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ABSTRACT 

We were interested, along this work, in the phenomena of the quintessence and the inflation due to the F-harmonic 
maps, in other words, in the functions of the scalar field such as the exponential and trigo-harmonic maps. We showed 
that some F-harmonic map such as the trigonometric functions instead of the scalar field in the lagrangian, allow, in the 
absence of term of potential, reproduce the inflation. However, there are other F-harmonic maps such as exponential 
maps which can’t produce the inflation; the pressure and the density of this exponential harmonic field being both of the 
same sign. On the other hand, these exponential harmonic fields redraw well the phenomenon of the quintessence when 
the variation of these fields remains weak. The problem of coincidence, however remains. 
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1. Introduction 

1.1. The Cosmological Constant and Its 
Application 

The cosmological constant is the energy density asso- 
ciated to the vacuum. Its presence modifies the property 
of the space time and the matter. When we consider a ho- 
mogenous universe, we can put the cosmological equa- 
tion in the form 
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where NR ,  R , k ,  

a

 denote respectively the 
rate of the nonradiative energy, radiative energy, the cur- 
vature contribution, the cosmological constant contribu- 
tion,  is the scale factor and 0H , the present Hubble 
constant. From this equation, one can deduce some re- 
marks: 
 The lenght scale associated to the cosmological scale 

[1] 
1 2 1

0 0l H
 

     2610 mh  . This value is too 

small comparatively to fondamental interaction scale. 
 By Equation (1), a  and   vary in the same way; 

so if a  is large,   is big too. But at the very 
earlier epoch of the universe, when 1a  how does 
  behave? 

 From different mesures, we can write  
< 0.7 . 0.6 < 

 It follows from the previous remarks that   is per- 
haps a dynamical quantity.  

1.2. Inflation 

The first theory in this domain is the standard hot uni- 
verse. According to this theory, the universe has been 
expanding and gradually cooling from a state with in- 
finite temperature and density. In this standard scenario, 
it is usually assumed, in the very early stages of evolu- 
tion of the universe, that was very flat and the evolution 
law is given by 

 a t t                   (2) 

Despite the great phenomegical success of the standard 
hot universe scenario, this scenario was still somewhat 
incomplete. We give here some problems arising from 
this scenario. 
 The flatness problem: The universe would be closed 

and it would have collapsed millions of years ago or 
the universe would be opened and the present energy 
density of the universe would be negligible; 

 The singularity problem: From Equation (2) it follows 
that the scale factor of the universe  a t  vanishes at 

0t   whereas the energy density becomes infinitely 
large; 

 The homogeneity and isotropy problems: It was as- 
sumed that the universe was initially absolutely ho- 
mogenous and isotropic. Meanwhile, even at present, 
the universe is not totally homogenous and isotropic, 
at least at a sufficiently small lenght scale; 

 The galaxy formation problem: It was not quite clear 
what was the source which generates galaxies; 

 The inflationnary universe: According to this, in the 
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very earlier stages, the expansion of the universe was 
exponential from an instable vacuum state. At the end 
of this state, the energy of this state transforms itself 
in energy of hot universe. This theory suppose that, 
there was a time when the pressure was negative and 
the negative pressure happens due to a single new real 
scalar field  . In this case the energy and the pres- 
sure densities can be written  

2 2 , 2 2V p V        .        (3) 

If the potential energy V is a slowly varying function 
of the field   and if the initial value of the time deri- 
vation of   is not too large, the kinetic energy 2 2

V V
 

can be small compared to . If in addition  is large 
enough to make a significant contribution to the stress- 
energy tensor, the pression can satisfy the inflation con- 
dition.  

1.3. Quintessence 

Quintessence has been proposed as the missing energy 
component that must be added to the baryonic and the 
matter density in order to reach the critical density [2], 
[3]. It is a dynamical, slowly-evolving, spatially, inhomo- 
genous component with negative pressure. For quintess- 
ence, the equation of state w p   , lies between 0 
et –1. A key problem with quintessence proposal is ex- 
plaining why p  and the matter energy density should 
be comparable today. One of the aspect to this problem is 
the coincidence problem [4]. To avoid this problem, Zla- 
tev and al [5] introduce the so-called tracker field. Track- 
er field have an equation of motion rapidly converge to a 
common, cosmic evolutionnary track. The tracking solu- 
tion to which general solutions converge has the property 
that w  is nearly constant and lies between Bw  and 

. 1

2. Kinetically Driven Inflation 

We consider the following action of a single scalar field 
minimally coupled with gravity 

   4dmL g x
   
 2

1
,e

2M
R F

k
        (4) 

where , 2 8πk G     21 2e    L, m  denote the back- 
ground matter lagrangian and F the contribution of the 
scalar field. From the action (4), we get the Einstein 
equation 

 2 21

2
R Rg k T    2mk T k g              (5) 

and the field equation 



The kinetically driven inflation idea is based on the 
following: Suppose that during the inflationnary epoch, 
the density of the background matter is negligeable com- 
paratively to the scalar density, and note that the energy 
and pression densities   and  repectively, one can 
combine the cosmological equations to obtain  

p

1 ii j
ij .

i

F
F g h

g


  g



 


 


        (6) 

 3 p     .              (7) 

To solve Equation (7), Armendariz-Picon and al [6] 
have looked at the graph of the curve  p f  . They 
observed that the energy density   grows below the 
line =p   and decreases above this line. They 
conclude that all the point lying on the line =p   are 
attractors. These points correspond to exponentially 
inflation points: 2 expH fixed fixedatt att Oa a t   ; thus 
inflation appears by the only kinetical term in the la- 
grangian; this motivates the term kinetically driven in- 
flation. With this method, we analyse some model where 
the function F  is not a scalar field but a F-harmonic 
map. The F-harmonic maps are the critical points of l 
functional energy defined on the space of the regular 
maps enter riemanian varieties. Ara [7] tried to build a 
unifying theory for several types of harmonic maps. He 
has presented F-harmonic map, as a generalization of the 
harmonic, p-harmonic and ex- ponential maps Ara [7-10]. 
Let us consider some par- ticular example of F . 

2.1. 21
exp 1

2
λ= F

mL

  

Let us consider in the action (4) the bacground matter 
lagrangian  negligeable, the cosmological constant  

equal to 0 and 21
= exp 1

2
F   ; then we otain 

2
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    (8) 

where we derive equations 

 
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             (10) 

and 

21 3 0;
R

R
    

  

2 8πk G 1c

             (11) 

with ,  . Note that we use the metric  

    2 2 2 2 2 2 22d d d d dsins t R t r r       .   (12) 
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1) If we consider the parameter   very small, we can 
do a limited developpement of the harmonic function, the 
physical quantities known, the energy and the pressure 
can be written 

2 2 4

4 8
p

2 2 43 3
, .

4 16
    
    

 
 

    (13) 

   negative, the two physical quantities are negative; 
It is not physically. 

   positive, they are all positive and we obtain 
p  , acceptable only near the origin = 0p  . 

2) If   does’t allow developpment and is positive 
then the two physical quantities are positive and grows as 
an exponentially function when the Hubble constant 
grows. 

3) If   does’t allow developpment and is negative, 
then we can pose =    to obtain 

 21 ,
1

3
H  




 
                  (14) 
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 


  
  

 
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2

1 1
1 .

2 e 
 
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 



2 < 1  

p                   (16) 

If , H  grows when  and p   decrease 
to zero. , if 2 1   H  grows,  decreases to p 1 2  
when   to 1 2 . Eliminating   in the expression of 
  and  we get the equation of state  p

   2 1p p ln 2 1 .p 

0p

             (17) 

By using the result of the previous section, we can first, 
say that there are inflation points: the point   cor- 
responding to  and the point 0  1 2p    corre- 
sponding to very large values of  , but now this model 
have no point of exponential inflation model because the 
point 1 2 

L

p  is never attained. 

2.2. Kinetical Inflation and Trigonometric 
Function 

We consider in the action (4) the bacground matter lag- 
rangian m  negligeable, the cosmological constant eq- 
ual to 0 and  

i
2 .

g 
     

  
 
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e e

2
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  
  

          (18) 

The variation of the action with respect to   gives: 

2

tan 0.
2

 


 
23 1H      

         (19) 

The cosmological equations come from of the varia- 

tion of the action with respect to the metric  
2 2

2 23 cos sin
2 2

H
  
            (20) 

2
22 3 sin .

2
H H


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                (21) 

Let us derive Equation (19) and insert it into (21), then 
we obtain the third order differential equation: 

2
2

2
2 2 4 2 4

2
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2
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2
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2

 

    



 
 

 
 
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 
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      (22) 

Let us define y    y and u , then this dif- 
ferential equation can be written as the following system  

 
   

4 2 42 2

2 2 2 2

3 3 tan 2 3 sin 2

2 1 tan 2 2 1 tan 2

y u

y y yu y y
u

y y y y y


      




(23) 

The state equation of this field can be written 

22 1 arcsinp p p                 (24) 

where 
2 2

2 cos sin
2 2

   
   and 

2

sin .
2

p





  

The system (23) is a dynamical system with fixed points  

 = = 0, = 2 π 0kA u y k k 

 

 and 

 = = 0, = 2 1 π .kB u y k   

-points kA  
The egeinvalues equation can be written as  

2 3 π cos π 0k k .   
But from (20), we must have  

2 2
2 cos sin > 0;

2 2

  
 

k

 

so  must be even; and the egeinvalues can be written 
as: 2 π.k  

2 4πy 

2

2

3 4π

2 3 0.

H

H H

 


k  These points are instable fixed points. 
At these points,  and the cosmological Equa- 
tions (20) and (21) become: 

               (25) 
  

H  is negative, and It follows that, H  decreases. 
Let us look now at the behaviour near the points kA  
where 2 2 πk   ,   very small. The system (23) 
becomes  
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2 2

2

3 2
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H H k
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

2
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

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             (26) 

from where we deduce  

H at

at

R at




 
 



B

                (27) 

-points  k

By the same says that the points kA , we find that the 
acceptable values of  are old. The egeinvalues read k

3 2i   .These points are stable. Near these points:  

 2 2 2 1 π 2k     

with   very small, the system (23) leads to  
2

;
4

H
 


0H 

                (28) 

So here, ; which implies H cste  
exp

p

 and 
. The points k  correspond then to expon- 

ential inflation points. At these points 
R  Ht B

 
p

. By the 
same, from the equation of state (24) when  

1p   1
, we 

find . The points  crrespond to a 
negative energy density, so it is not useful. The points 

 corresponding to 

1,0, =p 

= 0= 0p   are acceptable only 
near the origin. The points  correspond to the 
points of exponential inflation. 

= 1p 

3. Kinetical Quintessence 

Starting from  = ,F F   , we look at the solutions of 
the cosmological which gives = .w p    constant. 
These are the tracking solution [11]. For F  which can 
be written in the form      F f g    , one poses 

2f f f    an look at the solutions for which 
 because in this case,  cst 

 
 

2 3

2 3 2
mw

w

  


  
2

constant.
1

         (29) 

It is the kinetical quintessence. It is shown that the 
tracking behaviour arise in the following case [12] 

1)  and < mw w > 3 2  
2)  and mw w  1 <  < 3 2

< 13)  and  1w  
Let us look now at cases where   is a generalisation 

of exponentially harmonic function. 

3.1.     
 

2p 2 1 

p

= ex F f  

The physical quantities  and   can be written  

  2 2= e 1 , 


    2 2 2= e 1 1 .f     
 

 

p f               (30) 

             (31) 

The field equation read  

22 2 21
1 3 1 e .

f
H

f
    


       
 

   

w

   (32) 

We now look at the solutions which leave   as con- 
stant function of  .  

 

2

2

2

2 2

e 1
= .

e 1 1
w



  



 



 

w

            (33) 

  constant imply  .m. With the assumption  

 

  

The Hubble constant can be written 
2

3 1 Bw t

  =f

. Putting  

of this value in the conserved equation of the energy- 
momentum tensor we get a function    and 
the field equation becomes:  

   
2

2

2 2

2
1 3

1

1
1 e 0.

mw t



  

  
 

 


     
 



  



ln ,t ut

          (34) 

In order to eliminate t, we do the following change of 
variable     where   is the solution of 

  2 2 2e 1 1 0w w w
   .   

, w

       (35) 

Whith the condition m    constant and  
2f f f    constant, we can think at the tracking so- 

lutions. Here 

  
 2

2 1 3 2

1

m

m

w w w

w

   
 



w

         (36) 

so Equation (35) has other solution than the origin if   
is positive. Two cases are possible: 

1) m , 0 < <w w > 3 2 . We deduce that there are 
tracking solutions. Let us note that here  is 
exclude. 

= 0mw

>w w2) m , but   does not verify the necessary 
condition. There is no tracking solutions. (34). Which the 
change of variables this can be read  

u v                     (37) 

 
     2

2 2

2

1

1

2 1 1
e

1

u v

m

v v
u v

u v
u v

w u



 

 
  

 

   
 

         

  (38) 

  

The search of the fixed points of this system leads to 
the equation. 
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2 2 2 2
2

e 1 1 0
1

u
w

u
w





  

        

< 0w

 

.       (39) 

Copyright © 2 SciRes.    

In conclusion, this form of yields have tracking solu- 
tions and these solutions are those which are acceptable 
to built the quintessence models ( ). 

3.2. 
2 2e 1
 F f  

In this case the field equation take the form 

 21 3
f

H
f

   2 1
0


    
 
           (40) 

when the equation of state read  

 
   

2 2

2 2

e 1

e 1 1

f
w

f



 



 




 



 

w

2
.            (41) 

The condition   constant, imply   and 
= cst

 are all 
constant. More precisely  and = 0  . With the 
assumption m  , the conserved equation of matter 
leads to  

 3 1H w   1 0F   

> 1.w 

             (42) 

and so  if   Hence we can not use this 
condition here. But we can search the function 

1f 
 f   

for which the equation of state w  varie weakly. For 
that, we need a relation between  and its derivative; 
what we do not find yet. However if we known the po- 
tentiel we can look at the behaviour for other quantities 
by the study of the following dynamical system  
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2 3

3 32
3

3
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3
1

y w y

y y

y y
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2
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1 1f
y y
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
  

 
   
 





     
  

y H

      (43) 

where , 1 2y   and .3y    

4. Conclusion 

Begun, there is just a few years, the use of lagrangians, 
not canonical, scalar fields for the description of the uni- 
verse, continues to spread. It can avoid us the problems 
connected to the choice of the potential of the field  , 
determining for the expected results. The problem of 

coincidence, however house. With the usual scalar fields, 
P. Steinhardt and his associates [5] were able to deduct 
equations of the field, the function 

     2
f f f    

   f g

 which allows without an in- 
depth study of knowledge if a model can allow to avoid 
the problem of coincidence by means of fields “trackers”. 
T. Chiba made the same thing (matter) with the lagran- 
gians of the field of the shape   . With the lag- 
rangians of field exponential of the shape  

  2exp 2 1f     an independent relation was not 
able to be still found. We continue to look for a relation 
with the lagrangian of the shape    2exp 2 f  . 
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