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ABSTRACT 

In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn 
and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algo- 
rithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic 
regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. 
The approach aims to produce a learning model which best separates the class members of a labeled training set. The 
class boundaries are given by a separation surface which is represented by the level set of a model function. The separa- 
tion boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is repre- 
sented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show 
that this property gives human experts options to gain additional insights into the application domain. Furthermore, the 
representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds 
additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The 
symbolic representation of the models enables an interpretation by human experts. Existing and previously known ex- 
pert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. 
Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the 
search process can be added to the knowledge base to improve the overall performance of the proposed learning algo- 
rithms. 
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1. Introduction 

Supervised classification algorithms aim to assign a class 
label for each input example. We have given a training 
dataset of the form  ,i ix y

 1, 1
, where  is the ith 

example and i  is the ith class label in a bi-
nary classification task. i

n
ix 

y  
x  can be composed of any 

number type and i  can be any value of a bi-valued set 
as well. This means that we restrict our considerations to 
two-class problems. This imposes no restriction since 
multi-class problems can be represented by combination 
of two-class problems. A model 

y

  is learned, so that it 
is i ix y   for new unseen examples. In fact, it is an 
optimization task and the learning process is mainly data 
driven. It results in an adaptation of the model that re-
produces the data with as few errors as possible. Several 
algorithms have been proposed to solve this task and the 
result of the learning process is an internal knowledge 
model  . 

There are basically two ways to represent the knowl- 
edge of model  . The first approach includes algo- 
rithms like Naïve Bayes Classifiers, Hidden Markov  

Models or Belief density functions and priors [1]. The 
main idea is to represent the knowledge as a probability 
distribution. The classification boundary is the intersect- 
tion of the posterior probabilities of the classes in Bayes 
decision theory. 

The other approach for representing the knowledge is 
to determine a surface in the feature space which sepa- 
rates the samples of the different classes of the training 
data as well as possible. The decision surface is repre- 
sented by parameterized functions which can be the sum 
of weighted base functions of one dedicated function 
class. Examples include the logistic functions and radial 
basis functions, which can be used in Neural Networks 
and Support Vector Machines [1]. 

It is important to point out that the base functions are 
closely linked to the used classifiers. Our approach fur- 
ther refines this idea (Sections 2 and 3). Again, the deci-
sion surface is determined by a level surface of a model 
function. However, in this case, the function is composed 
of an arbitrary (but predefined) set of mathematical 
symbols, forming a valid expression of a parameterized 
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function. This approach allows the human users of the 
system to control the structure and complexity of the 
solutions. 

Following this idea, we try to find solutions which are 
as short and understandable as possible. Additionally, the 
selected solutions should model the dataset as well as 
possible. Clearly, these are mostly opposing requirements 
and nature of multi-objective decision making. Therefore, 
we select all good compromises of the pareto front [2] 
and sort them by complexity. This approach extends the 
concept presented in [3] and helps human experts to 
choose the best compromise. In standard classification 
approaches (e.g., Neural Networks), where the structure 
of the base functions is predefined, structural complexity 
is always required to reflect highly structured data. In 
most nontrivial applications the learned models are not 
understandable to the human expert and the represented 
knowledge cannot therefore be refined and reused for 
other purposes [4]. 

There are many different ways to further subdivide 
this class of learning algorithms (e.g., greedy and lazy, 
inductive and deductive [5] variants). In this paper, we 
focus on the symbolic and sub-symbolic knowledge rep- 
resentation paradigm (see [4,6] for more details) and its 
consequences for the reusability of the model   and the 
inherently learned knowledge. This subdivision separates 
the approaches with symbolic representations in which 
the knowledge of the model   is characterized by ex- 
plicit symbols, from sub-symbolic representations which 
are associated with parameter values. One of the main 
disadvantages of sub-symbolic classifiers (e.g., Neural 
Network or Support Vector Machine) is that the class of 
classifiers includes the properties of a black box and the 
learned model cannot be easily interpreted or reformu- 
lated. 

The main advantages of our approach (see Subsection 
3.2) are determined by the nature of mathematical for- 
mulas. They can be interpreted by humans and there are 
many rules to reformulate, simplify and derive additional 
information from. The additional information can be 
used for stability tests in order to build robust classifiers. 
In fact, reformulating mathematical formulas is one of 
the most important areas of mathematics. For the black 
box character of the sub-symbolic learning algorithms 
such rules simply do not exist. 

The remaining part of this paper is arranged as follows. 
In Section 2, necessary information and the used Sym- 
bolic Regression algorithm are presented. Section 3 sum- 
marizes our approach and shows how to generalize the 
regression task for classification. Furthermore, the main 
advantages of the approach are briefly discussed. Section 
4 explains some of our experiments and Section 5 con- 
cludes with final remarks. 

2. Background and Related Work 

2.1. Symbolic vs. Subsymbolic Representation 

As Smolensky [6] noted, the term sub-symbolic para-
digm is intended to suggest symbolic representations that 
are built out of many smaller constituents: “Entities that 
are typically represented in the symbolic paradigm by 
symbols are typically represented in the sub-symbolic 
paradigm by a large number of sub-symbols”. 

The debate over symbolic versus sub-symbolic repre- 
sentations of human cognition is this: Does the human 
cognitive system use symbols as a representation of 
knowledge? Or does it process knowledge in a distri- 
buted representation in a complex and meaningful way? 
e.g., in Neural Networks the knowledge is represented in 
the parameters of the model. It is not possible to deter- 
mine the exact position of the knowledge and the ob- 
served system variable of the data set. 

From this point of view, the syntactic role of sub-sym- 
bols can be described as the sub-symbols participate in 
numerical computation. In contrast, a single discrete ope- 
ration in the symbolic paradigm is often achieved in the 
sub-symbolic paradigm by a large number of much finer- 
grained operations. One well known problem with sub- 
symbolic networks which have undergone training is that 
they are extremely difficult to interpret and analyze. In 
[4], it is argued that it is the inexplicable nature of mature 
networks. Partially, it is due to the fact that sub-symbolic 
knowledge representations cannot be interpreted by hu- 
mans and that they are black box knowledge representa- 
tions. 

2.2. Pareto Front 

In this subsection we discuss the pareto front or pareto 
set in multi-objective decision making [2]. This area of 
research has a strong impact on machine learning and 
data mining algorithms. 

Many problems in the design of complex systems are 
formulated as optimization problems, where design choices 
are encoded as valuations of decision variables and the 
relative merits of each choice are expressed via a utility 
or cost function over the decision variables. 

In most real-life optimization situations, however, the 
cost function is multidimensional. For example, a car can 
be evaluated according to its cost, power, fuel consump- 
tion, passenger room, speed, and a configuration s which 
is better than s* according to one criteria and can be 
worse according to another. 

Let us consider an optimization problem with n objec- 
tive functions [7]. The n objectives form a space called 
objective space n   . A design variable is repre- 
sented by a vector in a decision space . The set 

 of the elements satisfying all the constraints is 
called a feasible set or feasible space. For each  

mD 
D D 

 Dx
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there exists a point in Z  corresponding to mapping 
. m n 

Hence, the feasible objective space Z  , is the image  

of , i.e. D   Z z F x

1 2,

x D   . A generic form of  

any multi-objective optimization is given by 

  Min ,  ,  

subject to

nF F F

x D

F x


 
         (1) 

Definition II.1 (Pareto Optimality) Vector x D   is 
called a pareto solution to problem (1) iff x  such  

that,   i i F x F x 

 n  
  and  

: 

1,  ,  i n

 
 

j j1j j   F x F x . 

Consequently, there is no unique optimal solution but 
rather a set of efficient solutions, also known as pareto 
solutions, characterized by the fact that their cost cannot 
be improved in one dimension without being worsened in 
another. 

In machine learning algorithms, the competing opti- 
mization criteria 1F  and 2F  are the prediction accu- 
racy and the size and complexity of the learning model.  

The set of all pareto solutions, the pareto front, repre- 
sents the problem trade-offs, and being able to sample 
this set in a representative manner is a very useful aid in 
decision making.  

Vector x  is called a local pareto solution if Defini- 
tion II.1 holds in -vicinity of  x . If x  is a pareto 
solution it is said that x  is not dominated by any other 
feasible solutions. 

In our approach, the solutions are ordered by comple- 
xity. Through the symbolic representation the human ex- 
pert is able to interpret the solutions of the pareto front 
(Section 4.3). 

2.3. Classical Regression Analysis and Symbolic 
Regression 

Regression analysis [8] is one of the basic tools of scien- 
tific investigation. It enables identification of functional 
relationships between independent and dependent vari- 
ables. The general task of regression analysis is defined 
as identification of a functional relationship between the 
independent variables x = [alt x1, x2, …, xn] and depen- 
dent variables y = [alt y1, y2, ..., ym], where n is the num-
ber of independent variables in each observation and m is 
the number of dependent variables. 

The task is often reduced from an identification of an 
arbitrary functional relationship f to an identification of 
the parameter values of a predefined (e.g., linear) func- 
tion. That means that the structure of the function is pre- 
defined by a human expert and only the free parameters 
are adjusted. From this point of view Symbolic Regres- 
sion goes much further. 

Like other statistical and machine learning regression 
techniques Symbolic Regression also tries to fit observed 
experimental data. But unlike the well-known regression 
techniques in statistics and machine learning, Symbolic 
Regression is used to identify an analytical mathematical 
description and it has more degrees of freedom in build- 
ing it. A set of predefined (basic) operators is defined 
(e.g., add, multiply, sin, cos) and the algorithm is mostly 
free in concatenating them. In contrast to the classical 
regression approaches which optimize the parameters of 
a predefined structure, here also the structure of the func- 
tion is free and the algorithm both optimizes the parame- 
ters and the structure of the base functions. 

There are different ways to represent the solutions in 
Symbolic Regression. For example, informal and formal 
grammars have been used in Genetic Programming to en- 
hance the representation and the efficiency of a number 
of applications including Symbolic Regression [9]. 

Since Symbolic Regression operates on discrete repre- 
sentations of mathematical formulas, non-standard op- 
timization methods are needed to fit the data. The main 
idea of the algorithm is to focus the search on promising 
areas of the target space while abandoning unpromising 
solutions (see [5,10] for more details). In order to achieve 
this, the Symbolic Regression algorithm uses the main 
mechanisms of Genetic and Evolutionary Algorithms. In 
particular, these are mutation, crossover and selection [10] 
which are applied to an algebraic mathematical repre- 
sentation. 

The representation is encoded in a tree [10] (Figure 1). 
Both the parameters and the form of the equation are 
subject to search in the target space of all possible 
mathematical expressions of the tree. The operations are 
nodes in the tree (Figure 1 represents the formula 6x + 2) 
and can be mathematical operations such as additions 
(add), multiplications (mul), abs, exp and others. The ter- 
minal values of the tree consist of the function’s input 
variables and real numbers. The input variables are re- 
placed by the values of the training dataset. 

In Symbolic Regression, many initially random sym- 
bolic equations compete to model experimental data in 
the most promising way. Promising are those solutions 
which are a good compromise between correct prediction 
quality of the observed and experimental data and the 
length of the computed mathematical formula. 

Mutation in a symbolic expression can change the 
mathematical type of formula in different ways. For ex- 
ample, a div is changed to an add, the arguments of an 
operation are replaced (e.g., change 2*x to 3*x), an op- 
eration is deleted (e.g., change 2*x + 1 to 2*x), or an 
operation is added (e.g., change 2*x to 2*x + 1). 

The fitness objective in Symbolic Regression, like in 
other machine learning and data mining mechanisms, is 
to minimize the regression error on the training set. After  
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Figure 1. Tree representation of the equation 6x + 2. 
 
an equation reaches a desired level of accuracy, the algo- 
rithm returns the best equation or a set of good solutions 
(the pareto front). In many cases the solution reflects the 
underlying principles of the observed system. 

3. Proposed Method 

This section explains our knowledge acquisition work- 
flow (Figure 2). The core of the workflow is structured 
in 4 steps.  

1) The human expert defines the set of base functions. 
The functions should be adapted to the domain problem. 
For example, many geometrical problems are much easier 
to solve with trigonometric base functions. 

2) The second step in the workflow is the main opti- 
mization process ([11], Section 2.3 and 3.1 of this paper 
for more details) which adopts the model to the experi-
mental data. Symbolic Regression is used to solve this 
task. The step is repeated until the model has the desired 
prediction quality. It should be noted, however, that other 
optimization algorithms which can handle discrete black 
box optimization can be used for this task. 

3) A human expert can interpret and reformulate the 
solutions of the pareto front (Section 4.3). 

4) The knowledge can be refined automatically or by 
human users. Afterwards it can be reused and transferred 
to other domains. Additionally, the new domain knowl- 
edge can be used as a feedback loop to further optimize 
and guide the learning process. 

Figure 3 represents the knowledge flow between the 
different knowledge bases and the learning algorithms. It 
adds a complementary point of view to Figure 2. 

In Figure 3, the core of the Knowledge Acquisition 
Flow System (Figure 2) is highlighted by the grey circle. 
System observations form experimental data which is the 
training data of the learning process. Based on this data 
the knowledge acquisition workflow is started. Again, 
Symbolic Regression is used to optimize the learning 
model (Section 2.3) in order to reproduce the experi- 
mental data. When the desired prediction quality is 
reached, the model (respectively the pareto front) is ana- 
lyzed and reformulated. This step can be done automati- 
cally or by a human expert. The additional knowledge is  

 

Figure 2. The knowledge acquisition workflow. 
 

 

Figure 3. The knowledge flow. 
 
stored in an object knowledge database. This information 
forms an input to further improve the optimization step 
of the Symbolic Regression. 

In addition, the object knowledge can be used to im- 
prove the domain knowledge. In the domain knowledge 
database existing knowledge is stored. Additionally, this 
knowledge can also be stored in an ontology. An exam- 
ple is presented in Subsection 4.3 (e.g., human experts 
know that the age of the patients or the number of axil- 
lary nodes cannot be negative). These constraints help 
the search to further improve the quality of the model. 
Additionally, it helps by reformulation of the computed 
models. 

Even though the whole knowledge flow can be exe-
cuted automatically the quality of the learned models will 
be higher if the search is guided by the additional knowl- 
edge of a human user. 

3.1. From Regression to Classification 

So far the regression task was described in this paper. To 
be able to use the system for a classification task several 
additions have to be undertaken. The necessary modifi- 
cations are described in this subsection. 

First, an activation function is defined. In our approach 
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it is a step function which is defined as 

 
1 iff 0

0 iff 0

z
z

z


   

. 

We have given a training set of N feature vectors 
1 N

i i
x  

and assigned class labels 
1 N

iy
i

,  1,1iy   . The main 
challenge and computer time consuming task is to find a 
function f which transforms the input space in the way 
that   f x  y  with as few errors as possible. In 
other words, a function  is sought with  xf   0f x  
separating the areas of the feature space, where the vec- 
tors of the different classes are located. The zero-crossing 

 therefore defines the decision surface. So far, 
the approach is Perceptron-like [12]. Instead of replacing 
the step-functions by continuous and differentiable base 
functions to allow cost function optimization, Symbolic 
Regression is used to optimize the cost function  

  0xf

  2

1

N

i i
i

J f y


     x  and therefore to find  f x . 

The main advantage of this approach is due to the fact 
that complexity and interpretability of the solution can be 
controlled by the user by the set of allowed operations 
and by selecting the appropriate complexity by means of 
the pareto front. Further approach advantages (see the 
next subsection) are consequences of this property. 

3.2. Advantages 

In this subsection we summarize the additional advan- 
tages of the proposed approach [13,14]. It should be 
noted that all mathematical reformulations of the classi- 
fier do not change its behavior in classification: 
 Select Variables and Metavariables: Often more 

variables are available in the observed system beha- 
vior than required. Selecting the important critical 
variables is a dimension reduction problem and helps 
to focus the search. For the algorithm it is easier to 
concentrate the search on the underlying system prin-
ciples rather than system noise. Additionally, Sym-
bolic Regression is useful for identifying meta-vari- 
ables. In [15] an approach is presented which collects 
the functional terms of the pareto front of several re-
peated Symbolic Regression runs. On this set of terms 
a frequency analysis is conducted. The assumption of 
this approach is that the more frequent terms form a 
kind of meta-variables and help to explain the system 
behavior. Additionally the meta-variables identified 
via Symbolic Regression can enable model lineariza-
tion which is preferable from a robustness perspec- 
tive. 

 Modeling: Many techniques are available for model 
building. These include fitting simple mathematical 
models (e.g., polynomials) as well as nonlinear data- 
driven techniques. This class of algorithms includes 

Support Vector Machines and Neural Networks. Ge- 
nerally, it can be said that the class of sub-symbolic 
classifiers is able to generate more accurate classifiers. 
The main advantage of Symbolic Regression is that it 
generates more understandable models. To be under- 
standable to human experts our approach tries to find 
solutions which are as simple as possible. The pareto 
front [2] sorts the solutions by complexity and predic- 
tion quality.  

 Analyze and Validate Models: Any model based on 
empirical data should be viewed with suspicion. Until 
it proves its validity the possibility of over-fitting 
must be explored as well as the reasonableness of the 
results. Additionally, most of the times the behavior 
of the model outside the domain of the data sample is 
un-known. Data partitioning and data cleaning can 
help in finding a robust model. However, the sym- 
bolic representation of the learned models enables 
human experts to interpret the model and its behavior. 
e.g., the decision area can be calculated analytically. 
Most of the known sub-symbolic learning algorithms 
are not able to answer these questions. 

 Add Additional Domain Knowledge to the Model: 
It is difficult to add additional human expert domain 
knowledge (e.g., from textbooks) to sub-symbolic 
knowledge representations. One possible way is to 
add it in form of regularization constraints. From this 
point of view Symbolic Regression is more flexible. 
e.g., the domain knowledge can be the starting point 
of the initialization of the Symbolic Regression search 
process. 

 Analytically Calculate the Derivative of the Learn- 
ed Model: One of the main advantages is that the 
proposed approach enables us to calculate the deriva-
tives of the classifier. It should be mentioned, that this 
can also be done for most sub-symbolic knowledge 
representations. But in this case the derivative is also 
sub-symbolic. In our approach the derivatives are in 
the general case symbolic and can be interpreted by 
humans. 

 One scenario for application could be in engineering 
technologies or medical systems. For example it 
could be the task to learn when a work-piece is dam-
aged or when there is a risk of a certain illness. The 
general learning approaches enable only the class pre- 
diction (e.g., defect or no defect). With the first de- 
rivative, which can be analytically calculated by our 
approach we can also say which attributes of the clas- 
sifier should be changed (and in which direction) in 
order to leave the undesired class as soon as possible. 
Additionally, the numerically or symbolically differ- 
entiated model can be used to understand the sensiti- 
vity to parameter changes. This can be useful in appli- 
cations which require a robust design. 
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 Select and Combine Models: The best model may 
not be the most accurate depending upon the defini- 
tions of classification accuracy. For example, under- 
standable models with sufficient exact prediction ac- 
curacy may be preferred. This idea includes a concept, 
that more complex models have a tendency to model 
noise of the observed system. Combining models, e.g., 
stacking or boosting [16] can result in improved per- 
formance as well as an indication of operation in un- 
known regions of parameter space. 

 Exploit Models: In an industrial setting, the model- 
ing effort is not a success unless the models are being 
exploited either by providing system insight, enabling 
optimization or deployed in an operational system. In 
addition, it is beneficial if the model knowledge can 
be reused in other domains. A symbolic knowledge 
re-presentation enables us to extract or validate and 
subsequently transfer the knowledge to other do-
mains. 

4. Experiments and Results 

This section discusses and demonstrates some of the 
conducted experiments. First we show two experiments 
based on artificial datasets while the third described ex- 
periment is based on a real-word dataset. 

4.1. First Experiment 

Figure 4 shows the data of a two class learning tasks in a 
two-dimensional plot. The first class is represented by 
the circles and the second by the triangles. The zero- 
crossing  decision boundary of the different 
classes of formula 2 (calculated by our Symbolic Re- 
gression algorithm) is displayed in Figures 4 and 5 by 
the parabola. 

  0f x

In order to find interpretable formulas we restricted the 
search on using add, sub, mul and all real numbers as 
operators. 

 
2 2

, 1.54516 1.63312 

0.672694 

f x y y xy

x y x

  

  
    (2) 

As discussed in Section 3, it is easy for a human expert 
to interpret this solution. It is a representation of an 
ellipse. With this knowledge the user can conclude much 
more about the domain. The additional knowledge in- 
cludes conclusions about the decision area. Based on 
their high complexity, black box machine learning algo- 
rithms usually give no additional insight into its behavior. 

As a result of the interpretable analytical solution (For- 
mula 2) we know that there is only one decision boun- 
dary (the zero-crossing). This knowledge is essential for 
some domains (application scenarios can include medical 
or other critical domains) which require robust classifiers. 
This robustness includes predictable behaviour of un-  

 

Figure 4. First dataset. 
 

 

Figure 5. The transformation of the feature space. 
 
known datasets which so far include uncovered areas of 
the feature space. 

4.2. Second Experiment 

! The second experiment is based on the well-known spiral 
dataset [11,17]. The problem in distinguishing two in- 
tertwined spirals is a non-trivial one. Figure 6 depicts the 
970 patterns that form the two intertwined spirals. These 
patterns were provided in [17]. 
This experiment is an example of the way in which addi-
tional human expert knowledge can improve the quality 
of the found solutions (Section 3). For a human expert it 
is obvious that the problem is periodic. Therefore, to find 
good and short models it is essential to add periodic and 
trigonometric base functions. Without the trigonometric 
base functions learning algorithms have enormous prob-
lems in modeling the dataset [18]. Therefore, we allowed 
the algorithm to use addition (add), subtraction (sub), 
division (div), multiplication (mul, sin, cos) and all real 
numbers. Several correct problem solving solutions had 
been found by our system for this classification problem. 
One of them is Formula (3) (the numbers in the formula 
are rounded using 3 fractional digits) which is able to 
classify the spiral dataset without an error and Figure 7 
shows the three-dimensional plot of the function. To the 
best of our knowledge it is one of the shortest known 
solutions that solve this classification task. 
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Figure 6. The spiral dataset. 
 

 

Figure 7. The three-dimensional plot of function 3. 
 

 , sin 3.35
0.042

0.0356
0.005*

y
f x y x

x
x y y
y x

 


 

  
 










 (3) 

4.3. Real Life Dataset—Haberman’s Survival 
Dataset 

The Habermans’s Survival dataset contains cases from a 
medical study that was conducted between 1958 and 
1970 at the University of Chicago’s Billings Hospital on 
the survival of patients who had undergone breast cancer 
surgery [19-22]. 

It consists of 4 attributes: 
1. Age of patient at time of operation (age) 
2. Patient’s year of operation (the year of the ope- 

ration) 
3. Number of positive axillary nodes detected (nodes) 
4. The survival status (class attribute) 
Table 1 summarizes the rules of the pareto front of  

Table 1. Rules. 

Complexity Accuracy Formula 

13 0.4784 
f (age, operation, nodes) =  
operation/(2.0537*age*nodes −  
83.8188*nodes − 154.58) 

9 0.4931 
f (age, operation, nodes) =  
nodes*nodes/(age − 43.747) − 6.15 

7 0.4931 
f (age, operation, nodes) =  
age − 71/nodes − 41.35 

5 0.5298 f (age, operation, nodes) = nodes − 469.83/age

3 0.5446 f (age, operation, nodes) = nodes − 8.69 

1 0.5961 f (age, operation, nodes) = 0 

 
one run found by our Symbolic Regression system [11]. 
The formulas are ordered by complexity. It should be 
mentioned that repeating this procedure can result in 
different solutions (Section 3). 

As a simple showcase to point out how additional in- 
sights into a domain can be gained we consider the for- 
mula f (age, operation, nodes) = age − 71/nodes − 41.35 
which has a complexity of 7 in Table 1. It can be 
reformulated by age = 71/nodes + 41.35. A human user 
knows that the number of axillary nodes cannot have 
negative values. This implies that if the age of the patient 
is less than 41.35 the survival status is greater than 50 
percent. This simple example shows, that reformulating 
and adding additional domain knwoledge adds further 
insight. New knowledge is derived and it can be used in 
another context. This procedure is, however, only possi- 
ble on the basis of the symbolic and interpretable re- 
presentation of the formulas (Section 2). 
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