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ABSTRACT 

The Australian Shuffle consists of placing a deck of cards onto a table according to this rule: put the top card on the 
table, the next card on the bottom of the deck, and repeat until all the cards have been placed on the table. A natural 
question is “Where was the very last card placed located in the original deck?” Card trick magicians have known em- 
pirically for years that the fortieth card from the top of a standard fifty-two card deck is the final card placed by this 
shuffle. The moniker “Australian” comes from putting every other card “Down Under”. We develop a formula for the 
general case of N cards, and then extend that generalization further to cases involving the discard of k cards before or 
after putting one on the bottom of the deck. Finally, we discuss the connection of the Australian Shuffle and its gener- 
alizations to the famous Josephus problem. 
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1. Introduction 

A colleague of ours who is an avid amateur magician in- 
troduced us to the traditional version of the Australian 
Shuffle, so named because a standard deck of cards is 
dealt one at a time onto a table according to the rule that 
after the top card is placed on the table, the next card is 
to be moved down under to the bottom of the deck, and 
then the process repeated until only one card remains... 
the final discard. Our friend knew that the card located at 
the fortieth position from the top in the original fifty-two 
card deck would always be that last card, but wanted an 
explanation. Here we consider a formula for a deck of 
any size. The Tasmanian Shuffle is the generalization 
where instead of placing one card on the table, we dis- 
card a fixed number of cards. 

The Tasmanian Shuffle is related to the classical prob- 
lem [1] of Flavius Josephus. Josephus was part of a Jew- 
ish military force that was battling the Romans in the 
first century AD. Josephus and forty of his comrades 
were trapped in a cave by the Romans, and rather than 
surrender, they decided to commit suicide as a group. 
The method chosen was for the soldiers to stand in a cir- 
cle and, proceeding around the circle in a constant direc- 
tion from a fixed starting point, every third soldier stand- 
ing would be executed by the next temporarily surviving 
fellow around the circle. The standing part is critical, 
since any dead soldiers were ignored by this fatal algo- 
rithm on subsequent passes around the dwindling circle. 
Josephus and his friend were not keen on fully partici- 
pating in this exercise, but they were reluctant to object  

openly. Josephus managed to survive the fratricidal circle 
by arranging to be the last soldier selected. He surren- 
dered to the Romans, was adopted by a Roman family 
(hence the name Flavius), and eventually became a noted 
historian [2]. He relates that it was either luck or God’s 
Hand that saved both him and his friend (amazingly, the 
second-to-the-last soldier selected). Knowing where to 
stand relative to the starting point in order to be the last 
one selected is not an intuitively obvious proposition. We 
suspect that Josephus, who by all accounts was a clever 
fellow, perhaps engaged in a little experimental mathe-
matics with pebbles in the sand to be absolutely sure of 
an empirical solution. By the way, if it ever comes up, 
stand in the 31st position or the 16th position if you can 
trust the guy in the 31st position. 

The so-called Extended Josephus Problem [3] is a gen- 
eralization of the suicide circle and considers N  objects 
arranged in a circle where we skip over m  o ects and 
then remove the 

bj
 1m  st o

is ry 

bject around the circle in one 
direction from a fixed starting point until only one object 
remains. We want to know the position of the surviving 
object relative to the starting point. A deeper question 
involves the exact “kill sequence”, or the de- tailed order 
in which the objects are eliminated. For arbitrary m  and 
N  th  is a ve difficult problem in the Extended Jose-
phus case. If instead of skipping over m  objects and 
removing the  1m  st, we e m  objects and skip 
over the 

 remov
 1m  st, we  problem that is in an ob-

vious sense complementary to an Extended Josephus 
Problem with parameters m  and . We ill recog-
nize the complementary problem as a  ,N m  T

have a

ma-
N w

as
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nian Shuffle. If we save the first object and then remove 
m  objects iteratively, we have a Texas Shuffle. Note 
that the simplified version of the Josephus problem in 
which there are N objects and the elimination rule is 
“skip one, kill one, repeat” is identical to the 

 
 ,1N  

Texas Shuffle. There is an elegant shortcut method [4] 
for determining the survivor object in this case using 
binary arithmetic, but the justification of the method re-
lies essentially on the details of Proposition 1. An inter- 
esting variation in a different direction concerns the 
study of patterns which emerge in sequences generated 
by reducing  by various moduli [5].  ,1N

N

N



 

The Extended Josephus problem doesn’t have a simple 
solution, but many have tried attacking it in different 
ways [6]. Others have tried finding algorithms [7]. Re- 
cently an interesting further generalization [8] was con- 
sidered where, in the setting of Josephus, each person has 
a set number of “lives” before they are eliminated. In this 
paper, we find a very simple solution to our generaliza- 
tion to the Josephus problem, and present it in terms of 
shuffling cards. Here we describe each type of shuffle. 

2. Types of Shuffles 

2.1. The Australian Shuffle 

Given a deck of  cards numbered 1 to  from the 
top, we subject them to the Australian Shuffle by putting 
the top card on the table, then putting the next card on the 
bottom of the deck. This is repeated until all of the cards 
have been placed in order, each on top of the preceding, 
onto the table. We want a formula for the original posi-
tion  of the th card placed on the table, which 
would be the top card of the permuted deck. More mathe- 
matically, we seek , where the permutation 

N



 1π 1

   π : 1, 1,N  N  affects the structured shuffle. Al- 
though the Australian Shuffle formula is a sub-case of 
the result below for more general permutations of this 
nature, we think a direct proof is worth presenting sepa- 
rately. The Australian case lends itself to a simple proof 
and it gives a hint as to what the extended result might 
look like. 

2.2. The Tasmanian Shuffle 

A natural generalization of the Australian Shuffle would 
be to repetitively discard an arbitrary but fixed number of 
cards before putting one on the bottom of the deck. Since 
we go further south with discards before the “Down Un- 
der” move, let us call permutations of this type Tasma- 
nian Shuffles. This introduces a complication not present 
in the original problem. If at some point during the exe- 
cution of the Tasmanian Shuffle there are fewer cards in 
the surviving packet than in the number to be placed on 
the table, then the very next down move eliminates that 
surviving packet completely, and we have to decide 

which card is to be regarded as the last discard. Let us 
adopt the convention that the card on the bottom of any 
such final discard packet is the “last one standing”. We 
refer to a Tasmanian shuffle that progressively eliminates 
$m$ cards and saves the  1m  st card by transferring it 
to the bottom of the deck as an   Tasmanian 
Shuffle. Then the Australian Shuffle is an 

,N m
,1N  Tas- 

manian Shuffle. It will also be convenient to denote by 
 ,N m  the last card dealt in a Tasmanian Shuffle, 

subject to the convention above. If ,N m  then 
 ,N m N  . Otherwise, we have  cards.  N m

2.3. Example 1 

For an example of the Tasmanian Shuffle, consider a 
deck with 24 cards (a standard Euchre Deck), numbering 
the cards 1 through 24, and with a skip factor of 2. The 
elimination order would then be 1, 2, 4, 5, 7, 8, 10, 11, 13, 
14, 16, 17, 19, 20, 22, 23, 3, 6, 12, 15, 21, 24, 9, and the 
last card would be the 18th. 

3. Main Results 

The purpose of this paper is to find the last card in each 
of the different shuffles proposed. The following two 
propositions give a simple formula for the last card. 

3.1. Proposition 1 (Australian Shuffle Last Card) 

With the preceding setup, the last card of the Australian 
Shuffle is  2 2kN    where k is maximal subject to  

2 N.  Alternatively, .   lg2 2 NN  

3.2. Proposition 2 (Tasmanian Shuffle Last  
Card) 

Let  ,N m  be the original position in a deck of  
cards of the last card dealt in an 

N
 ,N m  Tasmanian 

Shuffle. Then: 
1) If N m , then  ,N m N 

N
. 

2) If , then  can be put in the form N m

 1 ,m m
   t  

where  1 , modm N m    , and   is as large as 
possible, in which case 

   , 1N m m t   . 

Clearly the Australian Shuffle is a special case of the 
Tasmanian Shuffle where  1.m 

4. Proofs of the Main Results 

4.1. Proof of Proposition 1 

Note that the first pass of the shuffle through the  N
cards produces a surviving deck of 2N  cards if N  is 
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even and  1 2N   cards if N  is . In any case the 
survivors r original order. This surviving deck 
is then shuffled according to the rule if N  is even, since 
the first card of the surviving deck is placed down. But if 
N  is odd, the parity of the rule is reversed and the first 
card of the surviving deck is placed under. We prove this 
formula using strong induction on .k  If 0,k

 odd
are in thei

  then 
2N   and the shuffle puts the second card last on the 

which a  with the formula. Assume that the 
formula is correct for all k k
table, grees

   so  12 2 ,kN     
for N  satisfying 12 2k kN   . 

is eve and 2k N  pC
thr

a

c

se (1): N  
ck

s 

n 12 .k  One
,n N 
he rema


1,3

ith t

ass 

in
ough the de  places cards w , 1 on 

the table and creates a surviving deck ing 
cards 2, 4, ,n N   in their original order. The surviv- 
ing de

ith 
 w

k ha 2N  cards, hence 12 2 2 ,k kN    and 
the induction h thesis gives theypo  position   of the  

last card as  12 2 2 2 .k kN N      Now each  

card in the surv  in front of it iving deck w

d 

 ha

en

d a do

. 

1,

n 


he

card

2 .k  On
,  
 rem

originally, so  2 2 2 ,kN      and the formula is 
verified for k

Case (2):  odd an 12k N  
 with N  ev

N e pass through 
N

ainin
the deck places cards with n on the table 
and creates a surviving deck with g cards 

2,4, , 1 n N   in their original order. The surviving 
deck 

3,
t

has  1 2N   cards, so  12 1 2 2k kN    . 
The induction hypothesis doe y immediately to 

ince the parity of the shuffling rule 
is reversed. We remedy this by adding a ghost card on 
the top of the surviving deck and applying the usual shuf- 
fling rule to the augmented surviving deck, which has 
 

s not appl
the surviv cking de , s

1 2N   cards. The induction hypothesis still applies, 
since  1 2 2kN    if The ghost card is im- 
mediately removed from having a  
the shuffle, since the down under step is initialized on it. 
The remaining first actual card in the surviving deck is 
put under, and the cards that are passed to subsequent 
surviving decks will be identical to those that the re- 
versed-parity rule would have passed acting on the sur- 
viving deck without the ghost card. Now the strong in- 
duction hypothesis applies and gives the position 

2k . N
y


n  further influence on

  of 
the last card relative to the augmented surviving deck as  

  2 1 2 2 2 1kN N       . Since the ghost  

card was put on top of the actual surviving deck, the po- 

1k

sition of the last card relative  u

ne. 
ng our result agai

Comparing to the Ta position 2) 
k, 

to the naugmented deck is 
1.   As in Case (1), the position of the last card rela-

tive to the original deck is twice the position relative to 
k that survives the first round, so  
   2 1 2 2 ,kN       which again establishes the 

formula for k  with N  odd, and we are 
nst the magician’s empirical 

knowledge, we have 52 , so 5k   and  

the dec



do
Checki

N
 2 52 25 40   . Nothing up our sleeve. 

4.2. Example 2 

smanian Shuffle case (Pro
with a standard dec 52, 1,N m   hence 1.   Then 

5,   and we have 52 32 ,t   so 20t  ,  and  
   52,1 2 20 40,      as previously calculated. 

roof of Propo

om the comments above. F

4.3. P sition 2 

The first case is evident fr or 
se strong induction on 

then the only con- 
the second case, we fix m  and u
N . For the base case, set N  1,m   
sistent parameters are 1, 0,    and 1,t   so the 
formula returns  , 1N m m   , as expected. Now 

ume that the proposed f ue for all .N Nass ormula is tr   
Putting cards numbered 1 t esults in 
a reduced deck of

h
N m

ru m  
N

on the table r
     ca

at 
 w

rds remaining. If we 
immediately appeal to the induction hypothe  
would be ignoring the fact th running a Tasmanian 
shuffle on the reduce ould not conform to the 
permutation of cards induced by the Tasmanian shuffle 
on the original deck. We need to “initialize” the reduced 
deck by putting the card now on top of the reduced deck 

sis, we

d deck

 1m  th card in the original deck) on the bottom of the 
reduced deck of N m   cards. The induction hypothe- 
sis applies to the reduced and initialized deck, so we have 

meters , ,the para     and t  such that 

 1 ,N m m mt
        

where 1 ,m   modN m m    and     is as 
large as possible. Now since  dN m m    mo
clearly  dN m  Also, mo     is maxi  since mal,
any     would require N N   ,m  con ary to 
specification. By assumption we hav

tr
e 

   ,m m m tN  1 . 
ing the r

deck, so to find 

   Note that the process of ini- 
tializ educed deck (savin ard down un- 
der) moved each other card one posit

g the top c
ion higher in that 

 m,N   we must add one position 
back to  ,N m m  . And since we removed the first 
m  cards to get to the reduced deck of N m   cards, 
we finally have 

   
 

, , 1N m N m m m

m t m

     

   

    
1 1

1 1 1m t m t



     

 

.

But      1 1 1N m m t m m    ,t             
se for N


and the ca   is established. 

5. The Texas Shuffle 

uts the down under, 
 of the elimination step. To 

ll it a Texas (Chainsaw) Shuf- 
fle. So in brief, Tasmanian means eliminate first, then 

A variant of the Tasmanian Shuffle p
or preservation step, ahead
distinguish this case, we ca
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 If 

t

w ,  and 

skip, and Texas means save first, then eliminate. This 
variant is due to the authors attacking this problem (un- 
knowingly) in different ways. Fortunately, this difference 
results in a trivial change in the formula for the last card. 

5.1. Corollary 1 (Texas Shuffle Last Card) 

Let  ,N m  be the original position in a deck of N  
cards of the last card dealt in an  ,N m  Texas Shuffle. 
Then: 

1) If ,N m  then  , 1.N m   
2) , then N  can be put in the form 

 1 ,m m  

N m

 

here   1 , modm N m     is as large as 
po

1.

f: The first case is evident f
ider  ghost cards put in front 

of the sequence of  cards. Renum ug- 
mented deck of card oul ove the o nal cards
po

  and  Then  
  and since  

 we have  

 that once 

ssible, in which case 

   , 1N m m t    

Proo rom the algorithm gen- 
erating the shuffle. Cons  m

d m

e 

N
s w

bering the a
rigi  m  

sitions higher. Now run the Tasmanian algorithm on 
the augmented deck. After th first m  ghost cards are 
removed, the situation is indistinguishable from the Tex-
as Shuffle of just N cards. In this case,  

   , , ,N m N m m m      subject to the parameter 
conditions in Proposition 2. Evidently 

      , 1 1 1 1.N m m m m t m m t           

Hence    , 1 1.N m m t     

5.2. Example 3 

 

6. Conclusion 

ch e find a simple 
st card, and each proof uses a strong 
t. Thus, in the Josephus analog we can 
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