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ABSTRACT 

We study the AK growth model with external habit formation. We show that there exists a unique solution path expressed 
in terms of the Gauss hypergeometric function. Using the closed-form solution, we also show that the optimal path con- 
verges to a balanced growth path. 
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1. Introduction 

The Gauss hypergeometric functions are typically used in 
mathematical physics, but are not so common in eco- 
nomics. As far as we know, Boucekkine and Ruiz- 
Tamarit [1] are the first to find that the functions are also 
useful in dynamic macroeconomics. They obtain an ex- 
plicit solution path to Lucas-Uzawa two-sector endoge- 
nous growth model by using the hypergeometric function. 
They express the optimal path as a system of four dif- 
ferential equations and two transversality conditions and 
then use the hypergeometric functions for solving the 
system of equations. 

Several authors get analytical solution paths to the 
exogenous growth models. Pérez-Barahona [2] investi- 
gates the model with non-renewable energy resources 
and find that the optimal path has a closed form solution 
path by using the hypergeometric function. Hiraguchi [3] 
finds that a solution path to the neoclassical growth 
model with endogenous labor is also represented by the 
special function. 

Boucekkine and Ruiz-Tamarit [1] argue (see page 34) 
that the hypergeometric functions will also be useful in 
the investigation of the endogenous growth models. 
They guess that the transition dynamics of the models 
will be easier to understand if we can use the special 
functions. However, there is only a few literature that 
applies the special functions to the endogenous growth 
models other than the Lucas-Uzawa model. One ex- 
ample is Guerrini [4] who uses the special functions and 
obtains a closedform solution path to the AK model 
with logistic population growth. Broad applicability of 
the hypergeometric functions to the endogenous growth 
models is uncertain at this point, and more investiga- 

tions are needed. 
In this paper, we study the AK endogenous model with 

external habit formation. The model has been investi- 
gated by many authors including Carroll et al. [5] and 
Gómez [6]. The utility function of the agent depends on 
both the absolute level of consumption and the ratio be- 
tween consumption and habit stock. Here the habit for- 
mation is external and the level of the habit stock is ex- 
ogenous to each agent. We show that there exists a unique 
solution path and it is represented by the hypergeometric 
function. 

Habit formation in consumption is now popular in 
modern macroeconomics. Authors have explained some 
empirical facts by incorporating habits into the dynamic 
macroeconomic models. Abel [7] and Gal [8] show that 
habit formation can solve the equity premium puzzle in 
asset pricing models and Carroll et al. [9] provide an 
explanation of strong correlations between saving and 
growth. Some authors characterize the properties of the 
optimal paths in these models. Alvarez-Cuadrado et al. 
[10], Alonso-Carrera et al. [11] and Gómez [6] in- 
vestigate the transitional dynamics and the stability of the 
optimal paths in endogenous growth models with habits, 
both analytically and numerically. 

The problem of the previous papers is that they assume 
the existence and the uniqueness of the optimal path 
without proof. These properties are not at all obvious 
here, because there exists no general theorem on the 
existence of a solution path in an infinite horizons opti- 
mization problem with externalities. Here we utilize the 
special functions to show that their assumptions are in 
fact correct. 

The note is organized as follows. Section 2 describes 
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the model and obtains the first order conditions. Section 
3 obtains the closed-from solution path. The conclusions 
are in Section 4. Proofs of the propositions are in Ap- 
pendix. 

2. Set-Up 

In this section, we construct the one-sector endogenous 
growth model with external habit formation and obtains 
the first order conditions. There is a continuum of agents 
with unit measure. There is no population growth. The 
instantaneous utility function of each agent is  
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Here  is his own consumption, t  is the habit 
stock, 

tc
> 0

h
  is the parameter on the utility curvature 

and  shows the importance of relative con- 
sumption level 

0,  1
 t tc h   on the utility function. When 

there = 0  and the utility is time-separable, the pa- 
rameter   coincides with the coefficient of the relative 
risk aversion. The habit stock is exogenous to the con- 
sumer and is accumulated by the following differential 
equation: 

 =t t th c h  .             (1) 

Here tc  is the average level of consumption and 
> 0  is a parameter. The parameter   is high, the 

habit stock responds to the recent consumption quickly. 
The consumer solves the following problem: 

   
0,

: , d ,s.t. =max
t

t t t t t
c kt t

P e u c h t k Ak    .c        (2) 

here > 0  is the discount factor, Equation (2) is the 
resource constraint, t  is physical capital and  is 
the technology parameter. We assume that there is no 
capital depreciation. The initial capital stock 0  and the 
initial habit stock  are given. In what follows, we 
denote the growth rate of a variable  as 

k

0h

> 0A

k

tx  ˆ =t t tx x x . 
The current value Hamiltonian is  
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is the multiplier. The first order conditions (FOCs) and 
the transversality condition (TC) are 

FOC(k) : = ,t

t
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

           (3) 

(1 )FOC(c) : = ,t t tc h               (4) 

TC : ( ) = 0.lim
t

t t
t

k e  


           (5) 

Here FOC(x) means the FOC on the variable x . In 
equilibrium, the individual consumption  is equal to tc

and the habit stock is accu- 

mulated according to  

 = .t t th   h c              (6) 

The path  , ,t t tc k h  
)-(6) for so

is optimal if 
Eq

and only if it satisfies 
uations (2 me 0t  . 
The next lemma shows that when t A  he productivity 

is too high, the interior optimal path does not exist1. 
Lemma 1. If   1 1 >A     , the optimal path 

do
Appendix. 

 is too low and satisfies 

es not exists.  
Proof. See the   
Moreover, if the productivity
> A , Equations (3) and (4) together imply that the 

ed growth rate of consumption (and also habit 
stock) is negative. Thus we impose the following re- 
striction on the parameters to ensure that the optimal path 
is interior and that the optimal growth rate is positive: 

balanc

  1 1 < < .A A            (7) 

3. Closed-Form Solution 

, we first obtain a linear To characterize the optimal path
differential equation on the habit-consumption ratio  

=t t tz h c . Note that ˆ ˆˆ =t t tz h c . Substitution

ˆˆ = .t tz h A  

 of 
Equation (4) into Equation (3) yields 

                (8) 

where  = 1 > 0     .
written as 

 On the other hand, Equation 
(6) is  1tz  . Thus Equation (8) 
implies 

ˆ =th  1
  1tz A ˆ = 1tz    

he equation by tz , we get
. Multiplying both 

sides of t  a linear differential 
equation  =t tz z z   ith   w
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Since 

The solution is 
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> 0 atio z  con- , the habit consumption r
ve

t

rges to z  as t  goes to  . 
Next w use E uation (9) to e q  obtain the equilibrium 

consumption path. Since ˆˆ ˆ =t t tc z h , Equation (8) is re- 
expressed as   ˆ =tz  t̂c  A   . Thus  
     0 0= A

t tc c e t z z
    consump and the tion  is  tc
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where the parameter g  is defined as  
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1

A A
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Note that by definition, 

  

0 0=c h z0 . Since  
= <t tz zlim  , the co  growth rate co

 we show that the growth rate of the 
nsumption n- 

verges to g. Later
1It is not a simple task to prove Lemma 1 only by using the transversal-
ity condition (5). This is because we cannot easily obtain the asymp-
totic growth rate of physical capital by using the system of the differ-
ential Equations (2)-(6). the average consumption tc  
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equilibrium capital also converges to the same value g. 
In Equation (10), 0z  is unknown. To fix its value, we 

ha

n (10), we get  

ve to use the transversality condition (5). Here the re- 
source constraint (2) can be written as  

 0 0
= d

tAt As
t sk e k e c s  . Using Equatio
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Under the parametric restriction (7),  
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 > =A g A   . Thus the term   1

0
d

t
e 

 constant as t  goes  
lemma simplifies the transversality condition (5).

Lemma 2. The transversality condition (5) holds 
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We now express the equilibrium capital without using 
the integral. As Hiraguchi (2012) shows, the hyper- 
geometric function  
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Recall that  0= t
tz z e z z    . Finally we get the 

following proposition. 
Proposition 1. The optimal path  exists, is 

unique and is expressed as  
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Thus the growth rate of the capital also c
Therefore the optimal path 
to a balanced growth path 
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 2 1F , , ;0 = 1a b c . 
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h rate g. 
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It is well-k own that the basic AK growth model does 
not have transitional dynamics and

  

n
 the optimal growth 

rate is always constant. 

4. Conclusion 

In this paper, we obtain a closed-form so
the AK growth model with habit formation. As Boucek- 
ki

s are applicable to many kinds of 
economic models. As a future study, 

igate the different kinds of the endo- 

lution path to 

ne and Ruiz-Tamarit [1] claim, the hypergeometric 
functions are actually very useful in the investigation of 
the endogenous growth models. We guess that the Gauss 
hypergeometric function
the dynamic macro
we hope to invest
genous growth models, especially the growth models 
with R & D. 

REFERENCES 
[1] R. Boucekkine and R. Ruiz-Tamarit, “Special Functions 

for the Study of Economic Dynamics: The Case of the Lu- 
cas—Uzawa Model,” Journal of Mathematical Econom-
ics, Vol. 44, No. 1, 2008, pp. 33-54.  
doi:10.1016/j.jmateco.2007.05.001 

[2] A. Pérez-

2If we let , we can easily show that the integral is equal to 1=
a y

z e


 1

1 1

a x

b b


 2 1 31 3
22 0

d
aea a aa b z z  . As many authors have already 

shown, the integral  can be obtained by using the hy-  d
cba z z

pergeometric function. Barahona, “Nonrenewable Energy Resources as 

Copyright © 2012 SciRes.                                                                                  TEL 



R. HIRAGUCHI 

Copyright © 2012 SciRes.                                                                                  TEL 

354 

Input for Phy tion: A New Ap- ing Up with the Joneses,” American Economic Review, 
Vol. 80, No. 2, 1990, pp. 38-42. 

[8] J. Gal, “Keeping up with the Jone

sical Capital Accumula
proach,” Macroeconomic Dynamics, Vol. 15, No. 1, 2011, 
pp. 1-30. doi:10.1017/S1365100509090415 

[3] R. Hiraguchi, “A Note on the Analytical Solution to the 
Neoclassical Growth Model with Leisure,” Macroeco-
nomic Dynamics, 2012, pp. 1-7. 

ses: Consumption Ex- 
ternalities, Portfolio Choice, and Asset Prices,” Journal of 
Money, Credit, and Banking, Vol. 26, No. 1, 1994, pp. 1- 
8. doi:10.2307/2078030 

doi:10.1017/S1365100512000442 

[4] L. Guerrini, “Transitional Dynamics in the Ramsey Mod-
el with AK Technology and Logistic Population Change,” 
Economics Letters, Vol. 109, No. 1, 2010, pp. 17-19.  

[9] C. Carroll, J. Overland and D. Weil, “Saving and Growth 
with Habit Formation,” American Economic Review, Vol. 
90, No. 3, 2000, pp. 341-355. doi:10.1257/aer.90.3.341 

[10] F. Alvarez-Cuadrado, G. Monteiro and S. Turnovsky, “Habit 
doi:10.1016/j.econlet.2010.07.002 

[5] C. Carroll, J. Overland and D. Weil, “Comparison Utility 
in a Growth Model,” Journal of Economic Growth, Vol. 2
No. 4, 1997, pp. 339-367. 

Formation, Catching up with the Joneses, and Economic 
Growth,” Journal of Economic Growth, Vol. 9, No. 1, 
2004, pp. 47-80.  , 

doi:10.1023/A:1009740920294 doi:10.1023/B:JOEG.0000023016.26449.eb 

[11] J. Alonso-Carrera, J. Caballé and X. Raurich, “Growth, 
Habit Formation, and Catching up with the Joneses,” Euro- 
pean Economic Re
1691.

[6] M. A. Gómez, “Convergence Speed in the AK Endoge-
nous Growth Model with Habit Formation,” Economics 
Letters, Vol. 100, No. 1, 2008, pp. 16-21.  
doi:10.1016/j.econlet.2007.10.022 

view, Vol. 49, No. 6, 2005, pp. 1665- 
doi:10.1016/j.euroecorev.2004.03.005

[7] A. Abel, “Asset Prices under Habit Formation and Catch- 
 
 
 
 
 
 
 

Appendix 

. Proof of Lemma 1 
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