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ABSTRACT 

It is well known that the line of intersection of an ellipsoid and a plane is an ellipse. In this note simple formulas for the 
semi-axes and the center of the ellipse are given, involving only the semi-axes of the ellipsoid, the componentes of the 
unit normal vector of the plane and the distance of the plane from the center of coordinates. This topic is relatively 
common to study, but, as indicated in [1], a closed form solution to the general problem is actually very difficult to 
derive. This is attemped here. As applications problems are treated, which were posed in the internet [1,2], pertaining to 
satellite orbits in space and to planning radio-therapy treatment of eyes. 
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1. Introduction 

Let an ellipsoid be given with the three positive semi- 
axes a, b, c 
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Inserting the components of  into the equation of 
the ellipsoid (1) leads to the line of intersection as a qua- 
dratic form in the variables  and u . Let the scalar  

x

t
product in  for two vectors  and 

 be denoted by  
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With the diagonal matrix 
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the line of intersection has the form: 
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As  is an interior point of the ellipsoid the right- 
hand side of Equation (2) is positive. The 

q
2 2  matrix 

in Equation (3) is a Gram matrix. If the vectors 1  and 

1  are linearly independent, this is equivalent with the 
linear independence of the vectors  and , the matrix 
in (3) is positive definite and the line of intersection is an 
ellipse. In [3] a generalization from three to p-dimen- 
sional space is discussed. 
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Let  and  be unit vectors orthogonal to the unit 
normal vector  of the plane  
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and orthogonal to eachother  
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Furthermore vectors  and  may be chosen such 
that  

r s

  3 31 1 2 2
1 1 2 2 2

, 0
r sr s r s

D D
a b c

   r s     (7) 

Copyright © 2012 SciRes.                                                                                  AM 



P. P. KLEIN 1635

holds. This will be shown in the next section. Condition 
(7) ensures that the  matrix in (3) has diagonal 
form. Then the line of intersection reduces to an ellipse 
in translational form 
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and the semi-axes  
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In order to show that the semi-axes (10) are indepen- 
dent of the choice of  this vector may be decomposed 
orthogonally with respect to : 

q
n
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where  is the distance of plane (2) from the origin. 
Substituting  into (11) one obtains employing (4), (5), 
(6) and (7)  
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The following rules of computation for the cross pro- 
duct in  ([4, p.147]) will be applied later on re- 
peatedly. For vectors  of  the identity of 
Lagrange holds  
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and the Grassmann expansion theorem for the double 
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2. Construction of Vectors r and s 

Let  be a unit vector orthogonal to the unit normal 
vector  of the plane, so that Equations (4) hold. A 
suitable vector  is obtained as a cross product  
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Then Equations (5) and (6) are fulfilled:  is a unit 
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3. A Quadratic Equation 

Theorem 1: Let  be the unit normal vector of the 
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where   is taken from (12). 
Proof: The verification of (25) consists of three steps. 
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Introducing expressions  
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

n n

n n  

or 

 2 2 2
1 1 2 2 1 , .a b c D D1 1 1 2        n n   (35) 

Substitution of (35) in (32) leads to: 

 
 

 
 

 

2 2

1 1 1 1

1 1 1 1

1 1 2 2 2
1 2

, ,

, ,

1
, .

D D D D

D D D D

D D
a b c  



 

n r n s

r r s s

n n

            (36

      (37) 

holds and with (13) one finally obtains relation (25)  

) 

Because of (24)  
2 2 2 2 2 2 2 2 2

1 2 1 2 3a b c a n b n c n      

 

   
 

 
 

2 2

1 1 1 12
1 1

1 1 1 1

2

2 2 2 2 2 2
1 2 3a n b n c n 

, ,
,

, ,

.

D D D D
d D D

D D D D




 
   
 
 



n r n s
n n

r r s s
 

Corollary 3: Under the assumptions of Theorem 1 the 
area F  

soid
 

of the ellipse obtained by the intersection of the 
ellip  (1) and a plane with unit no
distance

rmal vector n  and 
  from the origin is given by:  

2

2
π 1

tt

abc


 
  

 
 F

2 2 2 2 2 2
1 2 3twith .a n b n c n     

This is proven by the formula for the area of an ellipse: 

1 2 1 2

1 1 1
π π π

d d d
F AB

   
  

    

and by applying (25) and (37). The area of intersection 
F  becomes zero in case t   holds; this corresponds 

nt

Substituting according to (12) in formulars (9) for the 

to the limiting case, where the cutting plane becomes a 
tange  plane. This result has been applied in [6]. 

5. The Center of the Ellipse 

q  
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coordinates of the center of the ellipse in the 
plane span  and  one obtains:  

 0 0,t u  
ned by r s

 1 1
0t

1

,D D
 


  

n r
 

and  
 1 1

0u
2

,
.

D D
 


  

n s
          (38) 

The center m  of the ellipse in is given by:  3R  

   
   

0 0 0 0

1 1 1 1, ,
.

t u u

D D D D

 


 

      

 
   

m q r s r s

n r n s
n r s

 (39) 

1 2

Theorem 3: Let the assumptions of Th

t 

 

eorem 1 be 

n

fulfilled. For e center m  of the ellipse of intersection 
in 3R  holds

th
:  

 T2 2 2
1 2 32
, ,

t

a n b n c n



 .       (40) 

f: al m trices  from (27) and   

from (22) u

m

 With diag

tilising 

Proo on a D 1D

2
12 2
21

D D
a b

   a

tains a represen  of quivalent to (40):  

2c
m  e

nd (37) one ob- 

tation

2 2
12 2a n

fficient to sh

2 2 2 2
1 21 2 3

.D D
b n c n

 
 

  m n n   (41) 

It is su ow t at for the difference 

 

h

2
1

1 2

D
 

  m n  

     



0 holds. Thus the coefficients 
with respect to the ortho- 

n r
on of 

s 

, , , s
in the expansi   in
normal basi

  
 R3  

, ,n r s  are
vector. 

 



zero, i.e.,  

e o

 is the zero 

Applying representation (39) on btains: 

    

  

2
1

1 2

1 1
1 2

,

, 0.

D

D D  

n n

n n

The last expre  is  according to (24). Further- 
m

1 2


 

 



 zero

, ,n m n

  
 

 

ssion



ore one obtains:  

    

    1 1 1 1 1
1 2

, ,D D D D
 

  r s s n r

and by interchangi e roles of r  and : 

 
1 2

1

, , ,

,D


 


 

r m n r

n



 

 th

2
1D

D

 r

ng s

     

     

2
1

1 2

, , ,D
 

  s m s n s

1 1 1 1 1 1
1 2

, , , .D D D D D D




 

    n s r r n s

 

Both previous expressions are zero; this fo ws by 
applying diagonality condition (7), the identity of 
Lagrange (14) and Corollary 2:  

llo

  1 1 1, ,D D D Dn r s s

    
   

1

1 1 1 1 1 1 1 1

1 1 1 1 1 1

, , , ,

, ,

D D D D D D D D

D D D D D D

 

      
n r s s r s s n

r s n s n r

 
.

Interchanging the roles of  and  leads to:  r s

  

   

1 1 1 1

1

1 1 1 1 1 1

, ,

,

, ,

D D D D

D

D D D D D D      

n s r r

s n

s r n r n s

     1 1 1 1 1 1 1, , ,D D D D D D D n s r r r r 
.

□ 
Corollary 4: The apexes of the ellipse of intersection 

are given by 

with ,A B m r m s  

where A  and B  are denoting the semi-axes according 
to (10). 

Am rClearly  and are points of the plane 
cutting the ellipsoid. In order to show that they are be- 
longing to the ellipse of intersection, it has to be verified 
that they are situated on the ellipsoid, i.e. the following 
eq

Bm s  

ualities hold: 

    1 1, 1D A D A  m r m r  

    1 1, 1D B D B .  m s m s  

This can be shown using in the form (39) and 
employing condition (7). 

m  

Corollary 5: 1d   holds if and only if m  is an 
interior point of the ellipsoid (1), because of  

 
2

1 1 2
, .

t

In the

D D d


 m m

 case of 

 

t  , 
se

i.e. , for the semi-axes 
(1 e ellip terse

1d 
cti0) of th  of in on 0A B   follows. 

The center (40) of the ellipse of intersection becomes a 
tangent contact point 

 T1
 m 2 2 2

1 2 3, ,t
t

a n b n c n


m  

of ellipsoid (1) and a tangent plane with normal vector 
, since n  ,t tm n

llary 6: Descri
 holds. 

Coro bing the ellipse of intersection (8) 
in parametric form 
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0t t cosA    

0 sinu u B    

with  where  0,2π  , A  and  are denoting its 
semi g to (1 leads to a 
a curve in three dimensional space as indicated in [7]  

B
-axes accordin 0), representation as 

  cA B os sin . x m r s  

This result may be derived substituting the parameters 
t  and u  from the parametric form of the ellipse into 
Equation (2) of the plan

 

e:  

  0 0 sint Acos u B      x q r s  

or 

   cos sin ,A B    x s r s  0 0t uq r

where 0 0t u q r s  is equal to the center m  of the 
ellipse as in (39). 

6. Applications 

dicated in [2] win

isodose lines, radio-therapy treatment of th e can be 
plann
el

determ
has the form: 

with the unit normal vector:  

As in , vie g a section through an 
ellipsoidal eye from a viewpoint normal to the inter- 
section plane and displaying the intersection on that 
plane along with a projection of the eye structures and 

e ey
ed. For this purpose the line of intersection of 

lipsoid (1) and the plane, having the normal vector 
 T

, ,i j k  and containing the point  T

1 2 3, ,q q qq , 
situated in the interior of (1), is ined. The plane 

     1 2 3 0x q i y q j z q k       

T

2 2 2

i j k

 

n
2 2 2 2 2 2

, , .
i j k i j k i j k




     
 (42) 

e plane from the origin is given by: 

 

The distance of th

  1 2 3

2 2 2
, .

q i q j q k

i j k


 
 

 
q n        (43) 

According to (25) d  can be written as:  

 2 2 2

2
2 2 2 2 2 2

= .
i j k

d
a i b j c k


 

 
        (44) 

From (11) it is obvious that 1d   holds, as for q  as 
an interior point of the ellipsoid true. 
Substituting (18) into (10) th
the line of intersection of ellipsoid and plane, are given 

 1 1, 1D D q q
-axes of the 

 is 
ellipse, e semi

by  

1 2

1 1
and ,

d
A B

d

 
 

       (45) 

where 1 2,   are solutions of Equation (19):  

 2 2 2 2

2 2 2
2 2 2 2 2 2

1 1 1 1 1 1
i j k

b c a c a b
2 2 2

2 2 2 2 2 2
0.

i j k

i j k

b c a c a b





 

                       
 (46

   

) 

ting  and With Theorem 3 one obtains by substitu  n
  from (42) and (43) the formular for the center  of 
the ellipse given by:  

 m

 
 

 2 2 2

2 2 2 2 2 2 2 2
, , .a i b j c k

a i b j c k i j


  
m  

(47) 

Instead of calculating 


2 2 2

T

2

i j k

k

  



1  and 2  as solutions of (46) 
they may be obtained alternatively using the procedure 
described in 2. Starting with an arbitrary unit vector 

orthogon e un mal v  gi
e.g.  

§
al to thr  it nor ector n  ven in (42), 

T
 

2 2 2 2
, ,0 ,

j i

i j i j

 
   

r  

calculating  to be orthogonal to both accordis ng to 
 s n r  and, in case  1 1, 0D D r s , perform a rotation 

with angle   
, wh

as descri elding new vectors 
ich are ). 

co

bed in § 2, yi
plugged into (18r  and s

A Mathematica program containing both ways of 
mputation of 1  and 2  may be obtained fro  the 

author upon request. 
m

In the first special case of a plane containing the origin 
(see e.g. [1]), i.e. is the zero vector, it follows by (4 , 
(44) and (47) that

q  
 

3)
0  , 0d   and is the zer  

vector also. Furthermore the semi-axes of the ellipse in 
(45) reduce to 

m  o

1 2

1 1
andA B

 
   

 from (9) 0 0 0t uand    holds. Thus Eq ation (8) of the 
line of 

u
inters o  ection reduces t

2 2
1 2 1.t u    

A second special case, where  holds, 
was treated in [2]. Then the above , (44) 

uc

 T
, ,i j kq

 formulas (43)
and (47) red e to: 

 22 2 2

2 2 2
2 2 2

,
i j k

i j k d
a i b


 

   


 
2 2 2j c k

and 

   
2 2i 


2

T2 2 2j k
2 2 2 2 2 2

, , .a i b j c k
a i b j c k 

m  
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Because of q n  in (12) 0    holds and (38) 
reduces to  

   1 1 1 1
0

, ,D D D D
t  

n r n s
0

1 2

and ,u 
 

   

where 1  and 2  are solutions of the adratic Equa- 
 and have to be determined as 

ntersection turns into: 

qu
tion (46) and vectors r s  
described above according to the procedure shown in § 2. 
Thus Equation (8) of the line of i

   2 2

0 0
1 21 1d d
  

 

7. Conclusion 

1.
t t u u 

 

The intention of this paper was, to give an elem
closed form solution to the general problem of the inter- 

on of an ellipsoid and a plane. 
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