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ABSTRACT 

In this paper, we have established an intimate connection between near-nings and linear automata, and obtain the 
following results: 1) For a near-ring N there exists a linear GSA S with  N N S  iff (a)  is abelian, (b) N 

has an identity 1, (c) There is some  such that  is generated by {1,d}; 2) Let 

 ,N 

:h 


dd N 0N S S  be a GSA- 

epimorphism. Then there exists a near-ring epimorphism h  from  N S  to  N S  with      h qn  h q h n for all 

 and q Q  n N S ; 3) Let  , , , ,Q A B F GA  be a GA. Then (a)    : ,a a a aQ A G Q A: Q N , , ,A B F Q   A A  

is accessible, (b) Q = 0N(A), (c)  ~, , , ,B F ~Q: ~ /Q AA/ ~  with     ,~ , :F q a F q a    and     , : ,a G q a~G q  

is reduced, (d)  is minimal. aA / ~

 
Keywords: Linear Automata; Accessible; GSA-Homomorphism; Near-Ring 

1. Introduction 

Automata consist of inputs, states, and outputs, together 
with maps which describe how new inputs affect the state 
and the output. A semi-automation is a triple 

 , ,Q A FS , where Q and A are sets, called the state 
set and input set, and F is a function from Q A  in Q, 
called the state-transition function. If Q is a group, we 
call S  a group-semiautomaton and abbreviate this by 
GSA. Automata consist of inputs, states, and outputs, 
together with maps which describe how new inputs affect 
the state and the output. A semiautomaton is a triple 

 , ,Q A FS , where Q and A are sets, called the state 
set and the input set, and F is a function from Q A  in 
Q, called the state-transition function. If Q is a group (we 
always write it additively), we call S a group-semiau- 
tomaton and abbreviate this by GSA. For q Q  and 

 we interprete a A  , F q a  as the new state obtained 
from the old state q by mean of the input a [1]. 

If  is a semiautomaton, we get a collec- 
tion of mappings a

 , ,Q A FS 
f  from Q to Q, one for each a A , 

which are given by . Hence a: ,aq f F q a  f  de- 
scribes the effect of the input a on the state set Q of S . 

If the input 1  is followed by the input 2 , the 
semiautomaton moves from the state  first into 

1a  and then into 
1 2a a . We extend (as usual) A to 

the free monoid 

a A

qf

a
q Q

qf  f
A

1 2a a a

 over A consisting of all finite se- 
quences of elements of A, including the empty sequence 

, and get 
1 2af f f , i.e. the map a  is a  af

monomorphism from A  into the transformation mon- 
oid over Q with Qf id  . In the case of GSA s , we are 
also able to study the superposition 

1 2a af f
,a a
 (defined 

pointwisely) of two simultaneous inputs 1 2 A . 
Hence it is natural to consider    af a A f   and all 
of its sums and products (composition of maps). The 
obvious framework for that is, of course, the structure of 
a near ring. 

Let  , ,Q A FS  be a , The subnear-ring GSA
 N S  of  M Q  generated by  and all Qid f s  is 

called the syntactic near-ring of S . Thus  N S  is 
always a near-ring with identity. If Q is finite, then 

 N S  is finite, too [2]. 

2. Discussion 

1) The homomorphism case. Let Q and A be additive 
groups with zero 0 and F a homomorphism from the di-
rect product Q A . We then call  a homo-
morphic . Because of 

 , ,Q A F
 


GSA  , ,aqf F q 0 F q a   

      00, 0,a F a,0q F  aqf o  f ,  we get  0af f  

af , where 0f  is a homomorphism (i.e. a distributive 
element in N(Q)), while af is the map with constant 
value 0 af . If no input can change the zero state, i.e. if 

a0 f 0  for all a A , then N S  obviously is a dis- 
tributively generated near-ring, consisting of  -sums of 
powers of 0f  which are endomorphisms, we also get a 
distributively generated near-ring if F is additive in the 
first component. For homomorphic  one sees by  GSA s
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induction that 
 1 2 1 10 0 0n na a a a a

1

n

n n
af f f f f f f    

 , where the 
map in brackets is constant. Each power 0

nf  is a homo- 
morphism [3]. 

2) The linear case is a special case of the homomorph- 
ism case in which Q and A are Abelian groups (or more 
generally, R-modules for some ring R) and where F is 
linear. Let Q and A be free R-modules with finite base X, 
Y respectively. Let ,X n Y m  . Then the action of F 
can be described by an  m n m  -matrix  ijZ z  
over R if we replace each element of Q and of A by its 
decomposition 0a af f 

,




f  induces a decomposition of 
Z such that 

   
11 1 1 1 1

1 , 1

, ,

:

m m m n

m mm m m m m n

F q a Z q a

z z z z

q a

z z z z

B q C a

 

 

 

 
       

      
   

 
     

 
 

We then get  

1 2 k
. If, 

in particular, , we get 
1 k

 and 

1
1 1

k k
a a a k kqf B q B C a B C a C a

           
0C  k

a aqf B q 

 N S  is a ring, generated by B and the unit matrix I [4]. 
on the other hand, if , then . We 
get  iff . 

0B 
1 ka a kqf C a 

f f      0k kC a a  
*a A

1 1k ka a a a

Anyhow, each fa (and hence each fa for ) is an 
affine map from Q to Q. If Q is free on X with X n  
then we can extend the idea of matrix representations 
from linear maps to affine maps. Let f be an affine map. 
Then f decomposes as 0f f c 

r R

 where f0 is a homo-
morphism and c is constant. Let F be the matrix for f0

 

with respect to X. Invent a symbol e with  
and  for all . Then 

e e ee e  
er re e 

0
t

F
f

c e

 
  

 
 

Establishes an isomorphism between Maff(Q) (all af- 
fine of Q) and a subnear-ring of all  ma- 
trices over  [3]. 

  1n n   1



 R e

3. Main Results 

Theorem 1. Let be a homomorphic GSA, 
Then 

 , ,Q A FS  
    :N f A     S

 N N
i i

Proof. 
N  

S  is clear. Conversely it suffices to 
show that N is a near-ring, since obviously N contains all 

a  f a A  and Qid . In fact, we show that N is a 
subnear-ring of M(Q) 

f

Take ,
i

i

f f N    
j

j

g f N   . It is clear  

that . So consider f g N 

:
i j i

i j j i

fg fg f f f f

Hence we only look at the last expression in (a), let 
*

1 2j na a a A   . Then 

1 2i j j a a a
i i

n
f f f f f  

      
   
   

f  

We first focus our attention to  and put 1n  1a a  
for a moment 

0

0 0

0 0

i i

i i

i

a a
i i

a a
i i

a
i

f f f f f

f f f f f

f f f N

 

 



         
   

           
   
      
 

 

 



 

Therefore we get k A   with 

  1 2 1 2

2

i n i

k n

a a a a a a
i

a a
k

n
f f f f f f f f

f f f

 



    
 

   
 

 



 


. 

By induction, this is in N 
Let  , ,Q A FS  be homomorphic. The zero-sym-  

metric part     0 0
N:N S S , and  0N S  consists  

of all finite sums of elements of the form  with  c f c 

 2 3
0 0 0, , , ,f id f f f   and  i ic f  A  

c

.  

In fact, all elements c f   are in  0N S . Con-  
versely, take  g f N 0i

   S . Then  

 0 0 0

j  

             
    
     . 

0
i i i

g f f f            . By standard  

group theory, we can arrange  

 0
i

i

n

i
g f f       f  into sums and differences  

of elements of the form 0
inc f c  , where c is the sum 

of some 
i

f s  [5]. If S be linear. Then (with 0
0 :f id )  

   0 1z0 0 0 1 0 0n iN z f z Z  S nf z f   (n is non ne-  

gative integer ), Hence  0N S  is the subnear-ring of 
 affM Q  generated by  0,id f . Since   

0affM Q  is 
a ring,  0N S  is a ring, too [6]. 

We can find a group Q such that N is isomorphic to a 
subnear-ring N of  M Q . Let A be an index set for 

N , i.e.  a A . Let  , : aF q a qf . Then aN f

 N N N  S  with  , ,Q A FS . Since every near- 
ring can be embedded in a near-ring with identity, we get 
every near-ring can be embedded in the near-ring of 
some GSA [7] 

Theorem 2. For a near-ring N there exists a linear 
GSA S  with  N N S  iff (a)  is Abelian, 
(b) N has an identity 1, (c) There is some 

 ,N 
dd N  such 

that  is generated by 0N  d1, . 
Proof. Let N be a near-ring with (a)-(c), we know that 

N is isomorphic to a subnear-ring N  of  ,M N   [2]. 
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Let d  and 1  be the images of d and 1 in N . Since d 
is distributive, d  is an endomorphism of  ,N   and 

01 .Nid N  is generated by id and d , whence 

 0 0 1
n

n iN z id z d z d z Z      (n is non negative  

integer). Now let  and     , : , : ,A Q N    
 , : 0F q a qd


a , ,Q A F. Then   is a linear GSA, 

Since  is abelian. Since  ,N  0d f  we get 
 0 0N N S . Furthermore, take  cf N S . We get 

 0 0 0
i i

f f f f           with 

1 1

1 1
00 0 0 0

i n n

n n
a a a caf f f f f d f N

         N . 

This shows  c c . Conversely, every N NS cc N  
(with constant value c) is in  cN S  since cc f . 
Hence  N N S N . 

It is customary in algebraic automata theory to con- 
sider the semigroup-epimorphism  A N  S  given 
by a . The idea of simultaneous inputs enables us 
to transfer this epimorphism from semigroups to near- 
rings. We can, for instance, interpret 1 2 2  as be- 
ing the complex input “input sequence 1 2  together 
with the simultaneous input 2  (in double strength)”. 
We extend A to the free near-ring A# over A. If 

a f

2a a a
a a

a

#
1, , na w a a 
: ,f w


f

 is a word in A# we define 

   11
,

nn a aw a a f  , and   #
# #, :

a
F q a qf . Thus 

we get an extended simultaneous sequential GSA  

# #: , ,Q A F S  . Let I be { #
# #

a
a A f  is the zero  

map}. Then I is a near-ring ideal and we get by the 
homomorphism theorem:    # #A I N N S S  

If we had used right near-rings, we would have 
 N S  anti-isomorphic to #A I . Hence  N S  can be 

viewed as a homomorphic image of #A . It is, however, 
impossible to give a nice canonical form for all elements 
of #A . 

A possible relief comes from the observation that one 
might replace #A  by vA , the free algebra in a variety v 
of near-rings containing  N S  (for instance, one might 
take v as the variety generated by  N S ). 

Attention! If A already bears some additive structure, 
this new addition can (and in most cases will) be differ- 
ent from the given addition in A! In particular, our new 
addition is one in #A  and not in A . 

In the linear case we saw that  N S is an affine near- 
ring. Since the class of all affine near-rings is known to 
form a variety, it makes sense to look at free affine near- 
rings, the more so since we know how this monsters look 
like. 

Let A be a set, A* the free monoid over A and A  the 
free affine near-ring over A. Then every element of A  
is a finite sum of elements i  with   0i A   . 
In fact. Since   ,x y z xy 

0
xz

0
 

  0x y z xz  xz yz yz   z  and 

  0 0x y xy yx y      are laws in the variety of affine 
near-rings, we can bring all expressions into  -sums of 
elements which are products of elements in  0A  
(observe that we use left near-rings!) 

Let  , ,Q A FS  be a GSA and #A  the free near- 
ring on A. 1q Q  is accessible from 2  if there is 
some 

q Q
#A   with 2 1q f q  . S  is accessible if each 

state q is accessible from each other state.  N S  is not 
only a near-ring, but it also operates on Q. obviously Q is 
an  N S  group via in the usual meaning. 1  is 
accessible from 2  iff 1 2

aqf
q q

q
q N S . Alternatively, Q 

can be viewed as an #A -group via :q qf . We have 
S  is accessible iff Q is an N N :  S -group with 
0N Q . In fact, if S  is accessible then obviously 
0N Q . Conversely, suppose that Q N . If 0  0 CN
q Q  then 

0 0 0 Q0C CNqN qN qN qN qN Q       , and S  
is shown to be accessible. 

It might be most useful to examine the relationship 
between generators, primitivity and accessibility more 
closely. Now we look at constructions of semiautomata 
and their corresponding syntactic near-rings. 

Let  , ,Q A FS

Q

 and  be GSA 
with identical input sets. A group homomorphism 

 , ,Q A F S 

:h Q   is called a GSA-homomorphism if 
   a ah q fh qf   holds for all  and q Q a A  

(with    ,:af q F a q  
:h
  of course). 

Theorem 3. Let S S  be a GSA-epimorphism. 
Then there exists a near-ring epimorphism h  from 

 N S  to  N S  with      h qn h q h n  for all 
q Q  and  n N S . 

Proof. If  n N S , n is a word 

  1 1 , ,, ,
k ka a w a an w w f f f     a in 

1
, ,

kaf f . Then 

   wh qf h q fw  by induction on the length of w. De- 

fine   :wh f fw . h  is well-defined since wf fw ,  
implies        w w wh qf h qf h q fh q f  w   , for all  

q Q . Since h is surjective, w w  follows. Obvi- 
ously, 

f f   
h  is a near-ring epimorphism and 

         w w  is also true for 
all 
h qn

q
h qf h q f h q h n  

Q  and  n N S . 
An automaton is a quintuple , 

where 
 , , , ,Q A B F GA

 , ,Q A F
:G Q

 is a semiautomaton, B a set (the output 
set) and A B   a function (called the output 
function of A ). If Q is a group, A  is called a group- 
automaton (abbreviated by GA). We call A  a homo- 
morphic GA if Q, A, B are groups and F, G are homo- 
morphisms. A  is called a linear GA or linear automa- 
ton or linear sequential machine if Q, A, B are R-modules 
for some ring R and F, G are R-linear maps [1]. 

In many cases, however, outputs do play an essential 
role. For instance, if one wants to connect two (or more) 
automata in series. For doing that, consider 

 , , , ,Q A B F GA  and  , , , ,Q B C F G  A  . The  
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  A Q B Q C

AA  

Series connection s  A A
 
outputs of A  shall be the inputs of  A

More formally, A s  : , , , ,Q Q A C F G    A

    
 with 

   , , : , , , ,F q g a F q a F q G q g      and 

     , , : , ,G q q a G G q a q    . 
If A  and  are linear GA then A N s A A  is the 

near-ring  N A   s N A  additively generated by all 
pairs of the form  (n is non negative integer),   0 0,

k
f f 

the constant-map-pairs    a A0,a G af f


,  and all  

 00, kp

0p Q 
 (n is non negative integer), with 

  : M Q ,C  ,0G qq f . 
Let A* and B* denote the free monoids over A and B, 

respectively. For  let q Q :qs A B 


  be defined by  
  :qs    ,   : ,qs a G q a ,  

  , :  , ,  1 2 1 1 2,qs a a  G q a G F q a a   

     
11 ,q F q a 2s a s a

 
 and proceed inductively with 

    1 2 1 2 1 1 1, , , ,q n q n n ns a a a s a a a G F q q q a    .  

:qs A B   is called the sequential (input-output-) 
function of A  at q. If A  is a GA, 0 :s s A  is called 
the sequential function of A. Furthermore, call ,q q Q  
equivalent states ( ) if q q~q q s s   (i.e. if  and q q  
induce the same input-output-behaviour). 

It might make sense to extend qs  from #A  to , 
where 

#B
#A  and are the free near-rings [2] in a vari- 

ety which contains the one generated by 

#B
N A  if we 

define 

         1 2 1 2 1 2: , ,q q qs a a G q a G q a s a s a     . 

If  is homomorphic we get for 
 

 , , , ,Q A B F GA
:q Q 

~q q 


, ,q q
If  then q qs s

 q  
 . Let . Then 

; 
q Q

   


q q qs s 
        

       
 

 
    
     
    
     
 

1 2

1 1 2

1 2 1 2

1 1 2

1 2 1 2

1 2

, , , 0

, ) , 0, ,

, ,

, , 0, ,

, ,

, , 0, ,

q q

q q

q q

q q

q q

q q

,s a G q  q a G q q a G a

G q a G q a G a G q q a

s a

s a a

s a G F q a a

F q a a F a a

s a G F q a a

F q a a F a a

s a a













  

     





 



 



a G

 

and so on, hence q q q qs s 

Similarly, if ~q q a A   and  
1 ka an f N  A  

then 

 
    

      
1

1

1

1

, , , , ,

, , ,

k

k

qn

a a k

k a a q

s a

G qf a G F q a a a

G F q a a a G q f a s a

 

  







 n

 

and induction shows . We there fore get ~qn q n
Theorem 4. Let A  be a homomorphic GA. Then ~ is 

a congruence relation in the  N A -group Q. and (a) 
 0 : ~ 0Q q Q q   is an ideal of ; (b)  N QA

 ,0 0G q   for all 0Qq . 
We might ask what  means in detail ~q q
Theorem 5. Let A  be homomorphic and 

 0 0: , ,0g Q B q qg G q   . Then  ~q q   For  

any non negative integer k,   0 0 0 0g   gk kq fq f

Proof. Let ~q q . We use induction on k and start 
with 0k  . If a A  then 

         0, ,0 0, 0qS a G q a G q G a qg G a     , . 

Since    q qS a S a  we get . Now sup- 
pose theorem 5 holds for all words 1 2

0qg q g
a a

0

1ka A
   

of length 1 :k t  . Then for all ,  a A
   qS aqS a  , hence G q , we 

have,  
 f a G q  , ,f a 

 

     

0 0
1

0 0
1

, ,

,0 ,0 0,

i

i

t
k t i

a
i

t
k t i

a
i

G qf a G qf f f a

G qf G f f G a










   
 

  




 

Similarly,  

      0 0
1

, ,0 ,0
i

t
k t i

a
i

G q f a G q f G f f G a




    0, ,  

hence    0 ,0 ,0kG qf G q f
k k

0
k  and we get 

0 0

A GA 
0 0qf G q f g . The converse is shown similarly. 

 , , , ,Q A B F GA  is reduced if ~ is the equa- 
lity. If A  is accessible (i.e. if (Q, A, F)is accessible) and 
reduced then A  called minimal [1]. Obviously, a 
homomorphic GA is reduced iff , we have 

is 
 0 0G 

Corollary 6. Let  , ,B F G, ,

 
Q AA  be a GA. Then  

(a)   : : , , , ,a a aQ N Q A B F Q A G Q Aa  A A    

is accessible; (b)  0Q N A ; (c)  

 , , , ,B F Q~ ~: / ~Q AA/ ~  with  

    ~ , : ,F q a F q a     and     ~ , : ,G q a G q a  is  

reduced; (d) is minimal. a

The proofs are straightforward. In looking for criteria 
to decide if a given GA 

A / ~

A  is minimal or not, we obvi- 
ously have to view Q not only as an  N A -group but 
also have to care about B.  , whence . ~q q q q  
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