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ABSTRACT

The oxidative coupling polymerization of p-
alkoxyphenols with Mn(acac),-ethylenediamine
catalysts was carried out. The polymerization of
p-methoxyphenol with the manganese(ll) ace-
tylacetonate [Mn-(acac).]-N,N’-diethylethylene-
diamine catalyst in CH,Cl, at room temperature
under an O, atmosphere afforded a polymer,
which mainly consists of the m-phenylene unit,
whereas the polymer obtained with Mn(acac),
was rich in the oxyphenylene structure. The
polymer yield and regioselectivity were signifi-
cantly affected by the monomer and catalyst
structures. The former catalyst system was also
used for the coupling reaction of 2-methoxy-
4-methylphenol. The corresponding carbon-car-
bon coupling product was isolated with a re-
gioselectivity of 95%.

Keywords: Oxidative Coupling Polymerization;
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1. INTRODUCTION

Phenolic polymers bearing a polyphenylene main chain
structure have been mainly synthesized by the transi-
tion-metal-catalyzed coupling reactions of aryl halides,
such as the Wurtz coupling, Ullmann reaction, Ku-
mada-Tamao-Corriu coupling, etc [1-4]. These reactions
are suitable for the regio and/or coupling selective for-
mation of carbon-carbon bonds between aromatics.
However, from the viewpoint of a convenient and green
chemical method, they have some problems, such as the
synthesis of aryl halides, protection of the hydroxyl
group, and disposing of a large amount of the metal hal-
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ide from the reaction system.

On the other hand, the catalytic oxidative coupling
polymerization (OCP) of 2,6-dimethylphenol is industri-
ally utilized for the synthesis of poly(2,6-dimethyl-1,4-
phenylene ether) (PPE), which is one of the most com-
mon engineering plastics [5-7]. The OCP is known as the
environmentally conscious method, due to the fact that
the reaction proceeds under mild conditions producing
only water as the by-product. Meanwhile, the OCP me-
diates a free radical coupling process; therefore, it is
generally very difficult to control the coupling regiose-
lectivity of the phenoxy radicals without producing a
branched chain. For example, the OCP of p-substituted
phenols 1 generally affords a polymer composed of a
mixture of the phenylene (CC) and oxyphenylene (CO)
units (Scheme 1).

The highly regiocontrolled polymers having a poly(m-
phenylene) skeleton should have a conjugated higher-
order structure which is applicable as novel electronic
and electrochemical materials [8-11]. For instance, a
unique conformation change caused by the cisoid and
transoid main chain structures was reported [1], and a
helix-induction in a chiral environment was also achieved
[2]. The precise coupling regiocontrol of the phenoxy
radicals during the OCP will significantly contribute to
the facile synthesis of novel phenolic polymer materials.

OH OH o)
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Scheme 1. OCP of 1.
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Studies of the catalyst systems for the regioselective
OCP leading to a poly(phenylene ether) or poly(pheny-
lene) derivative, such as the enzymatic and enzyme-
model metal ones, and the copper-amine immobilized on
mesopores, have been reported [12-16]. We also reported
that the OCP of the bifunctional p-alkoxyphenol mono-
mer 2 (Scheme 2) using the commercially available and
typical copper catalyst, di-g~hydroxo-bis[(N,N,N’,N -
tetramethylethylenediamine)copper(Il)] chloride [CuCl
(OH)-TMEDA] proceeds in a regioselective manner to
afford a polymer with a CC-unit selectivity of up to 88%
[17]. However, the reigoselectivity has still not been
sufficiently controlled.

p-Alkoxyphenol is one of the attractive phenolic
monomers, because its polymer possesses the poly(hy-
droquinone) structure, which is a typical redox-active
polymer. In this study, the OCP of the p-alkoxyphenols 1
with various metal catalysts was investigated, and novel
manganese (II) acetylacetonate [Mn(acac),]-ethylenedia-
mine catalysts for the CC-selective coupling formation
were found.

2. EXPERIMENTAL

2.1. Materials

The monomers, p-methoxyphenol (1-OMe, Kanto), 4-
tert-butoxyphenol (1-O'Bu, TCI), p-hydroxybenzoic
acid methyl ester (1-CO,Me, TCI) (Scheme 2), and 2,
were purchased or synthesized as previously reported
[17]. Mn(acac),, Mn(acac); (Wako), manganese(Il) ace-
tate [Mn(OAc),] (Kanto), VO(acac),, and Co(acac),
(TCI) were used as received. The dry solvents, CH,Cl,,
tetrahydrofuran (THF), MeOH, and N,N-dimethylfor-
mamide (DMF) (Kanto), were employed for the oxida-
tive coupling. The diamines (Scheme 2) were used
without further purification.

2.2. Polymerization

A monomer was added to a mixture of Mn(acac), and
ethylenediamine ([monomer]/[Mn(acac),]/[ethylenedia-
mine] = 1/0.08/0.08) in a solvent (0.6 M), and the mix-
ture was stirred at room temperature under an O, at-
mosphere. The product was isolated as the MeOH-1N
HCI (10/1 (v/v))-insoluble part by centrifugation and
drying under reduced pressure at 50°C. The regioselec-
tivity (CC/CO) of the obtained polymers was estimated
from H, volume generated by adding a polymer solution
in THF to a mixture of an excess amount of lithium alu-
minum hydride (LiAlH,) in THF [10,12-14,17].

2.3. Measurements

The 'H NMR spectra were measured using a Varian
Unity-Inova (500 Mz) or Mercury 200 (200 MHz) spec-
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Scheme 2. Monomers and ligands.

trometer in CDCl;. The infrared (IR) spectra were re-
corded using a HORIBA FT-720 spectrometer. The ul-
traviolet (UV) absorption spectra were taken by a
JASCO V-630 spectrophotometer. The size exclusion
chromatographic (SEC) analyses were performed using a
JASCO PU-2080-Plus equipped with a JASCO UV-
2075-Plus detector and Shodex AC-8025 and TSK-GEL
columns connected in series [eluent: CHCIs, flow rate =
1.0 mL/min]. Calibration was carried out using standard
polystylenes.

3. RESULTS AND DISCUSSION

3.1. OCP with Manganese Catalyst

The OCP of 1-OMe with various catalysts was carried
out. The results are summarized in Table 1. The re-
gioselectivity of CC/CO could not be estimated from the
"H NMR spectra, because the peaks of the aromatic rings
and hydroxyl group were broad and overlapped, as re-
ported in previous studies [10,12-14,17]. Therefore, it
was evaluated by titration of the hydroxyl group of the
poly(1-OMe).

The polymerization with VO(acac), or Co(acac),, the
former of which was effective as a catalyst for the OCP
of 2,3-dihydroxynaphthalene [18-20], in CH,Cl,-MeOH
[7/1 (v/v)] at room temperature under an O, atmosphere
did not proceed (entries 1 and 2), whereas Mn(acac),
showed a catalytic activity to afford a polymer as a
methanol-1N HCI [10/1 (v/v)]-insoluble fraction in 69%
yield with a regioselectivity (CC/CO) of 24/76 (entry 3).
The polymerization in CH,Cl, also resulted in good to
high yields, and the selectivity was slightly affected by
the solvent (entries 4 and 5). The polar solvents, such as
THF and DMF, however, prevented the production of a
polymer (entries 6 and 7). Therefore, the polymerization
solvent significantly influenced the catalytic activity
during the polymerization with Mn(acac),. The polym-
erization with Mn(acac); also gave a polymer, although
the catalytic activity was lower than that of Mn(acac),
(entry 8). This result suggests that the polymerization
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proceeds through the Mn(IIl) species generated by the N,N’-diethylethylenediamine [DEEDA], N,N’-di-n-bu-
one-electron oxidation of the Mn(Il) ones as mentioned tylethylenediamine [DBEDA], and N,N’-diphenylethy-
later. The counter anion also affected the catalyst per- lenediamine [DPhEDA] (Scheme 2), gave a polymer in
formance (entry 9). moderate to good yields, whose regioselectivity was
3.2. OCP with Mn(acac),-Diamine Catalyst quite d.iffer§nt from that. of the polymer obtainefi Withqut
the amine ligand, especially, the polymers obtained with
The OCP of 1-OMe with Mn(acac), in the presence of the ethylenediamine were rich in the CC-unit (entries
various ethylenediamines ([Mn(acac),]/[ethylenediamine] 3-6). For example, the polymerization with DEEDA for
= 1) in CH,Cl, was then examined (Table 2). The OCP 96 h gave a polymer in 47% yield with the regioselectiv-
with TMEDA resulted in a poor yield (entry 1). However, ity (CC/CO) of 87/13.
the polymerizations with pyridine (2 equiv.) and the The effects of the Mn(acac),-DEEDA catalyst system
ethylenediamines having primary and secondary amino during the polymerization under various conditions were
groups, such as N, N-diethylethylenediamine [NNDEEDA], further investigated (Table 3). Although the 24 h-po-

Table 1. OCP of 1-OMe with Various Catalysts®.

Entry Catalyst* Solvent Time (h) Yield (%)" M, x10 (M /M) Selectivity! (CC/CO)
1 VO(acac), CH,Cl,-MeOH* 72 0 — —
2 Co(acac), CH,Cl,-MeOH® 72 0 — —
3 Mn(acac), CH,Cl,-MeOH*® 48 69 5.8(1.1) 24/76
4 Mn(acac), CH,Cl, 48 72 5.1(1.2) 33/67
5 Mn(acac), CH,Cl, 96 91 5.6(1.2) 28/72
6 Mn(acac), THF 48 0 — —
7 Mn(acac), DMF 48 0 — —
8 Mn(acac); CH,ClL, 48 40 4.6 (1.2) 31/69
9 Mn(OAc), CH,Cl, 48 0 — —

*Conditions: [catalyst]/[1-OMe] = 0.08, [1-OMe] = 0.6 M, temp. = room temperature, O, atmosphere. "MeOH-1N HCI (10/1 (v/v))-insoluble part.
“Determined by SEC in CHCI; (polystyrene standard). ‘Estimated from the generated H, volume by the reaction of the obtained polymer with LiAIH,.
°CH,Cl/MeOH = 7/1 (v/v).

Table 2. OCP of 1-OMe with Mn(acac),-Ethylenediamine Catalysts®.

Entry Catalyst® Yield (%)" M, x 10 = (M,/M,) Selectivity® (CC/CO)
1 Mn(acac),-TMEDA 7 — —
2 Mn(acac),-2Pyridine 60 7.4 (1.3) 50/50
3 Mn(acac),-NNDEEDA 77 4.4(1.3) 56/44
4 Mn(acac),-DEEDA 47 52(1.2) 87/13
5 Mn(acac),-DEEDA 37 5.7(1.2) 68/32
6 Mn(acac),-DPhEDA 62 5.6 (1.2) 79/21

*Conditions: [catalyst]/[1-OMe] = 0.08, [1-OMe] = 0.6 M, solvent = CH,Cl,, temp. = room temperature, time = 96 h, O, atmosphere. "MeOH-1N HCl
(10/1 (v/v))-insoluble part. “Determined by SEC in CHCl; (polystyrene standard). “Estimated from the generated H, volume by the reaction of the
obtained polymer with LiAlH,.

Table 3. OCP of 1-OMe with Mn(acac),-DEEDA under Various Conditions®.

Entry Catalyst® Time (h) Yield (%)" M, x 10 7 (M,/M,) Selectivity® (CC/C0O)
1 Mn(acac),-DEEDA 24 14 44(1.2) 92/8
2 Mn(acac),-DEEDA® 96 0 — —
3 Mn(acac),-DEEDA" 96 61 5.6 (1.6) 67/33
4 Mn(acac),-DEEDA¢ 96 86 73 (1.4) 64/36
5 Mn(acac),-2DEEDA 96 30 6.1 (1.4) 61/39

“Conditions: [catalyst]/[1-OMe] = 0.08, [1-OMe] = 0.6 M, solvent = CH,Cl,, temp. = room temperature, O, atmosphere. "MeOH-1N HCI (10/1 (v/v))-in-
soluble part. “Determined by SEC in CHCI; (polystyrene standard). “Estimated from the generated H, volume by the reaction of the obtained polymer
with LiAIH,. “Temperature = 50°C. TCatalyst]/[1-OMe] = 0.16. #Solvent = CH,Cl,/MeOH [7/1 (v/v)].
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lymerization produced a polymer in a low yield, the re-
gioselectivity of the obtained polymer was CC/CO =
92/8 (entry 1). Accordingly, during the first stage of the
polymerization, a highly regioselective coupling reaction
should occur. The polymerization at 50°C did not give a
polymer. The other polymerization conditions, such as
catalyst ratio and solvent, also affected the regioselectiv-
ity and catalytic activity (entries 2-4). When two equiva-
lents of DEEDA to Mn(acac), was used, both the poly-
mer yield and CC-unit ratio significantly decreased (en-
try 5), indicating that the 1:1 complex of Mn(acac), and
DEEDA should be an active species. Although this cata-
lyst system showed a lower catalytic activity than that of
the polymerization without the diamine, the CC-unit
selectivity was much higher.

The OCP of various monomers, such as 1-O'Bu, 1-
CO,;Me, 2, with the Mn(acac),-DEEDA catalyst in
CH,Cl, at room temperature for 96 h under an O, at-
mosphere was also performed. The polymerizations of
1-O'Bu and 1-COOMe did not afford a MeOH-IN
HCI (10/1 (v/v))-insoluble fraction, and the polym-
erization of 2 resulted in a trace yield. These results
suggest that the steric and/or electronic effects of the
p-substituent significantly influence the polymeriza-
bility.

Figure 1 shows the FT-IR spectra of poly(1-OMe)
with a unit ratio of (A) CC/CO = 28/72 and (B) 92/8. In
each spectrum, the absorptions due to the vibrations of
the O-H and C-O-C linkages were observed, indicating
that the polymers are composed of a mixture of CC- and
CO-units. The latter spectrum showed a much larger
phenolic O-H peak due to the fact that this polymer is
rich in the CC-unit [12].

Both polymers with CC/CO = 28/72 and 92/8 were
completely soluble in chloroform, acetone, THF, DMF,
and dimethyl sulfoxide, whereas insoluble in hexane and
methanol. However, the latter polymer was almost solu-

(A)

4000 3000 2000 1000 400
Wavenumbers (cm™)

Figure 1. IR spectra of poly(1-OMe) with (A) CC/CO
=28/72, and (B) CC/CO =92/8.
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ble in an equivolume mixture of methanol and a 2N
NaOH aqueous solution, while the former was insoluble.
In order to clarify the applicability of this Mn(acac),-
DEEDA catalyst, the oxidative coupling reaction of 2-
methoxy-4-methylphenol 3, which can afford two cou-
pling dimer products, the CC-dimer and CO-dimer [21-23],
as well as the polymeric compounds, was investigated
(Scheme 3). The reaction was conducted under the same
reaction conditions as the polymerization in CH,Cl, for
96 h at room temperature under an O, atmosphere, and
the dimers were isolated by silica gel column chroma-
tography (hexane/AcOEt = 10/1). The coupling reaction
with only Mn(acac), afforded a 31% yield of the
CC-dimer and 10% yield of the CO-dimer, that is, the
regioselectivity (CC/CO) was 76/24. In the case of the
reaction using Mn(acac),-DEEDA, the isolated yields
were 57% and 3%, respectively, giving a selectivity of
CC/CO = 95/5. The Mn(acac),-DEEDA catalyst was
quite effective for the regioselective oxidative coupling.
The UV-Vis spectra of poly(1-OMe) and the obtained
dimeric products of 3 are shown in Figure 2. The maxi-

OH
MeO
catalyst
0,
Me
OMe ::z
OMe
CC-dimer

CO-dimer

Scheme 3. Oxidative coupling reaction of 3.
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Figure 2. UV-Vis spectra of poly(1-OMe) with (A)
CC/CO =28/72, (B) CC/CO = 92/8, (C) CC-dimer, (D)
CO-dimer (in CHCIly).
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mum absorption wavelength was observed at 287 nm for
the polymer with CC/CO = 28/72, whereas the red-
shifted absorption with the maximum of 299 nm was
observed for the polymer with CC/CO = 92/8. This
should be explained by the extension of the m-conjuga-
tion length due to the phenylene main chain structure for
the latter polymer. Actually, the CC-dimer of 3 also
showed a maximum absorption at 290 nm, which is
greater than that of the CO-dimer of 282 nm.

The plausible OCP mechanism with Mn(acac),-
DEEDA was proposed as follows (Figure 3): The com-
plex of an in situ generated Mn(III) species and 1-OMe
causes the one-electron oxidation of the phenol to form a
species of Mn(Il) and the phenoxy radical, which con-
certedly induces the regioselective intermolecular radi-
cal-radical coupling to produce the corresponding car-
bon-carbon coupling product [15]. The dissociated
manganese species are oxidized by dioxygen to regener-
ate the active Mn(III) species.

4. CONCLUSIONS

The OCP with Mn(acac),-ethylenediamine catalyst sys-
tems, that regioselectively produces a polymer with the
poly(m-phenylene) backbone, was developed. The cata-
lytic activity and regioselectivity during the polymeriza-
tion were significantly affected by the monomer and
catalyst structures, and polymerization conditions. Espe-
cially, the Mn(acac),-DEEDA catalyst showed a high
regiocontrol ability. The catalyst can be readily and sim-
ply prepared by mixing of the commercially available
Mn(acac), and DEEDA.

Et\ / \ Et
» ~H
szn(ul)
|
(0]
oH 2 H,0
2
L OMe  _|
oM
Et\ / \ _Et Et / \ _Et
> NIy g NSH
2 X Mn('” XiMh(")
| .
OH o
X =acac 2
HO OH

L OMe  _|
Q O " OZ ' HZO
o] OMe

Figure 3. Plausible mechanism for OCP of 1-OMe with
Mn(acac),-DEEDA.
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