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ABSTRACT

It is well known that the line of intersection of an ellipsoid and a plane is an ellipse. In this note simple formulas for the
semi-axes and the center of the ellipse are given, involving only the semi-axes of the ellipsoid, the componentes of the
unit normal vector of the plane and the distance of the plane from the center of coordinates. This topic is relatively
common to study, but, as indicated in [1], a closed form solution to the general problem is actually very difficult to
derive. This is attemped here. As applications problems are treated, which were posed in the internet [1,2], pertaining to

satellite orbits in space and to planning radio-therapy treatment of eyes.
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1. Introduction

Let an ellipsoid be given with the three positive semi-
axesa, b, c
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and a plane with the unit normal vector
n :(nl,nz,n3)T ,
which contains an interior point (= (Ch»qzaqs )T of the
ellipsoid. A plane spanned by vectors r=(r,I,,T, )T ,
$=(5,,5,,5, )T and containing the point q is described
in parametric form by
X=0+tr+us

2

with X = (%, %,%) .

Inserting the components of X into the equation of
the ellipsoid (1) leads to the line of intersection as a qua-
dratic form in the variables t and u. Let the scalar
product in R’ for two vectors V=(V,,V,,v,)" and
w = (w,,w,,w,)" be denoted by

(V,W) = V,W, +V,W, +V;W,.

With the diagonal matrix

111
D, =diag| —,—,~
! g(a b cj

the line of intersection has the form:
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l(aron (oroole
+2((D1q,Dlr),(D,q,D,s))(:] 3)

=1-(D,a,D,q).

As Q is an interior point of the ellipsoid the right-
hand side of Equation (2) is positive. The 2x2 matrix
in Equation (3) is a Gram matrix. If the vectors D,r and
D,s are linearly independent, this is equivalent with the
linear independence of the vectors r and s, the matrix
in (3) is positive definite and the line of intersection is an
ellipse. In [3] a generalization from three to p-dimen-
sional space is discussed.

Let r and s be unit vectors orthogonal to the unit
normal vector n of the plane

(r,r)=r’+r +r’ =1

“)
(n,r)=nr+n,r,+nr=0
(s,s)=s/ +5; +5; =1 )
(n,s)=n;s, +n,s,+n,s; =0
and orthogonal to eachother
(r,s)=rs, +rs,+rs, =0. ©)

Furthermore vectors r and S may be chosen such
that

s, S, IS
(Dlr,Dls):#+?+%=0 (7
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holds. This will be shown in the next section. Condition
(7) ensures that the 2x2 matrix in (3) has diagonal
form. Then the line of intersection reduces to an ellipse
in translational form

(t—to)2 +(u—uo)2 .

A B2 ®
with the center (to, Uo)
:_(quaDlr) and u :_(quaDls) (9)
*  (Dr,Dyr) *  (Ds,Ds)

and the semi-axes
A= i and B= i’ (]O)
(Dyr,Dyr) (D;s,Dys)

(qu:Dlr)2 _(quaDls)z
(Dr,Dr) (Ds,Ds)

where

d =(D,g.D,q)- (1

In order to show that the semi-axes (10) are indepen-
dent of the choice of g this vector may be decomposed
orthogonally with respectto n:

q=xn+ur+vs with x=(q,n) (12)
where x is the distance of plane (2) from the origin.

Substituting ¢ into (11) one obtains employing (4), (5),
(6) and (7)

2 2
d :K_Z (D]n,D]n)—(Dln,Dlr) _(Dln’ Dls) . (13)
(Dr,Drr)  (Ds,Dys)

The following rules of computation for the cross pro-
duct in R’ ([4, p.147]) will be applied later on re-
peatedly. For vectors X,y,z,w of R’ the identity of
Lagrange holds

(xxy,zxw) =(x,z)(y,w)—(y,z)(x,w) (14)

and the Grassmann expansion theorem for the double
cross product

xx(yxz)=(x,2)y-(x,y)z. (15)

2. Construction of Vectors r and s

Let r be a unit vector orthogonal to the unit normal
vector n of the plane, so that Equations (4) hold. A
suitable vector S is obtained as a cross product

S=nxr. (16)

Then Equations (5) and (6) are fulfilled: S is a unit
vector, as can be shown by the identity of Lagrange (14),
utilising (n,n)=1, (r,r)=1 and (n,r)=0:

(s,s)=(nxr,nxr) =(n,n)(r,r)—(n,r)2 =1.

Furthermore one obtains according to the rules apply-
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ing to the spar product:
(n,s)=(n,nxr)=det(n,n,r)

=0,
(r,s)=(r,nxr)=det(r,n,r)=0.

In case Equation (7) is not fulfilled for the initially
chosen vectors r and s, i.e. (D,r,D;s) =0, the following
transformation may be performed with @ e[-m,7)

f = coswr +sin ws,
§ = —sin wr + cos ws.

The transformed vectors F and § satisfy the fo-
llowing conditions: (F,F)=1, (n,f)=0 and §=nxF,
which imply conditions (4)-(6). The expression

(D,F,D;§)=((D;s,D;s)-(Dyr, Dlr))%sinza)
+(Dyr,D,s)cos 2w
becomes zero, when choosing @ such that

(D,r,D;r)-(D;s,D;s)

=cot2
2(Dlr,DIS) coree

holds. This can be reformulated, in case
(D,r,D;r)—-(D;s,D;s) =0
to
2(Dyr,D;s)
(D,r,D,r)—(D;s,D;s) |

1
@ = —arctan
2

If
(Dyr,Dyr)—(D;s,D;s)=0
holds, @ can be chosen 7/4, leading to
sin(m/4) = cos(n/4) = 1/42 .
Corollary 1: For the unit vectors r and n ortho-

gonal to each other and s=nxr the following state-
ment holds:

P+s +n’ =1 for i=1,2,3. (17)

Statement (17) follows by substituting the definition of

s and utilising (n,n)=1, (r,r)=1 and (n,r)=0.
For i=1 one obtains for instance:

r’+s/+n’

=12 +(n,r,—nn, )2 +n’

=12+ =20, N, + 10, +1-n; —n;

=r —nzz(l—r32)—2n2r2n3r3 —n32(1—r22)+1
=2 = (1 + 57 )=2n,nn,n =0} (17 417 ) +1

2

2
=} (1= =n3 )= (n,r, +ny1)” +1

=i —(-nn) +1=1.
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3. A Quadratic Equation

Theorem 1: Let n be the unit normal vector of the
plane and let vectors r and s satisfy (r,r)=1,
(n,r)=0, s=nxr and condition (7). Putting

2 2 2

[Pl P
B =(Dlr,D1r)=?+bi2+Ci2,
(18)
S .5 .S
=(D;s,D;s)=—+—+—=,
ﬂz ( 1 1 ) az b CZ
B, and p, are solutions of the following quadratic
equation:
1 1 1 1 1 1
2 2 2 2
p —{n, [b_2+c_2j+n2 (a—2+c—2J+n3 (?+b—2ﬂﬂ
+ n + n n; =0.
b’c*> a’c® a’b’
(19)
Proof: Utilising (17) one obtains:
CP+S) G 4s) +s)
ﬂl + ﬁz - az bz Cz
1-n’ +1—n22 +1—n32
Ca b? c’
o ny+ny ont+n o nt4n
S a b ¢’

(1 1Y (1 1Y (1 1

Applying diagonality condition (7) and the identity of
Lagrange (14) leads to:

Bb, :(Dlr» Dlr)(Dls, DIS)
=(Dr,Dr)(Ds,D;s)—(Dr,Ds)’  (20)
=(Dlr>< D,s,D;r x DIS).

For the cross product D,r xD;s one obtains:

IS =S5
e € & be
DrxDs=|n L Lj_| SG=hSs
! ! a b Cc ac (21)
i S_Z 5_3 s, —sSh
a b c ab
= [~)] (r X s),
with the diagonal matrix
= 1 1 1
D, =diag| -—,—,—|. 22
1 g(bc ac abj 22)

According to Grassmann’s expansion theorem for the
double cross product (15)
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I5l(rxs): Ijl(rx(nxr))

D,((r,r)n—(r.,n)r)=0Dyn, @)

follows, since (r,r)=1 and (r,n)=0. Applying (20),
(21), (23) one obtains:

- nS n on
ﬂlﬁZ = (Dln’ Dln) = bzcz + a2C2 a2b2 . (24)
O

A quadratic equation equivalent to (19) is considered
in [5].

Corollary 2: Under the assumptions of Theorem 1 the
following three equations are valid:

DrxD;s=D,(rxs)=Dn,
DnxD;r=D,(nxr)=Ds,
DsxDn=D,(sxn)=Dyr.

The first of the three equations was verified in the

proof of Theorem 1. The second and the third equation
follow analogously.

4. A Formular for d

Theorem 2: Under the assumptions of Theorem 1 the
expression for d in (13) is given by:

K2

d_ 2,27

= 25
a’n’ +b’n; +¢’n; ()

where x is taken from (12).
Proof: The verification of (25) consists of three steps.
Step 1: Applying the identity of Lagrange (14) the
following statements hold:
(D,n,D,n)(Dr,D;r)~(Dyn,Dyr )’
=(D,nxD;r,DnxDyr),

(26)
(Dln, D1n)(DIS’ Dls) —(Dn, D1$)2
=(D,nxD;s,DnxDs).
With Corollary 2 and the diagonal matrix
D =diag(a,b,c) 27
one obtains:
(DnxD,r,DnxDr)=(D;s,B;s) =%s
a‘bc
< (Dr,Dr) @9
and it follows by substituting (28) into (26)
Ds, Ds
(0n.0r) = (On.0)(Drr.0r)- T2,
(Dr,Dr) @
2 b
(D,n,D;s) =(Dln,Dln)(DISaD15)—W
AM
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Introducing expressions

2.2 2.2 2,2
7, =(Dr,Dr)=a’’ +b’r; +c’r},

(30)
7, =(Ds,Ds)=a’s} +b’s; +¢’s7,
one obtains from (29) using (18) and (30)
(D, DY =(D,n,Din) B —#,
(31)
2 i
(D;n,D;s) :(Dln,Dln)ﬂz—Wgcz.
Combining both Equations (31) leads to
2 2
(D;n,Dyr) . (D,n,D;s)
(Dr,Drr)  (Ds,Dys) (32)

= 2(D1na Dln)_ leﬁlzzzzzfg :
Step 2: Analogously to the verification of (24) the
application of the identity of Lagrange (14) yields:
77, =(Dr,Dr)(Ds,Ds) =(Dr,Dr)(Ds,Ds)
—(Dr, Ds)2 +(Dr, Ds)2
= (Dr x Ds, Dr x Ds)+(Dr,Ds)’.

With the diagonal matrix D =diag(bc,ac,ab) for the
cross product DrxDs holds:

DrxDs = D(rxs)=Dn.
Therefore one obtains
77, =(Dn,Dn)+(Dr, Ds)’
or
77, =a’b’c*(D,n,Dyn)+(Dr, Ds)z. (33)
In contrast to the verification of (24), where diagonality
condition (7) holds, the analogous expression (Dr, Ds)
in (33) need not be zero.

Step 3: Applying the identity of Lagrange (14) again
leads to

(D,nxD;r,DnxD;s)
=(D,n,D,n)(D;r,D;s)—(D,n,D;s)(Dr,D;n).
Substituting the involved cross products according to

Corollary 2 and considering diagonality condition (7) one
obtains

(D;s.Byr)=(Dn,D;s)(Dyn, D),
or
(Ds,Dr)
a’b’c’
Squaring both sides of (34) and substituting the ex-
pressions from (31) leads to:

=(D,n,D;s)(D;n,Dyr). (34)
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(Ds, Dr)2
= (azbzc2 (Dn,DN) B, -7 )(azbzc2 (D,n,Dn) A, —;/2)
=a‘b’c*(D,n,D,n)’ 4,5,
—(nB +7.p,)a’b*c* (D,n, D) +7,7,.
Substitution of (33) results in equation
a’b’c’(D,n,D;n)
[a®c® (Din,Dyn) BB, — (1 + 7.8, ) +1]
=0,
or
nB+7.p, =1+a’b’c*(Dn,Dn) B B,. (35
Substitution of (35) in (32) leads to:
(D,n,Dr Y’ +(Dln, D,s)’
(D;r,D;r)  (Ds,Dys)

(36)
1
=(D,n,DN)-————.
( 1 1 ) a2b2c2ﬁ1ﬂ2
Because of (24)
a’b’c’B B, =a’n’ +b’n; +c’n; (37

holds and with (13) one finally obtains relation (25)

2 2
d= x| (Dn.Dn)- (2D (On-Dis)
(Dr,Drr)  (D;s,Dys)

K,Z

a’n’ +b’n +c’n?

Corollary 3: Under the assumptions of Theorem 1 the
area F of the ellipse obtained by the intersection of the
ellipsoid (1) and a plane with unit normal vector n and
distance x from the origin is given by:

2
F =n(1—’(—2Ja—m
K ) K

t

with &, = \/aznf +b’n} +¢’nl.

This is proven by the formula for the area of an ellipse:

F=nAB=n 1-d ji-d =7 1-d

VBN B JBA
and by applying (25) and (37). The area of intersection
F becomes zero in case & = x; holds; this corresponds

to the limiting case, where the cutting plane becomes a
tangent plane. This result has been applied in [6].

5. The Center of the Ellipse

Substituting g according to (12) in formulars (9) for the

AM
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coordinates (t,,U,) of the center of the ellipse in the
plane spanned by r and S one obtains:

. :_K(Dln,Dlr)_ﬂ
B
and
D,n,D
U, Z—KM—V. (38)
B,

The center m of the ellipse in R’ is given by:
M =q+t,F +U,S = &N+ (ty+ 1)1 +(u, +v)s
Dn,Dr D,n,D s 39)
:z{n—( ! 1)r—( ! 1)3} (
A B

Theorem 3: Let the assumptions of Theorem 1 be
fulfilled. For the center m of the ellipse of intersection
in R’ holds:

m :ﬁz(aznl,bznz,czm)T. (40)
Kt

Proof: With diagonal matrices D from (27) and Ij1
from (22) utilising ﬁDz _B? and (37) one ob-
tains a representation of m equivalent to (40):

B K o K
a’n/ +b’n’ +c’n; Bp

It is sufficient to show that for the difference

D’n. (41)

A=m-—=_DBn

1772

(4,n)=(4,r)=(4,5)=0 holds. Thus the coefficients
in the expansion of A in R’ with respect to the ortho-
normal basis [n,r,s] are zero, ie, 4 is the zero
vector.

Applying representation (39) one obtains:

(4n)=(mn)——*

1772

(Iifn,n)
K
BB,

The last expression is zero according to (24). Further-
more one obtains:

(4r)=(mn)—

1772

(ﬂlﬂz -(Bin, Iiln)) = 0.

Dn,r
(Bn.r)

_ x ((Dln, Dr)(D;s.D,s)+(Dyn, l5lr))

1772

and by interchanging the roles of r and s:
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(4,8)=(m,s)- ﬂ]Kﬂz (Iifn,s)

K ~ ~
:_ﬂ((D]n,D]s)(Dlr,Dlr)+(D]n,Dls)).
Both previous expressions are zero; this follows by
applying diagonality condition (7), the identity of
Lagrange (14) and Corollary 2:

(D;n,D;r)(Dys,D;s)
=(D,n,D;r)(D;s,D;s)—(Dyr,D;s)(D;s, Dn)
=(DrrxD;s,DNxD;s)=~(Dn,Dyr).

Interchanging the roles of r and s leads to:
(D;n,D;s)(Dyr,Dyr)
=(Dn,D;s)(Dyr,Dyr)—(Dys,Dyr)(Dyr,Dyn)
=(D;sxDr,.DnxD;r)=—(Bn,bys).

O
Corollary 4: The apexes of the ellipse of intersection
are given by

m=+ Ar with m=Bs,

where A and B are denoting the semi-axes according
to (10).

Clearly m+ Ar and m+Bs are points of the plane
cutting the ellipsoid. In order to show that they are be-
longing to the ellipse of intersection, it has to be verified
that they are situated on the ellipsoid, i.e. the following
equalities hold:

(D, (m+Ar),D, (m+Ar))=1
(D,(m+Bs),D,(m+Bs))=1.

This can be shown using m in the form (39) and
employing condition (7).
Corollary 5: d <1 holds if and only if m is an
interior point of the ellipsoid (1), because of
2
(Dlm,Dlm):K—Z:d.
Kt
In the case of x=x,, i.e. d=1, for the semi-axes
(10) of the ellipse of intersection A=B =0 follows.
The center (40) of the ellipse of intersection becomes a
tangent contact point

1 T
m =m, =—(a’n,,b’n,,c’n,)
Kt

of ellipsoid (1) and a tangent plane with normal vector
n,since (m,,n)=x, holds.

Corollary 6: Describing the ellipse of intersection (8)
in parametric form

AM
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t—t, = Acos@
u-u, =Bsind

with 6 e [0,271) , where A and B are denoting its
semi-axes according to (10), leads to a representation as
a curve in three dimensional space as indicated in [7]

X =m+(Acosd)r +(Bsin8)s.

This result may be derived substituting the parameters
t and u from the parametric form of the ellipse into
Equation (2) of the plane:

X =q+(t, + Acosd)r +(u, + Bsind)s
or
X =0+t,r +U,S+(Acosd)r+(Bsin8)s,

where q+t,r+u,s is equal to the center m of the
ellipse as in (39).

6. Applications

As indicated in [2], viewing a section through an
ellipsoidal eye from a viewpoint normal to the inter-
section plane and displaying the intersection on that
plane along with a projection of the eye structures and
isodose lines, radio-therapy treatment of the eye can be
planned. For this purpose the line of intersection of
ellipsoid (1) and the plane, having the normal vector
(i,j,k)T and containing the point q:(ql,qz,q3)T,
situated in the interior of (1), is determined. The plane
has the form:

(x=q,)i+(y-0a,)j+(z-0;)k =0

with the unit normal vector:

T

i j k
n= , , . (42)
N (S SN I D CRN e

The distance of the plane from the origin is given by:

i+ J + 05K
k=(0,n)="—ru=". (43)
S
According to (25) d can be written as:
i*+j°+k?
d=«? ( ) ) (44)

a’i> +b? j* +C’k*

From (11) it is obvious that d <1 holds, as for q as
an interior point of the ellipsoid (D,q,D,q)<1 is true.
Substituting (18) into (10) the semi-axes of the ellipse,
the line of intersection of ellipsoid and plane, are given

by
A= /ﬂ and B= /l_d, (45)
B B,

Copyright © 2012 SciRes.

where f,,, are solutions of Equation (19):

(i2+j2+|<2)ﬂ2

—[iz(iz+i2j+jz(iz+i2j+k2(i2+izﬂﬂ (46)
b ¢ a- ¢ a~ b

i2 i2 k2

e ac b’
With Theorem 3 one obtains by substituting n and
x from (42) and (43) the formular for the center m of
the ellipse given by:
(i +j*+k?
m = ( ) (a%i,b”j.c’k)
(a% +b7 7 +c2k? )it + 2 +K?

+ =0.

T

47)

Instead of calculating f, and S, as solutions of (46)

they may be obtained alternatively using the procedure

described in § 2. Starting with an arbitrary unit vector

r orthogonal to the unit normal vector n given in (42),
e.g.

T
= ] m 0
r [\/i2+j2’\/i2+j2’]’

calculating S to be orthogonal to both according to
s=nxr and,incase (D;r,D;s)# 0, perform a rotation
with angle @ as described in § 2, yielding new vectors
f and §,which are plugged into (18).

A Mathematica program containing both ways of
computation of S and S, may be obtained from the
author upon request.

In the first special case of a plane containing the origin
(see e.g. [1]), i.e. q is the zero vector, it follows by (43),
(44) and (47) that k=0, d=0 and m is the zero
vector also. Furthermore the semi-axes of the ellipse in
(45) reduce to

1 1
A=— d B=——
NN/

and from (9) t, =u, =0 holds. Thus Equation (8) of the
line of intersection reduces to

B +Bu° =1.
A second special case, where q=(i,j,|<)T holds,

was treated in [2]. Then the above formulas (43), (44)
and (47) reduce to:

2 2 2\
K=AI"+j +k*, d= (I ) +k)

a’i* +b*j* +c’k?

and

=2 =2 2
mo_ I *1+k (a%i.b?j.c)

T
(%1 +b J +¢7K7) '

AM
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Because of q=xn in(12) g=v =0 holds and (38)
reduces to

D,n,D D,n,D
—( \n.Dir) and U, = —K—( D)
B B,

where [, and f, are solutions of the quadratic Equa-
tion (46) and vectors r and S have to be determined as
described above according to the procedure shown in § 2.
Thus Equation (8) of the line of intersection turns into:

(t—to)2 (u—uo)2 B
1-d 1-d

t,=—«

>

b

+5,

7. Conclusion

The intention of this paper was, to give an elementary
closed form solution to the general problem of the inter-
section of an ellipsoid and a plane.
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