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ABSTRACT

In this paper, we are concerned with a positive solution of the non-homogeneous A-Laplacian equation in an open
bounded connected domain. We use moving planes method to prove that the domain is a ball and the solution is radially

symmetric.
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1. Introduction

In this paper, we are going to study the symmetry results
for the overdetermined problem

div(A(|Vul)Vu)+ f (u,[Vu])=0,in Q\{P}. (1.1)

u=0,on 0Q. (1.2)
a—u:C, on 0Q). (1.3)
ov

Here Q is a bounded connected open subset of R"
with C® boundary and P is a point in Q. The func-
tion A:(0,00) —[0,0) satisfies the regularity require-
ment

AeC?(0,») (1.4)

and the (possibly degenerate) elliptic condition
limtA(t)=0,(tA(t)) >0fort>0  (1.5)
t—0"

f is a continuously differentiable function. ¢ is a con-
stantand o denotes the inner normal to 0Q.

J. Serrin proved the radial symmetry for positive solu-
tions of the equation Au=-1 in Q with the same
overdetermined boundary conditions as the above prob-
lem, see [1]. N. Garofalo and J. Lewis extended Serrin’s
result to a larger class of elliptic equations possibly de-
generate, including the following p-Laplacian equation

diV(|VU|p72 Vu) =—1 with the same boundary conditions,

see [2]. For the overdetermined elliptic boundary value
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problem diV(A(|Vu|)):—1 in Q with the same over-

determined boundary conditions as above, 1. Fragala, I. F.
Gazzaola and B. Kawohl used the geometric approach
which relies on a maximum principle for a suitable P-
function, combined with some geometric arguments in-
volving the mean curvature of 0Q to prove that if the
above problem admits a solution in a suitable weak sense,
then Q is a ball, see [3]. A. Farina and B. Kawohl ob-
tained the same result under removing the strong elliptic-
ity assumption in [4] and a growth assumption in [2] on
the diffusion coefficient A, as well as a starshapedness
assumption on Q in [3], see [5]. A. Firenze considered
the positive solution of problem (1.1)-(1.3) when it is a
p-Laplacian equation in an open bounded connected
subset Q of R"with C* boundary, see [6]. All of the
above motivated us to extend the symmetry result to the
non-homogeneous A-Laplacian equation.

Our main result is that for the problem (1.1)-(1.3), if u
has only one critical pointin Q,then Q isaball and u
is radially symmetric.

Section 2 of this paper is devoted to the main result
and a more general version of this theorem. In Section 3,
we will present the proof of the main theorem.

Some components, such as multi-leveled equations,
graphics, and tables are not prescribed, although the vari-
ous table text styles are provided. The formatter will
need to create these components, incorporating the appli-
cable criteria that follow.

2. Preliminaries and Statement of Results

In this section we give some lemma that we shall use and
present our main result.
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Lemma 2.1. (The boundary lemma at corner)
(Lemma 2 in [1]) Let Q be a domain with C* bound-
ary and T be a hyperplane containing the normal to
0Q at some point Q. Let Q" denote the portion of
Q) lying on some particular side of T .

Suppose thatW is of class C® in the closure of Q
and satisfies the elliptic inequality

Lw= > a; (x)w; +> b (x)w, <0, xeQ’
i i=1

i,j=1 i=

where the coefficients are uniformly bounded. We as-
sume that the matrix @; is uniformly definite

2 3(x)&8 > k|s

i,j=1

2, k =const >0,

and that
n
Z |aij§i771| <K(|&-n|+|&]-|d]), K =const>0,
i,j=1

where &= (fl,m,fn) is an arbitrary real vector,
n= (771,”',7]n) is the unit normal to the planeT , and d
is the distance from T . Suppose also w>0 in Q"
and w=0 at Q.Let S be any direction at Q which
enters Q" nontangentially. Then

2

W>O atQ,

05>

@>O or
oS

unless w=0.

Our main results are as follows:

Theorem 2.2. Let QQ be a bounded connected open
subset of R"with C”boundary and let P be a point in

Q. Let ueC*(Q\{P})NC"**(Q), 0<a<l, be a

strictly positive solution of the following overdetermined
boundary value problem

div(A(|Vul)Vu)+ f (u,[Vu])=0,in Q\{P}. (2.1)
u=0,on oQ. 2.2)
u C, on Q. (2.3)
ov

Here f is a continuously differentiable function,

AeC?(0,) and

limtA(t) =0, (tA(t)) >0fort>0.  (2.4)

t—0"

c is a constant and o denotes the inner normal to 0Q.
Assume

[Vu|>0in Q\{P}, 2.5)
then Q isaballand U is radially symmetric.
The following remark is a general version of the theo-

rem. It can be viewed as an extension result of p-Lapla-
cian too. As the proof is similar to Theorem 2.2, we omit
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1t.

Remark 2.3. Let Q be as in Theorem 2.2 and D be a
subset of Q. Let ueC’(Q\D)NC"*(Q) be a strictly
positive solution of Equation (2.1) in Q\D and verify
the boundary conditions; Assume that D is the critical
setof U,thenif D denotes the convex hull of D,

1) the normal line to 0Q at an arbitrary point of 0Q
intersects [3;

2)if m 1is a support plane to D through Ae aDNQ
and y is a ray from A orthogonal to m which lies in
the half-space determined by mnot containing D, then
y intersects O exactly in one point.

In what follows we assume that the origin O of the
coordinates system is an interior point of Q, and we
denote with B, the closure of the ball centered in O
with radius €.

Theorem 2.4. Assume that the hypotheses of Theorem
2.2 hold and furthermore assume that

DcB,cQ

for some positive & . Then
1) Q is starshaped with respectto O

2)if
d =inf{|P-O|: P eoQ};
| =sup{|P-0|: PeoQ};
then
I-d g%

3. Proof of Theorem 2.1

The technique we are going to use is the moving planes
method. For the detailed description about moving planes
method, see [1].

Proof. Step 1: To prove Q is a ball.

If we can demonstrate that for any point Q on 0Q, P
lies on the normal line to 0Q at Q, then Q is a ball
with centre P. To do this, we argue by contradiction.

Assume that there exists a point Q € 0Q such that
the normal line r to 0Q at Q does not contain P. We
choose a coordinate system in R" such that
P= (—9, 0,---,0), 6 > 0, and the X, axis coincides with r.

When we use the moving planes method, we choose a
family of hyperplanes normal to the X, axis. Define
hyperplan T(A)={x =4} for any positive A ; Let
4, be the infimum of A's such that T (/l)ﬂﬁ =¢;
Define £(4)=QN{x >4} for A<4, and we denote
by X'(4) the reflection 2(4) in T(A1). Since 0Q
is C?,forsome A closeto 4,,V,we have

(1) cQ. 3.1)

As A decreases, condition (3.1) holds until one of
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the following facts happens:

1) 0%'(4) is internally tangent to 0Q at some point
of OX'(A)\T(4);

2) T(A) intersects 0Q atsome pointof 0Q.

Let A’ be the greatest value of A, A< 4, such that
either condition a) or b) is true. Since T, is orthogonal
to dQ at Q,wehave A'>0 andthen PgT(A) for

any A in [A,4]. This is the crucial point of our proof.

We have found a direction such that as the moving plane
T(A) moves from T (4,) to the critical position T (4'),
it never intersects P, so that the moving planes method
may be applied.

Let x* be the reflected point of X in T(1). We de-
fined

v(x)=u(x*) for xeZ(4), 1€[1.4],

w(x)=v(x)-u(x).

From Equation (2.1) we have for 1'<A1<4,,

A(|Vul) Au+ A'|(| v u)) nﬁ

=0in Z(/i).

uu;uy + f (u,vu|) 62)

By the definition of v, we obtain

A(vv) ¢ 2 vy + 1 (v [V])

W 5 (3.3)
=0in(2)\{P*}.

A(|Vv|)Av+

Differencing Equations (3.2) and (3.3) yields

|(| W |)I;VV v+ (v, |VV])

A(|Vv|)Av +
(3.4)

~A(|Vul)Au- |(| ||)Zu,uju — f(u,|Vu])=0.

Meanwhile, (3.4) can also be rewritten into
LA(V])+ A(IVu)f A (v-u)
n (A'([Vv|) A'(|Vu
3[R KDy,

|Vv| |Vu|

M

i,j=1

|Vv| (|Vu|)} (v+u) (3.5)

i}[A’ |Vv| A |Vu|)J(\/+u)ij

+

i [Vv| [Vul

=2{f (u|vul)= f (v [Vv])}-

Denote f[u]=f(u,|Vul), Alu]=A(|Vul),
otz A(vu)
Alul= |Vu -
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Let
a; (x)={A[v]+A[ul}s; +{A’[v]vivj + A’[u]uiuj}
By the mean value theorem, it follows from (3.5) that

z ayW; +Zb W, +cw=0 (3.6)
i,j=1
where @;, b, and c are certain functions depending on
u and f. Here the matrix a; is uniformly positive defi-
nite, since both expressions A[u]5 + A’[u]uiuj and
A[v] 0; + A'[ ]V V. have this property (recall that Equa-
tion (2.1) is elliptic). So (3.6) is uniformly elliptic with
bounded coefficients far from P*, ie. in £(1)\B}
where B/ is a ball centered in with radius &, for any
positive €.
From the boundary condition (2.3) on the normal de-
rivative of U, it follows that

w(x,4)>0 in Z(4) 3.7
for some A <A, sufficiently closeto A,.Let
A" =inf{21e[4,4]:(3.7)holds} . We prove A" =4".

Assume A" =A', by continuity, w(x,4")>0 in T(1").
On the other hand, since Q is not symmetric with re-
spectto T (/1* ) , W0 in 2(/1*) . By the strong version
of the maximum principle, we obtain W>0 in

2(/1*)\83*. Next we observe that P* can not be a

critical point for w since Vv( P ) =0 while

Vu(Pl*)i 0. So as ¢ is arbitrarily small, it is w>0

in Z(/l*) . Since P* ¢T (/1*), we may apply the Hopf

lemmato w ateach point of QNOT (l*) , we get
M0 on T(2)na (3.8)
OX,

The plane T (/1*) is not normal to OC) at any point,
then from inequality (3.8) and the boundary condition
(2.3) on the normal derivative of U, we get

ou

—<0 3.9
X, (39

By the definition of A", there exists a sequence X,

such that x, € 2[/1* —%) and

W(xn,l* —lj <0.
n

Let X be a limit point for X, in the closure of Z(l* ),
by continuity W(Y,I’) =0, thus Xe 82(1‘)(” (I’) .

But from inequality (3.10) and the mean value theorem

(3.10)

we get S—U(Y) >0 and this contradicts condition (3.9).
Xl
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So A" =" isproved.

Now we will prove that U must be symmetric with re-
spectto T(A'). Assume w=0 in X(1'),soas we did
for A=A4",weinfer w>0 in Z(1').

Assume next that condition a) holds, then 0%'(4') is
internally tangent to AQ at some point M* , where
M e {82(/1’)\T (l')}ﬂ@Q. Since P is an interior point
of Q, P=M?" so that we can apply the Hopf lemma
to w at M and we obtain

ow

—(M,1")>0;
=, (M.4)>
where o is the inner normal to 0Q at M. For
ow aou 2\ ou
— (M, ) =—(M"*)——(M)=c-c=0
81)(’)80()81)()00’

we get the contradiction. Hence condition 2) must be true,
i.e. T(A') is orthogonal to 6Q at some point B. From
the boundary condition (2.3) and the definition of w it
follows that all the first and second derivatives of W van-
ish at B. On the other hand, as P* # B, Equation (3.6)
is uniformly elliptic with bounded coefficents in a neigh-
borhood of B, so that the boundary lemma at corner in [1]
lemma 2, may be applied to w. Let s be a direction which
enters 0X(A') nontangentially at B, then by the Serrin’s
lemma
2
@(B,/i’) >0 or 0 \;V
0s S

>0

Then we have again a contradiction with the deriva-
tives of w at B, so w=0 in Z(A'). But this last ine-
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quality can not be true since otherwise W would be a
function symmetric in T (/1') whose only critical point
isnoton T(A4').

This completes the proof of Theorem 2.1.
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