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ABSTRACT 

The set  of states y reachable from a given state  0 ;FS x T  0x  at time  under a set-valued dynamic T

    x t F  x t  and under constraints  x t K  where  is a closed set, is also the capture-viability kernel K

  - 0,CaptT
F K x  of 0x  at T  in reverse time of the target  0x  while remaining in K . In dimension up to three, 

Saint-Pierre’s viability algorithm is well-adapted; for higher dimensions, Bonneuil’s viability algorithm is better suited. 
It is used on a large-dimensional example. 
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1. Introduction 

Reachable sets gather the possible future states that a 
controlled set-valued system can take. The usual method 
for computing relies on solving HJB. For example, “pro- 
ject grid points from an equidistant grid onto the reach- 
able set;” and “each projection requires to solve an opti- 
mal control problem” [1]. This method requires a huge 
computation, and is often limited to three dimensions. 
References of other clever methods are in [2,3].  

I shall compute reachable sets in identifying them to 
capture basins. As such, they can be computed by viabil- 
ity algorithms, which do not need to solve HJB. Beside 
this advantage of avoiding the roundabout of HJB, the 
viability approach to reachable sets, from the very start, 
deals with non linear dynamics. Reachable sets appear as 
a straightforward consequence of set-valued analysis. At 
last, reachable sets can have a large state dimension. 

Viability algorithms are normally used to compute the 
viability kernel of a closed set K  under a dynamic F. 
The viability kernel is the largest set of initial states x, 
from which at least one solution to the dynamic F re-
mains in a closed set . Moreover, the computation of 
reachable sets impinges on the dimension of the dy- 
namical system: after the dimension three, the computa- 
tion becomes rapidly intractable. I shall show that Bon- 
neuil’s viability algorithm [4], which neither requires 
solving HJB nor relies on a grid, but uses stochastic op- 
timization, overcomes the curse of dimensionality and 
provides sets of reachable states. To do this, I shall high- 

light the fact that reachable sets are also capture basins of 
a convenient augmented dynamic. After defining reach- 
able sets and capture-viability kernels, I shall identify 
reachable sets to capture-viability kernels under the dy- 
namic in reverse time. Then, after presenting viability 
algorithms, I shall compute the reachable sets to the three 
noteworthy non-linear cases of [1] and to a 10-dimen- 
sional case. 

K

2. The Reachable Set as a Capture Basin 

Consider a finite-dimensional vector space X  and the 
dynamic: 

            , ,x t F x t f x t u t u t U t 0     , (1) 

where F  is a Marchaud map. A map :F X K  is 
Marchaud if and only if: 

Assumption 2.1 (i) the graph and the domain of F  
are closed and not empty, 

(ii) the values  F x  are convex, 

(iii) Rc   such that    sup 1y F x y c x   , 

Assumptions (i) and (ii) hold true if the continuous- 
time control set  is a nonempty convex compact sub- 
set of a metric space and the function 

U
: m mf R U R   

is Lipschitz with respect to each variable, and affine with 
respect to u. 

The state space is pX R , the control space , and 
 the time horizon. I denote S(x) the set of all solu- 

qR
0T 

tions to Equation (1) starting from a given state x. 
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Definition 2.1 A reachable set from a set D at date T 
under the dynamic F within a closed set K is the set of 
the states Tx K  for which there exists an initial state 

0x D  a solution nd a    0. ;Fx S x T  such that 

T x T  x . It is denoted 

 ach , ,D K T

    0

Re

: / (.) :

F

T F Tx X x S x K x T x    
  (2) 

The reachable set in the interval [0; T] is defined as: 

  Reach , , 0,D K T

  0,: Reach , ,

F

Ft T D K t 
 


                (3) 

A state 0x  
st 

is said to be viable in K under F if there 
exists at lea one solution  x t  of Equation (1) starting 
from   00x x  and remaining in K until T. A set of 
viable alled a viability domain, and [5] showed 
that there exists a maximal viability domain including all 
others. This set is the viability kernel denoted 

 stat  ces is

 ViabF K  
(which is then a set of initial conditions): 

  Viab : / (.), (0)T K x x x  

         
0 0 and

0, , ,

F x

t T x t F x t x t K   
.   (4) 

Definition 2.2 A capture-viability domain of a set C 
viable in the set K under the dynamic F is a subset of 
initial states x K  from which at least one solution 
viable in K star til it reaches the target C at time T. 

When F is Marchaud, there exists one largest capture
ts un

- 
viability domain with target C including all others [5]. It 
is denoted: 

   
           

0 0Capt , : / (.), 0 and

0, , , ,

F K C x x x x

t T x t F x t x t K x T C

  

    

T

  (5) 

and called capture-viability kernel of the target C in K 

, it follows  
 from a sub- 

se

) 

The proof is a consequence of articulating Defi
2.

3. Algorithms 

ised an algorithm to compute capture- 

under F for time horizon T.  
From definitions 2.1 and 2.2
Theorem 2.3 The reachable set at time T
t C in the closed set K under the Marchaud dynamic F 

is also the capture-viability kernel of C in reverse time: 

   Reach , , Capt ,TC K T K C .     (6F F

nitions 
1 and 2.2. The consequence of Theorem 2.3 is that the 

reachable set can be computed by a viability algorithm. 

Saint-Pierre [6] dev
viability kernels when F is Marchaud and Lipschitz. First, 
he showed that the capture-viability kernel of C under F 
in a closed set K is another set, the viability kernel of K 
under F , defined as: 

   
      

,x X 

, co 0 ,

F x F x

x C F x F x



  



 
     (7) 

where  co A  is the adherence of the convexified of a 

nd, he applied
set A. 

Seco  his viability algorithm to  
 iabFV K . The principle of this algorithm is to

on (1) so that the sequence of subsets 
 discre- 

tize Equati jK  
starting at 0K K  and defined recursively by 

 1j j jK K F K               (8) 

converges to a subset contained in the viability kernel of 
K under F. Saint-Pierre [6] showed that this sequence 
converges to the viability kernel if F is also Lipschitz: 

 Viab
0

F j
j

K K


              (


9) 

Although this algorithm is theoretically v
di

alid in any 
mension, in practice, as K is reduced to a discrete grid, 

the algorithm must be able to update every cell of the 
grid at any time, which is a formidable task. The algo- 
rithm is then limited to three state dimensions. 

Bonneuil [4] addressed the computation of viable 
states and of the viability kernel in large state dimension, 
using a different procedure, based on stochastic optimi- 
zation. The idea is to minimize the distance to the set of 
constraints of solutions starting from a given state, and to 
assess the viability status of this state whether or not the 
distance minimization leads to at least one trajectory re- 
maining in the set of constraints. 

The set of constraints K is represented by a constraint 
on state x X : 

  0K x h x  .             (10) 

This constraint on h(x) can be either explicit, such as: 

   
1, ,

max i
i m

h x g x





             (11) 

where ,: ,  1,n
ig R R i   ;m  or implicit: 

    .            ,h x d x K    (12) 

Define a cost c(T; x) at state x 
T 

for a given time horizon 
as: 

        0,., Inf Supt Tx S xc T x h x t .   (13) 

Bonneuil [4] showed the theorem: 

 ViabT
Fx K  , 0c T x   .   (14) 

The implementation of Equation (13) in T dim
re

 

ensions 
quires a minimization routine in large dimension, such 

as stochastic optimization. I found exact consistency with 
the results obtained from Saint-Pierre’s algorithm for the 
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three examples of [1]. For the cases involving a higher 
state dimension, I checked that the same result is ob- 
tained with Saint-Pierre’s algorithm when fixing all but 
three of the variables. To summarize the presentation of 
the large state dimension procedure: 
 If x belongs to the interior of  ViabF K , then there 

is no need to go as far as the mi
tion stops 

nimum of 

 If 
rse. The search 

 viable

asins iden- 
tif

ts of Reachable States 

ts 
n 

obtained by up-dating a 3-dimensional grid, 
so

  0,Supt T h x t : the optimiza as soon as 
one solution remaining in K is found. 

0  the solution starting from x leaves K, 
and simulated annealing runs its cou

 ,c T x  ,

for  states is also achieved by the minimization 
of a distance to the set of constraints, so that the pro- 
cedure relies on a double stochastic optimization: one 
where the initial state under examination is fixed, so 
as to decide whether it is viable or not, and one where 
this initial state is varied. There is no longer a need to 
memorize the state of every cell in a grid. 

In order to compute reachable sets, I apply one of 
these two algorithms to the viability-capture b

ied with the reachable sets through Theorem 2.3. In the 
section below, I treat three noteworthy examples, more- 
over with time t varying. 

4. Computation of Se

I suggest to compute the three nonconvex reachable se
taken as examples by [1]. The image F(x) is convex i
the assumption of Marchaud, but the reachable set can be 
nonconvex. 

The results by Saint-Pierre’s [6] algorithm, as I ex- 
plained, are 

 that the display can be given with shaded facets. Bon- 
neuil’s algorithm [4] works with points, so that, unless 
applying a vizualization software, the display is made of 
points. Baier and Gerdts [1] study the reachable set at 
fixed T, and in their conclusion, they call for the compu- 
tation of the reachable set on an interval  0 ,t T . I con- 
sider T as an additional dimension, so that I compute the 
capture-viability kernel of target C within nder the 
augmented dynamics:  

   

 K u

 
1

x t F x t  

t  

            (16) 

and search for the initial states  ,T x T
 in K and su

 for which there 
exists a solution x(.) remaining ch that: 

   
   0 , T

, 0, ,

.

x t K t T

x C x T x 

   
           (17) 

The representation is then done in X R . 
Example 1: the brachistochrone corresponds to the 

control problem: 

      1 22 cosx t gx t u t

      
 
 
   
 

2 2

1

2

2 sin

0 0

0 1

π,π

0,1 .

x t gx t u t

x

x

u t

t

  

 

 


 
 

      (18) 

I rewrite this problem as a target problem in reverse  

time, for 

  


      1 2, :x t x t x t  

    

  

 
 

1

0,1,0

π,π

0,1 ,

x t F t

t

C

K X

U

t

  

  

 



  
 

 

x

            (19) 

with  

       2 22 cos , 2 sin ,F x gx u gx u u U .  (20) 

Figure 1 represents the capture-viability kernel in 
X R , with X equal to R. To get the reachable set at a 

give
consta

n time T, one has to take a section of this set at T 
nt; to get the reachable set in  0;T , one has to 

take the projection of the capture-viability up to T onto 
the T = 0 plane. In viability algorithms time horizon 
T is taken as an additional variable, so that the reachable 
sets for all T are computed at once, contrary to other pro-
cedures. 
 

, the 

 

Figure 1. Reachable sets at time T varying: brachisto- 
chrone. 
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Example 2: Rayleigh problem 
The control problem [1] is: 

   1 2x t x t

          
 
 
   
 

2
2 1 2 2

1

2

1.4 0.1 4

0 5

0 5

1,1

0,2.5 .

x t x t x t x t u

x

x

u t

t

     


 


 
  
 

t

 (21) 

I rewrite this problem as a target problem in reverse  

tim

 


e, for       1 2, :x t x t x t  

    

  

 
 

1

5,5,0

π,π

0,2.5 ,

x t F x t

t

C

K X

U

t

  

  

  



  
 

           (22) 

with 

     2
2 1 2 2, 1.4 0.1 4 ,F x x x x x u u U        (23) 

The reachable sets at T varying are represented 
ure 2

] is: 

on Fig-
. 

Example 3: Kenderov 
The control problem [1

         
          
 
 
   
 

2 12 2

2 12 1 11 2 12 1

1

2

2

8 2

0 2

0 2

1,1

0,1 .

1 11 1 128 x t a x t a x t a x t u t

x t a x t a x t a x t u t

x

x

u t

t



   






  
 

   


 (24) 

Baier and Gerdts [1] consider   2
11 1,a  

2
12 1 ,a     and 0.9.   I  problem rewrite this  as  

a target problem rse tim in reve e, for 

     1 2, :x t x t x t  

    

  

 
 

1

2, 2,0

π,π

0,2.5 ,

x t F x t

t

C

K X

U

t

  

  

  



  
 

 

 

Figure 2. Reachable sets at time T varying: Rayleigh. 
 
with 

   
  

11 1 12 2 12 2

12 1 11 2 12 1

8 2 ,

8 2 ,

F x a x a x a x u

a x a x a x u u U

  

  
     (26) 

The reachable sets at T varying are represented on Fig-
ure 3. 

E
I suggest the control problem: 

xample 4: in dimension p + 1  

   
     
 

, 1, ,

0.5,0.5

1,1 R

i p

p

p

1

 1R
0 .p

x t x t i p

x t u t

K



C 

  

   


  



 



ts at T varying in [0;  

0.




The projection of the reachable se

6] onto the plane 1, px x    for p = 10 is represented on  

Figure 4, and the same projection at T = 0.6 on Figure 5. 
The representation of sets in dimension above three is 
problematic, but the result is that, in large state dimension, 
a data set of points can be produced to encompass the 
reachable set. Then it becomes a problem of delineating a 
set through knowing a cloud of points. 

 reachable sets in 
large dimensions. This reasoning in terms of viability 

5. Conclusion 

Reachable sets expressed as capture-viability kernels in 
reverse time allow the use of viability algorithms, either in 
2 + 1 dimensions with Saint-Pierre’s [6] or in any finite 
state dimension p + 1 with Bonneuil’s [4]. This proce-
dure firstly allows avoiding the difficult solving of HJB, 
and secondly allows the computation of

            (25) 
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Figure 3. Reachable sets at time T varying: Kenderov. 
 

X  10

 

Figure 4. Reachable set at time  ; 0 0.6T  for the 10 + 1 

dimension example. 
 

X  10

 

Figure 5. Reachable set at time T = 0.6 for the 10 + 1 di- 
mension example. 

is flexible and proved useful in the computation of maxi- 
ma under viability constraints [7]. 
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