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ABSTRACT 

Constrained nonlinear optimization problems are well known as very difficult problems. In this paper, we present a new 
algorithm for solving such problems. Our proposed algorithm combines the Branch-and-Bound algorithm and Lipschitz 
constant to limit the search area effectively; this is essential for solving constrained nonlinear optimization problems. 
We obtain a more appropriate Lipschitz constant by applying the formula manipulation system of each divided area. 
Therefore, we obtain a better approximate solution without using a lot of searching points. The efficiency of our 
proposed algorithm has been shown by the results of some numerical experiments. 
 
Keywords: Global Optimization; Lipschitz Constant; Lipschitz Condition; Branch-and-Bound Algorithm; Formula 

Manipulation 

1. Introduction 

Many real world problems can be formulated in mathe- 
matical programming problems, i.e., problems in which 
an objective function that depends on a number of deci- 
sion variables has to be optimized subject to a set of 
constraints [1]. Therefore, methods for solving such 
problems are of great importance. However, it is very 
generally difficult to solve a constrained nonlinear opti- 
mization problem (hereafter called NLP) and to find its 
feasible region. 

A method that uses the Lipschitz condition (Lipschitz 
constant) has been proposed for solving nonlinear opti- 
mization problems [2-7]. It is assumed to be difficult to 
apply this method to multi-dimensional optimization 
problems because of the curse of the dimension. We have 
already proposed an effective method for solving the 
NLP [1,8,9]. This method uses the Branch-and-Bound 
algorithm and the Lipschitz condition, and it guarantees 
that the obtained solution is optimal. 

This paper presents a new algorithm for solving the 
NLP; the efficiency of this algorithm is improved by us- 
ing formula manipulation of the objective function and 
constrained functions. 

In this paper, we report that the calculation frequency 
to obtain a good approximate solution to the NLP has 
been greatly reduced by using our proposed Lipschitz 
algorithm. 

2. Outline of Lipschitz Algorithm 

2.1. Formulation of the NLP 

We consider the following nonlinear optimization prob- 
lem (P): 

 Maximize ,

subject to ,

f x

x S
            (1) 

where the feasible region S is a compact body, i.e., S is a 
nonempty, bounded subset of  equals to the closure 
of its interior, the boundary of S has an n-dimensional 
Lebesgue measure equals to zero, and the objective func- 
tion f is a continuous real-valued function defined on S. 

nR

We assume that f is a Lipschitz function with Lipschitz 
constant K, i.e., f satisfies the Lipschitz condition: 

    , , ,f x f y K x y x y S        (2) 

where   is the Euclidean norm on . nR

Let  max
x S

f f x


 , and let x  be an optimal solu- 

tion so that  f f x  . 
Let us express the NLP described above in slightly 

greater detail. We can formulate the constrained NLP 
without loss of generality as follows: 

 
   

Maximize ,

subject to 0 1 ,i

f x

g x i   m
     (3) 

where 
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 1 2, , , nx x x x   and  , ( 1, 2, ,k k k )x a b k n   . 

In this formulation, we assume that functions  f x  
and  ig x  are nonlinear real-valued function: 

 
: ,

: 1,2,

n

n
i

f R R

, ,g R R i m



  
     (4) 

and Lipschitzian. In the case of an equality condition, we 
reduce it into two equivalent inequality conditions as 
follows. The rewritten forms of  are  

 and . 
  0ig x 

  0ig x    0ig x 

2.2. Some Definitions and the Basic Theorem of 
the Lipschitz Algorithm 

In this section, we describe the notations, some defini- 
tions, and the basic theorem of the Lipschitz algorithm. 

Definition 1 (The Lipschitz constant )  Lip f
If there exists some constant  for the function 0K 
:f X Y  such that 

      , , , ,d f x f x Kd x x x x X    ,   (5) 

the function f  is said to satisfy the Lipschitz condition. 
The lower bound of K satisfying the above condition 

for some function f is called the Lipschitz constant Lip(f) 
of the function f. 

We treated solutions of the given constrained NLP as 
an optimal searching using a type of Branch-and-Bound 
algorithm [10-13]. Thus, we seek some points that 
maximize an objective function  f x  in the feasible 
region , where   , x x S x Ι  

,

 . We define the 
constraint set S and the n-dimensional interval I as fol- 
lows: 

   
     

 
1 1 2 2

1

| , ( ) 0 , 1,2, ,

, , , ,

, .

n
i

n n

n
i i i

S x x R g x i n

Ι a b a b a b

a b

   

   

 



   (6) 

In order to reduce the searching area and improve the 
efficiency of searching optimal points in the feasible set 

, the searching algorithm utilizes Lipschitz constants 
of the objective function 


 f x  and constraint functions 
 ig x . In this algorithm, an n-dimensional interval I is 

subdivided in each iteration by dividing each  ,i ia b  by 
two; therefore, at the k-th iteration, each subdivision is 
also a sub n-dimensional interval that has an edge length 
of   2k

i ib a  on each i-th dimension. 
Definition 2 (The maximum radius of the divided 

area ). k

The maximum radius (see Figure 1) of the divided 
area at the k-th iteration is defined as the radius of the 
circumscribed sphere of the divided area, i.e., 

M

1 22

1
1

M ,
2

n
i

k k
i

l




     
   

 　

 

1T  

2T  

3T  

kP  

 kP
 

Figure 1. An example of 2-D maximum radius. 
 
where .i i il b a   

Theorem 1. 
Let k

sP  be the central point of the s-th divided area at 
the k-th iteration, where 1, 2, , ks m 　　　 , and  is the 
count of subdivisions at the k-th iteration. Let 

km
 k

sf  be 
the value of  f x  at k

sP  
max

kf　; , the maximum value 
of  k

sf ; and  Lip f , the Lipschitz constant of the 
function f(x). 

For every divided area  k sP 　  at the k-th iteration, if 
there exists  k

sf

 k k

 such that 

     max Lip , 1, 2, , ,s kf f f M s m   　 　 k    (8) 

then the value of f(x) in  k
sP 　  does not exceed .  

max
kf　

Proof. By the definition of kM  and the Lipschitzian 
assumption of  f x , 

       Lip( ,k k
s k sf R f P f M R P      (9) 

holds and then, 

     Lip( .k
s kf R f P f M 　        (10) 

For  k
sf  satisfying Equation (8), 

     
maxLip( .kk

s kf P f M  f         (11) 

Combining Equations (10) and (11), we then obtain 
the following inequality: 

   
max

kf R f .               (Q. E. D.) 

When solving a constrained nonlinear optimization 
problem, it is practically difficult to effectively handle 
the feasible region: 

 S, ,x x x Ι                 (12) 

in which the search should be performed. 
In order to overcome this difficulty, our approach 

makes use of a region comprising n-dimensional rectan- 
gles, the union of which covers , as shown in Figure 
1 for the case of n = 2. Instead of the actual feasible set 



 , indicated by the hatched area in Figure 2, we treat 
k  , the shaded area shown in Figure 2, as an effective 

constraint set. Therefore, for every k-th iteration, 


           (7) 
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  

 k  

 

Figure 2. Feasible region  and .   k
 

     1 2 k              (13) 

and  hold.  lim k
k   

In this context, at the k-th iteration, the sub area: 

     ,   ,

1, 2, ,

k k k
i i i i

k

S x P P P

i m

      






 (14) 

may be excluded from the search space. In order to pre- 
vent this discrepancy, irrespective of whether or not the 
point  is satisfied, following the ine- 
quality: 

 k k
i iP P  

   Lip 0,k
ig P g M k        (15) 

the criterion is used for determining if sub area  k
iP  

should be excluded from further searching. 

Satisfying Equation (15) implies that sub area  k
iP   

does not satisfy  and therefore it cannot belong 
to the feasible set. Equation (15) is a sufficient condition 
for . 

 g x  0

 g 0x 
UFor any k , the sub area that does not satisfy both 

Equations, (8) and (15), at the k-th iteration,  

1 2 kU U U           (16) 

holds and  is the outer covering for   1k k
U




 , where 

 is the possible set of solutions for our nonlinear op- 
timization problem (P). 


For  , the cardinal number of  , 1  , and 
   when  is a continuum. Define    1i i

u



 as a 

sequence comprising i , which is some representative 
point of iU ; then, any subsequence 

u
 i  of   1i i
u u




 

must have at least one accumulating point and this ac- 
cumulating point belongs to  . 

3. Our Proposed Algorithm 

Our new algorithm that updates the Lipschitz constant in 
each step is given as follows: 

Step 1. Initialization phase. 
Step 2. Bisect n-dimensional interval . I

Step 3. Check if  k
iP S    for every  k

iP

 
  

generated in Step 2, where  ,  gn
ix R 


0x S x　 ;  

then, discard every non-satisfying  and put the 
remaining 

 k
iP

 k
iP  into U . k

Step 4. Compute  k
if : value of the objective function 

at each searching point kP Si  . 
Step 5. Calculate the tentative solutions such that 

     max max  1,2, ,k k
i kf f i m  　 　　　 . 

Step 6. Obtain kM : maximum radius of divided area 
for this iteration. 

Step 7. Check convergence criterion: 

    maxLip  k
kf M f  ; 

if it is satisfied, terminate the iterations and use the tenta- 
tive solution as the optimum solution. 

Step 8. Refine the search space by eliminating every 
 k

iP  containing k
ix  such that 

     max Lipk k
i kf f x f M  . 

Step 9. Calculate the Lipschitz constant by using for- 
mula manipulation considering the result of area judg- 
ment in Step 8. Then, return to Step 2. 

4. Experimental Results 

In this chapter, the results of two numerical experiments 
of our proposed algorithm are shown. 

The following is a well-known test function called the 
six-hump camel back function [14]. 

[Test Function #1] 
Objective function: 

   
 

2 4 2

2 2

Minimize , 4 2.1 3

4 4 ,

subject to 3 3, 2 2.

f x y x x x

xy y y

x y

  

   

     

   (17) 

The followings are the global minimum value and the 
optimal solution for this test function respectively. 

 , 1.03f x y   16 , 

     , 0.0898, 0.7126 , 0.0898,0.7126x y    . 

In our computer experiments, we transformed equation 
(17) and solved it as a maximization problem. We set the 
following four stopping criteria on our proposed algo- 
rithm (using variable Lipschitz constant). Therefore, this 
algorithm stops when it fills one of these four rules. 

1) Difference between the upper bound and the lower 
bound becomes below the   (= ), 610

2) Number of iterations exceeds 200, 
3) Execution time exceeds 10 min., and 
4) Total number of search points exceeds 10 million. 
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Figure 3 shows a contour line of the six-hump camel 
back function. Table 1 shows the comparison of the cal- 
culation efficiency by the difference between the fixed 
Lipschitz constant and the changeable Lipschitz constant. 
This algorithm was coded with Visual C++ (Version 6)®, 
and the computer experiments were executed on a per- 
sonal computer equipped with an Intel Pentium IV® 2 
GHz processor. 

[Test Function #2] 
Objective function: 

 

 

2 2 2 2

Maximize exp cos 2( ) ,

subject to 1, ( 1) 1,

, 1,1 .

x y y

x y x y

x y

   
    

 

  (18) 

Our proposed algorithm for test function #2 was tested 
under two conditions: 

1) Lipschitz constant is fixed at the initial value, and 
2) Lipschitz constant is recalculated according to the 

different regions. 
This experiment examines if Equation (2) described 

above remains effective despite repeated calculations of 
the Lipschitz constant. 

This numerical experiment was coded in Visual C++ 
(Version 6)® and executed on a personal computer 
equipped with an Intel Pentium III® 450 MHz processor. 
 

 

Figure 3. Contour line of objective function. 
 

Table 1. Comparison of two numerical results. 

 
In case of fixed 

Lipschitz constant 
In case of variable 
Lipschitz constant

Computation time in seconds 833.218 0.515 

No. of iteration 15 25 

Total searching points 15,404,252 3580 

Upper bound 1.031629 1.032844 

Lower bound 1.031628 1.031628 

Maximum value 1.031628 1.031628 

In this case, ε in Step 7 of the algorithm was set at 10–6. 
This is done in order to determine if the optimal value of 
the test function #2 exists in the intersection of the lighter 
colored part in Figure 4 and shaded area in Figure 5. 
Figures 6-8 show the branch-and-bound process of the 
algorithm without changing the Lipschitz constant. The 
shaded area expresses the divided area left by the k-th 
iteration. These figures show that the divided area con-
verges to an optimal solution in the feasible region. The 
solution obtained by this algorithm is (x,y) = (0.68438, 
–0.72912). 

The comparison between the results with and without 
changing the Lipschitz constant is shown in Table 2. It 
shows that the method, in which the Lipschitz constant is 
changed in each iteration, reduces the search area and 
calculation time. Even if the Lipschitz constant is fixed, 
the same result is obtained. However, the closer the 
Lipschitz constant is to the optimal value, the more ad- 
vantageous the execution of the branch-and-bound op- 
eration is. 
 

 

 

Figure 4. Contour line of test function #2. 
 

 

 
Figure 5. Feasible region. 
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Figure 6. Feasible region at the 3rd iteration. 

 
 

 
Figure 7. Feasible region at the 5th iteration. 

 
 

 
Figure 8. Feasible region at the 7th iteration. 

 
5. Conclusions 

Through several computer experiments, we have deter- 
mined that our proposed algorithm efficiently obtains 
approximate solutions to the global solution. The ine- 

Table 2. Comparison of the numerical results for test func-
tion #2. 

 
Lipschitz constant 

is fixed 
Lipschitz constant

is changed 

Computation time in seconds 1.430 0.06 

The number of iterations 21 19 

The total number of points 
searched 

74,104 3408 

Optimal solution 
(0.684381, 
–0.729125) 

(0.684381, 
–0.729124) 

Maximum value of the 
objective function 

3.43655 

 
quality in Step 8 of the algorithm clearly shows that the 
branch-and-bound operation is difficult to use when the 
product of the Lipschitz constant and the maximum ra- 
dius is large. However, the solution always converges to 
the optimal by Step 2. 

The cost to calculate the Lipschitz constant to obtain a 
better approximate solution at a little computing time is 
indispensable. It is the most important to decide the best 
timing that should calculate the Lipschitz constant for us 
to reduce all computing time necessary to obtain the final 
solution. At present, it is impossible to know the best 
timing for recalculation of the Lipschitz constant. The 
problem that has been left for the future is how to collect 
information about the objective function. 

In order to improve the efficiency of our proposed al- 
gorithm, we will apply Dynamic Programming [15] to it 
in the near future. 
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