
Applied Mathematics, 2012, 3, 1601-1606
http://dx.doi.org/10.4236/am.2012.311221 Published Online November 2012 (http://www.SciRP.org/journal/am)

An Algorithm for Global Optimization Using Formula
Manupulation

Tsutomu Shohdohji1, Fumihiko Yano2
1Department of Computer and Information Engineering, Nippon Institute of Technology, Saitama, Japan

2Division of Integrated Sciences, J. F. Oberlin University, Tokyo, Japan
Email: shodoji@nit.ac.jp, yano@obirin.ac.jp

Received August 13, 2012; revised September 11, 2012; accepted September 18, 2012

ABSTRACT

Constrained nonlinear optimization problems are well known as very difficult problems. In this paper, we present a new
algorithm for solving such problems. Our proposed algorithm combines the Branch-and-Bound algorithm and Lipschitz
constant to limit the search area effectively; this is essential for solving constrained nonlinear optimization problems.
We obtain a more appropriate Lipschitz constant by applying the formula manipulation system of each divided area.
Therefore, we obtain a better approximate solution without using a lot of searching points. The efficiency of our
proposed algorithm has been shown by the results of some numerical experiments.

Keywords: Global Optimization; Lipschitz Constant; Lipschitz Condition; Branch-and-Bound Algorithm; Formula

Manipulation

1. Introduction

Many real world problems can be formulated in mathe-
matical programming problems, i.e., problems in which
an objective function that depends on a number of deci-
sion variables has to be optimized subject to a set of
constraints [1]. Therefore, methods for solving such
problems are of great importance. However, it is very
generally difficult to solve a constrained nonlinear opti-
mization problem (hereafter called NLP) and to find its
feasible region.

A method that uses the Lipschitz condition (Lipschitz
constant) has been proposed for solving nonlinear opti-
mization problems [2-7]. It is assumed to be difficult to
apply this method to multi-dimensional optimization
problems because of the curse of the dimension. We have
already proposed an effective method for solving the
NLP [1,8,9]. This method uses the Branch-and-Bound
algorithm and the Lipschitz condition, and it guarantees
that the obtained solution is optimal.

This paper presents a new algorithm for solving the
NLP; the efficiency of this algorithm is improved by us-
ing formula manipulation of the objective function and
constrained functions.

In this paper, we report that the calculation frequency
to obtain a good approximate solution to the NLP has
been greatly reduced by using our proposed Lipschitz
algorithm.

2. Outline of Lipschitz Algorithm

2.1. Formulation of the NLP

We consider the following nonlinear optimization prob-
lem (P):

 Maximize ,

subject to ,

f x

x S
 (1)

where the feasible region S is a compact body, i.e., S is a
nonempty, bounded subset of equals to the closure
of its interior, the boundary of S has an n-dimensional
Lebesgue measure equals to zero, and the objective func-
tion f is a continuous real-valued function defined on S.

nR

We assume that f is a Lipschitz function with Lipschitz
constant K, i.e., f satisfies the Lipschitz condition:

    , , ,f x f y K x y x y S     (2)

where  is the Euclidean norm on . nR

Let  max
x S

f f x


 , and let x be an optimal solu-

tion so that  f f x  .
Let us express the NLP described above in slightly

greater detail. We can formulate the constrained NLP
without loss of generality as follows:

 
   

Maximize ,

subject to 0 1 ,i

f x

g x i   m
 (3)

where

Copyright © 2012 SciRes. AM

T. SHOHDOHJI, F. YANO 1602

 1 2, , , nx x x x  and  , (1, 2, ,k k k)x a b k n   .

In this formulation, we assume that functions  f x
and  ig x are nonlinear real-valued function:

 
: ,

: 1,2,

n

n
i

f R R

, ,g R R i m



  
 (4)

and Lipschitzian. In the case of an equality condition, we
reduce it into two equivalent inequality conditions as
follows. The rewritten forms of are

 and .
  0ig x 

  0ig x    0ig x 

2.2. Some Definitions and the Basic Theorem of
the Lipschitz Algorithm

In this section, we describe the notations, some defini-
tions, and the basic theorem of the Lipschitz algorithm.

Definition 1 (The Lipschitz constant)  Lip f
If there exists some constant for the function 0K 
:f X Y such that

      , , , ,d f x f x Kd x x x x X    , (5)

the function f is said to satisfy the Lipschitz condition.
The lower bound of K satisfying the above condition

for some function f is called the Lipschitz constant Lip(f)
of the function f.

We treated solutions of the given constrained NLP as
an optimal searching using a type of Branch-and-Bound
algorithm [10-13]. Thus, we seek some points that
maximize an objective function  f x in the feasible
region , where   , x x S x Ι  

,

 . We define the
constraint set S and the n-dimensional interval I as fol-
lows:

   
     

 
1 1 2 2

1

| , () 0 , 1,2, ,

, , , ,

, .

n
i

n n

n
i i i

S x x R g x i n

Ι a b a b a b

a b

   

   

 



 (6)

In order to reduce the searching area and improve the
efficiency of searching optimal points in the feasible set

, the searching algorithm utilizes Lipschitz constants
of the objective function


 f x and constraint functions
 ig x . In this algorithm, an n-dimensional interval I is

subdivided in each iteration by dividing each  ,i ia b by
two; therefore, at the k-th iteration, each subdivision is
also a sub n-dimensional interval that has an edge length
of   2k

i ib a on each i-th dimension.
Definition 2 (The maximum radius of the divided

area). k

The maximum radius (see Figure 1) of the divided
area at the k-th iteration is defined as the radius of the
circumscribed sphere of the divided area, i.e.,

M

1 22

1
1

M ,
2

n
i

k k
i

l




     
   

 　

1T

2T

3T

kP

 kP

Figure 1. An example of 2-D maximum radius.

where .i i il b a 

Theorem 1.
Let k

sP be the central point of the s-th divided area at
the k-th iteration, where 1, 2, , ks m 　　　 , and is the
count of subdivisions at the k-th iteration. Let

km
 k

sf be
the value of  f x at k

sP  
max

kf　; , the maximum value
of  k

sf ; and  Lip f , the Lipschitz constant of the
function f(x).

For every divided area  k sP 　 at the k-th iteration, if
there exists  k

sf

 k k

 such that

     max Lip , 1, 2, , ,s kf f f M s m   　 　 k (8)

then the value of f(x) in  k
sP 　 does not exceed .  

max
kf　

Proof. By the definition of kM and the Lipschitzian
assumption of  f x ,

       Lip(,k k
s k sf R f P f M R P    (9)

holds and then,

     Lip(.k
s kf R f P f M 　 (10)

For  k
sf satisfying Equation (8),

     
maxLip(.kk

s kf P f M  f (11)

Combining Equations (10) and (11), we then obtain
the following inequality:

   
max

kf R f . (Q. E. D.)

When solving a constrained nonlinear optimization
problem, it is practically difficult to effectively handle
the feasible region:

 S, ,x x x Ι    (12)

in which the search should be performed.
In order to overcome this difficulty, our approach

makes use of a region comprising n-dimensional rectan-
gles, the union of which covers , as shown in Figure
1 for the case of n = 2. Instead of the actual feasible set



 , indicated by the hatched area in Figure 2, we treat
k  , the shaded area shown in Figure 2, as an effective

constraint set. Therefore, for every k-th iteration,


 (7)

Copyright © 2012 SciRes. AM

T. SHOHDOHJI, F. YANO 1603



 k

Figure 2. Feasible region and .   k

     1 2 k          (13)

and hold.  lim k
k   

In this context, at the k-th iteration, the sub area:

     , ,

1, 2, ,

k k k
i i i i

k

S x P P P

i m

      






 (14)

may be excluded from the search space. In order to pre-
vent this discrepancy, irrespective of whether or not the
point is satisfied, following the ine-
quality:

 k k
i iP P  

   Lip 0,k
ig P g M k  (15)

the criterion is used for determining if sub area  k
iP

should be excluded from further searching.

Satisfying Equation (15) implies that sub area  k
iP

does not satisfy and therefore it cannot belong
to the feasible set. Equation (15) is a sufficient condition
for .

 g x  0

 g 0x 
UFor any k , the sub area that does not satisfy both

Equations, (8) and (15), at the k-th iteration,

1 2 kU U U       (16)

holds and is the outer covering for   1k k
U




 , where

 is the possible set of solutions for our nonlinear op-
timization problem (P).


For  , the cardinal number of  , 1  , and
  when is a continuum. Define    1i i

u



 as a

sequence comprising i , which is some representative
point of iU ; then, any subsequence

u
 i of   1i i
u u





must have at least one accumulating point and this ac-
cumulating point belongs to  .

3. Our Proposed Algorithm

Our new algorithm that updates the Lipschitz constant in
each step is given as follows:

Step 1. Initialization phase.
Step 2. Bisect n-dimensional interval . I

Step 3. Check if  k
iP S   for every  k

iP

 

generated in Step 2, where  , gn
ix R 


0x S x　 ;

then, discard every non-satisfying and put the
remaining

 k
iP

 k
iP into U . k

Step 4. Compute  k
if : value of the objective function

at each searching point kP Si  .
Step 5. Calculate the tentative solutions such that

     max max 1,2, ,k k
i kf f i m  　 　　　 .

Step 6. Obtain kM : maximum radius of divided area
for this iteration.

Step 7. Check convergence criterion:

    maxLip k
kf M f  ;

if it is satisfied, terminate the iterations and use the tenta-
tive solution as the optimum solution.

Step 8. Refine the search space by eliminating every
 k

iP containing k
ix such that

     max Lipk k
i kf f x f M  .

Step 9. Calculate the Lipschitz constant by using for-
mula manipulation considering the result of area judg-
ment in Step 8. Then, return to Step 2.

4. Experimental Results

In this chapter, the results of two numerical experiments
of our proposed algorithm are shown.

The following is a well-known test function called the
six-hump camel back function [14].

[Test Function #1]
Objective function:

   
 

2 4 2

2 2

Minimize , 4 2.1 3

4 4 ,

subject to 3 3, 2 2.

f x y x x x

xy y y

x y

  

   

     

 (17)

The followings are the global minimum value and the
optimal solution for this test function respectively.

 , 1.03f x y   16 ,

     , 0.0898, 0.7126 , 0.0898,0.7126x y    .

In our computer experiments, we transformed equation
(17) and solved it as a maximization problem. We set the
following four stopping criteria on our proposed algo-
rithm (using variable Lipschitz constant). Therefore, this
algorithm stops when it fills one of these four rules.

1) Difference between the upper bound and the lower
bound becomes below the  (=), 610

2) Number of iterations exceeds 200,
3) Execution time exceeds 10 min., and
4) Total number of search points exceeds 10 million.

Copyright © 2012 SciRes. AM

T. SHOHDOHJI, F. YANO 1604

Figure 3 shows a contour line of the six-hump camel
back function. Table 1 shows the comparison of the cal-
culation efficiency by the difference between the fixed
Lipschitz constant and the changeable Lipschitz constant.
This algorithm was coded with Visual C++ (Version 6)®,
and the computer experiments were executed on a per-
sonal computer equipped with an Intel Pentium IV® 2
GHz processor.

[Test Function #2]
Objective function:

 

 

2 2 2 2

Maximize exp cos 2() ,

subject to 1, (1) 1,

, 1,1 .

x y y

x y x y

x y

   
    

 

 (18)

Our proposed algorithm for test function #2 was tested
under two conditions:

1) Lipschitz constant is fixed at the initial value, and
2) Lipschitz constant is recalculated according to the

different regions.
This experiment examines if Equation (2) described

above remains effective despite repeated calculations of
the Lipschitz constant.

This numerical experiment was coded in Visual C++
(Version 6)® and executed on a personal computer
equipped with an Intel Pentium III® 450 MHz processor.

Figure 3. Contour line of objective function.

Table 1. Comparison of two numerical results.

In case of fixed

Lipschitz constant
In case of variable
Lipschitz constant

Computation time in seconds 833.218 0.515

No. of iteration 15 25

Total searching points 15,404,252 3580

Upper bound 1.031629 1.032844

Lower bound 1.031628 1.031628

Maximum value 1.031628 1.031628

In this case, ε in Step 7 of the algorithm was set at 10–6.
This is done in order to determine if the optimal value of
the test function #2 exists in the intersection of the lighter
colored part in Figure 4 and shaded area in Figure 5.
Figures 6-8 show the branch-and-bound process of the
algorithm without changing the Lipschitz constant. The
shaded area expresses the divided area left by the k-th
iteration. These figures show that the divided area con-
verges to an optimal solution in the feasible region. The
solution obtained by this algorithm is (x,y) = (0.68438,
–0.72912).

The comparison between the results with and without
changing the Lipschitz constant is shown in Table 2. It
shows that the method, in which the Lipschitz constant is
changed in each iteration, reduces the search area and
calculation time. Even if the Lipschitz constant is fixed,
the same result is obtained. However, the closer the
Lipschitz constant is to the optimal value, the more ad-
vantageous the execution of the branch-and-bound op-
eration is.

Figure 4. Contour line of test function #2.

Figure 5. Feasible region.

Copyright © 2012 SciRes. AM

T. SHOHDOHJI, F. YANO 1605

Figure 6. Feasible region at the 3rd iteration.

Figure 7. Feasible region at the 5th iteration.

Figure 8. Feasible region at the 7th iteration.

5. Conclusions

Through several computer experiments, we have deter-
mined that our proposed algorithm efficiently obtains
approximate solutions to the global solution. The ine-

Table 2. Comparison of the numerical results for test func-
tion #2.

Lipschitz constant

is fixed
Lipschitz constant

is changed

Computation time in seconds 1.430 0.06

The number of iterations 21 19

The total number of points
searched

74,104 3408

Optimal solution
(0.684381,
–0.729125)

(0.684381,
–0.729124)

Maximum value of the
objective function

3.43655

quality in Step 8 of the algorithm clearly shows that the
branch-and-bound operation is difficult to use when the
product of the Lipschitz constant and the maximum ra-
dius is large. However, the solution always converges to
the optimal by Step 2.

The cost to calculate the Lipschitz constant to obtain a
better approximate solution at a little computing time is
indispensable. It is the most important to decide the best
timing that should calculate the Lipschitz constant for us
to reduce all computing time necessary to obtain the final
solution. At present, it is impossible to know the best
timing for recalculation of the Lipschitz constant. The
problem that has been left for the future is how to collect
information about the objective function.

In order to improve the efficiency of our proposed al-
gorithm, we will apply Dynamic Programming [15] to it
in the near future.

6. Acknowledgements

This work was supported by JSPS (Japan Society for the
Promotion of Science) Grants-in-Aid for Scientific Re-
search (18510132) and the first author’s research was
supported in part by the research grants council of NIT
(Nippon Institute of Technology). The authors would like
to thank Mr. Masao Shinohara, a researcher of NIT, for
helpful discussions.

REFERENCES
[1] T. Shohdohji, “An Algorithm for Obtaining a Global Op-

timum for One Variable Multi-Modal Functions (In Japa-
nese),” Journal of the Operations Research Society of
Japan, Vol. 19, No. 4, 1976, pp. 295-307.

[2] J. Pinter, “Globally Convergent Methods for n-Dimen-
sional Multi-Extremal Optimization,” Optimization, Vol.
17, No. 2, 1986, pp. 187-202.
doi:10.1080/02331938608843118

[3] J. Pinter, “Extended Univariate Algorithms for n-Dimen-
sional Global Optimization,” Computing, Vol. 36, No. 1-
2, 1986, pp. 91-103. doi:10.1007/BF02238195

[4] J. Pinter, “Branch-and-Bound Algorithms for Solving

Copyright © 2012 SciRes. AM

http://dx.doi.org/10.1080/02331938608843118
http://dx.doi.org/10.1007/BF02238195

T. SHOHDOHJI, F. YANO

Copyright © 2012 SciRes. AM

1606

Global Optimization Problems with Lipschitzian Struc-
ture,” Optimization, Vol. 19, No. 1, 1988, pp. 101-110.
doi:10.1080/02331938808843322

[5] A. H. G. Rinnooy Kan and G. T. Timmer, “Global Opti-
mization,” In: G. L. Nemhauser, A. H. G. Rinnooy Kan
and M. J. Todd, Eds., Handbooks in Operations Research
and Management Science, Volume 1: Optimization, El-
sevier Science Publishers B. V., Amsterdam, 1989, pp.
631-662.

[6] T. Shohdohji, “Global Optimization Algorithm Using
Branch-and-Bound Method,” Electrical Proceedings of the
16th International Conference on Production Research
(ICPR-16), Prague, 9 July-3 August 2001.

[7] B. O. Shubert, “A Sequential Method Seeking the Global
Maximum of a Function,” SIAM Journal on Numerical
Analysis, Vol. 9, No. 3, 1972, pp. 379-388.
doi:10.1137/0709036

[8] T. Shohdohji, “An Algorithm for Obtaining Global Op-
tima for Multi-Variable Multi-Modal Functions (In Japa-
nese),” Journal of the Operations Research Society of
Japan, Vol. 20, No. 4, 1977, pp. 311-320.

[9] T. Shohdohji and Y. Yazu, “A New Algorithm for Non-
linear Programming Problem,” Proceedings of Interna-
tional Workshop on Intelligent Systems Resolutions—

The 8th Bellman Continuum, National Tsing-Hua Univer-
sity, Hsinchu, Taiwan, 11-12 December 2000, pp. 229-
233.

[10] T. Ibaraki, “On the Computational Efficiency of Branch-
and-Bound Algorithms,” Journal of Operations Research
Society of Japan, Vol. 20, No. 1, 1977, pp. 16-35.

[11] T. Ibaraki, “Branch-and-Bound Procedure and State—
Space Representation of Combinatorial Optimization Prob-
lems,” Information and Control, Vol. 36, No. 1, 1978, pp.
1-27. doi:10.1016/S0019-9958(78)90197-3

[12] E. L. Lawler and D. E. Wood, “Branch-and-Bound
Methods: A Survey,” Operations Research, Vol. 14, No.
4, 1966, pp. 699-719. doi:10.1287/opre.14.4.699

[13] T. L. Morin and R. E. Marsten, “Branch-and-Bound
Strategies for Dynamic Programming,” Operations Re-
search, Vol. 24, No. 4, 1976, pp. 611-627.
doi:10.1287/opre.24.4.611

[14] L. C. W. Dixon and G. P. Szego, Eds., “Towards Global
Optimization 2,” North-Holland Publishing Company,
Amsterdam, 1978, p. 97.

[15] A R. E. Bellman, “Dynamic Programming,” Princeton
University Press, Princeton, New Jersey, 1957.

http://dx.doi.org/10.1137/0709036
http://dx.doi.org/10.1016/S0019-9958(78)90197-3
http://dx.doi.org/10.1287/opre.14.4.699
http://dx.doi.org/10.1287/opre.24.4.611

