced output must be strong (i.e. random, decor- 
related and sensitive). Several and various statistical tests 
are available for evaluating the randomness of binary se- 
quences. Reference test suites for PRNGs are the NIST 
suite [16], TestU01 [27] and the DieHARD suites [28]. 

randomness level of subset of pseudo random s
As previously mentionned, the NIST statistical test 
battery are chosen because it contains many famous tests 
from the Diehard battery with some extra tests and used 
to check the randomness of the output sequences of each 
candidate algorithm in the AES evaluation process and 
smart cards [22]. The correlation between such pseudo 
random sequences was also evaluated (see Statistical 
analysis in Section 3.2). The sensitivity to the parameters 
of the key ( , pr , p , m ) was also analysed. All the 
produced pseudo random sequences pass successfully the 
tests. 

3.3.4. Security against Attacks 
We also analyse the security of the cryptosystem against 
two types of attacks: Heuristic Guess-and-Determine 
Attack and Distinguishing Attacks. 

Table 6. Correlation coefficients between the three pseudo 
random sequences produced with slightly different wave- 
length values aλ bλ  and . 

Outputs 1/2 

, cλ

out out

a b   out out

a c   out out

b c   

Corr. Coef. 0.00169 0.00107 –0.00077 

 
general attack on stream ciphers [25]. The main idea of 
this attack is to guess in the first time the value of few 
unknown variables of the cipher. Next, the remaining 
un

equences are eq l, then the guessed values 
ar and the cryptosystem is broken, else the 
attack d with new guessed values. We 
consider that the system is kn  the  it 

ems that the attack discussed in reference [25] can not 

n-lin

known variables are deduced by iterating the system a 
few times and by comparing the produced pseudo ran- 
dom sequence with the original pseudo random sequence. 
If these two s ua

e correct 
should be repeate

own by attacker,
se
be applied correctly on the proposed cryptosystem which 
is not of the same family of involved stream ciphers. In 
fact, the model and the structure of the proposed PRNG 
is completely different. An alternative way to apply this 
attack would be to guess and to fix the values of physical 
parameters and to iterate the algorithm by searching the 
remeshing ones to produce the sequence out . Once all 
the comparisons made without success, the first set of 
input values is guessed again and the process is repeated 
until success. This process has almost the same com- 
plexity than a classic brute-force attack.  

2) Distinguishing Attacks: Any output of a stream 
cipher (or PRNG) designed for cryptographic appli- 
cations, should not be statistically distinguished from a 
truly random sequence. In fact, distinguishing attacks de- 
scribed in reference [26], try to find traces of the dist- 
inguishing property by exploiting the weaknesses of the 
algorithm related to the linear and no ear com- 
binations. Here, the generated sequences pass success- 
fully the standard statistical tests for randomness. More- 
over, the only linear masking occurs when we applied  

  Int I n

1) Heuristic Guess-and-determine (HGD) attack is a  

E
 
   and   Int I n H

 
 

and (4). Knowing that the values of  E

 in Equations (3)  

I n  and  HI n  
are sensitive from the second or third decimal place, the 
fact to mulltiply by   gives values which the modulo 
are completely different. Thus, by applying a XOR ope- 
ration between the two maps  EX n  and  HX n  it 
kills any information on linear dependance then, the 
attack becomes ineffective.  

4. Conclusion 

In this paper, a n NG using two p
nces w ented.

ew PR lasmonic maps to 
generate long pseudo random seque as pres  
Such a generator has shown its ability to produce a very 
large number of pseudo random sequences which can be 
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usefull in several cry tographic applications. The ran- 
domness quality on the plasmonic maps is improved 
through the use of remeshing pr nd one un- 
ction (xor operator). The advantages of the generator are 
the size of the key space, t

p

ocess a -way f

he sensitivity to the initial 
inputs (keys), the quality of pseudo random sequences

vel against several attacks. More

na

 
and the security le over, 
these produced sequences do not present correlations 
which ensuring a large variety of pseudo random se- 
quences and a higher security level. Of course, this me- 
thod can be enriched by increasing the complexity of the 
nanostructures (including substrates, multi-materials, ...) 
inducing complex interaction patterns and strong gradients 
and by considering experimental field measurements. 
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