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ABSTRACT 

Coloring the nodes of a graph is a commonly used technique to speed up clique search algorithms. Coloring the edges 
of the graph as a preconditioning method can also be used to speed up computations. In this paper we will show that an 
unconventional coloring scheme of the edges leads to an NP-complete problem when one intends to determine the op- 
timal number of colors. 
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1. Introduction 

Let  be a finite simple graph. This means that 
 has finitely many nodes, that is, 

G V,E 
G V  is finite. Fur- 
ther  does not have any double edge or loop. In this 
special case an edge of  can be identified with a two 
element subset of . As a consequence the set of edges 

 of G  is a family of two element subsets of . A 
subgraph  of G is called a clique if two distinct nodes 
of  are always adjacent in G . A clique with  
nodes is simply called a -clique. The number of nodes 
of a clique is sometimes referred as the size of the clique. 
A 1-clique in G is a vertex of . A 2-clique in is an 
edge in . A 3-clique in  is sometimes referred as a 
triangle in . A -clique in  is called a maximal 
clique if it is not a subgraph of any -clique in . 
A k-clique in  is defined to be a maximum clique if 

 does not contain any 

G
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1 -clique. The graph  
may have several maximum cliques. However, each 
maximum clique in  has the same number of nodes. 
This well defined number is called the clique size of  
and it is denoted by . 

G

G
G

 G
Determining the size of a maximum clique in a given 

graph is an important problem in applied and pure dis- 
crete mathematics. A number of selected applications are 
presented in [1] and [2]. It was recognized in [3] that the 
efficiency of the clique search algorithms can be cru- 
cially improved by coloring and rearranging the nodes of 
the tested graph. In [4] instead of coloring the nodes a 
technique based on dynamic programming was used 
successfully. In [5] another coloring idea was presented. 
This time the edges of the graph were colored. Numerical 
evidence shows that the edge coloring provides sharper 
upper bounds for the clique size than the node coloring.  

However, the improved upper bound comes for a higher 
computational cost. 

We color the nodes of a finite simple graph  G V,E  
using colors. We assume that the coloring satisfies the 
following conditions: 1) Each node of  receives ex- 
actly one color; 2) Adjacent nodes in  never receive 
the same color. We will call this an  type coloring of 
the nodes of  with

k
G

G
L

G k colors. The letter  refers to 
the expression legal coloring. We may use the numbers 

 as colors. The coloring can be defined by a map 

L

1, , k
 ,: 1,f v  k  which is onto. Provided that  

    ,1 2v v 1v 2f f v 
,v v

 imply that v1 and v2 are not ad- 
jacent for each 1 2 V . 

We color the edges of a finite simple graph  G V,E  
using  colors. We suppose that for the coloring the 
next two conditions hold: 1) Each edge of  receives 
exactly one color; 2) If 

k
G

, , ,x y u v  are nodes of a 4-cli-
que in G , then the edges  ,x y

k

 and   cannot 
have the same color. We will call this a type coloring 
of the edges of  with  colors. In a conversation 
Bogdán Zaválnij proposed this edge coloring scheme. 
The letter  comes from the name Bogdán. The color-  

,u v
B

G

B
ing can be described by a map : 1, , g E   k  that is  

onto. We require that     , ,  ,g x y g u v  and  
   , ,x y u v    imply that , , ,x y u v

 , , ,
 are not nodes 

of a 4-clique in  for each  G x y u v 
G
E . 

Problem 1. Given a finite simple graph  and given 
a positive integer . Decide if the edges of  have 

 type coloring using k  colors. 
k G

B
The smaller is the number of colors  for which the 

edges of  have a  type coloring the more useable is 
the coloring in connection with clique search. The main  

k
G B

result of this paper is that Problem 1 is NP-complete for 
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Table 2. The lists of the neighbors of the nodes in H. 3k  . The intuitive meaning of this result is that deter- 
mining the threshold value of the colors k in Problem 1 is 
computationally demanding. Consequently, in practical 
computations we have to resort on approximate greedy 
algorithms and we have to develop various heuristics. 

1 2 6 7 

2. The Auxiliary Graph H 

In this section we construct an auxiliary graph. This will 
play the role of building blocks in further constructions. 
Let us consider the graph  , H V E  given by its ad- 
jacency matrix in Table 1. The graph H  has 14 nodes 

1 14  and 24 edges. The rows and columns of the 
adjacency matrix of are labeled by the nodes. The bul- 
let in the cell at the intersection of row i  and column 

, ,v v
H

v
jv  records the fact that the unordered pair  is an 

edge of 
 ,i jv v 

H . The reader will notice that in Table 1 the 
node i  is replaced by , that is, the letter  is sup- 
pressed and only the index is used. In Table 2 each 
node and its neighbors are listed. This is another way to 
describe the graph 

v i v
i

H . The set of neighbors of the node 
 in  is denoted by  and by definition  

. Finally, the geometric re- 
presentation of the graph

v G
 N v

 N v
V  : ,v x x  ,Ex

H is given in Figure 1. Right 
below each node we recorded the color of the node. But 
at this moment the reader may ignore the colors. In order 
to avoid a cluttered figure we used two copies of the 
nodes 1  and 14 . One can imagine that the figure is 
drawn on a strip of paper. Then we fold the strip to form 
a cylinder identifying the shorter sides of the strip. Thus 
the graph 

v v

H is drawn on the surface of a cylinder and we 
arrange things such that the two copies of  coincide  1v
 

Table 1. The adjacency matrix of graph H. 

          1 1 1 1 1

  1 2 3 4 5 6 7 8 9 0 1 2 3 4

 1 × ●    ● ●    ● 

 2 ● × ●        ●

 3  ● × ●     ●  ●

 4   ● × ●   ●   

 5    ● × ● ●    ●

 6 ●    ● ×     ●

 7 ●      × ●    ●

 8     ●  ● × ●   ●

 9    ●   ● × ●  

1 0   ●     ● × ● ●

1 1 ●        ● × ●

1 2   ●    ●    × ●

1 3     ●    ●  ● ×

1 4  ●    ● ●    ● ×

11 

2 1 3 14  

3 2 4 10 12 

4 3 5 9  

5 4 6 8 13 

6 1 5 14  

7 1 8 14  

8 5 7 9 12 

9 4 8 10  

10 3 9 11 13 

11 1 10 14  

12 3 8 13  

13 5 10 12  

14 2 6 7 11 

 

v1 
2 

v14 
3 

v2 
1 

v11 
1 

v10 
c 

v3 
c 

v9 
c 

v4 
c 

v8 
c 

v5 
c 

v7 
1 

v6 
1 

v14 
3 

v1 
2 

v12 
c 

v13 
c 

 

Figure 1. Graph H with colored nodes. 
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and also the two copies of 14  coincide. The properties 
of the graph 

v
H  we will use later are spelled out for- 

mally as a proposition. 
Proposition 1. (1) The graph H  does not contain any 

3-clique. (2) In an  type coloring of the nodes of L H  
with 3 colors the nodes 1v  and 14  must receive the 
same color. (3) The nodes of 

v
H  do have an  type 

coloring with 3 colors.  
L

Proof. The statements of the proposition can be veri- 
fied by simple inspections. Here is how the inspection 
goes in connection with statement (1). Pick the bullet in 
the cell at the intersection of row  and column 2v . 
This bullet represents the edge  1 2 . Scanning the 
rows  and  of the adjacency matrix we can see 
that 2 . This means that the edge 

1 2  cannot be a side of any triangle in 

1v
,v v 

1v
N v


2v
1 N v    

 ,v v H . Then 
repeat the argument for all the 24 edges of H . 

In order to prove the statement (2) let us assume on the 
contrary that there is an L type coloring  : 1, 2,f V  3  
of the nodes of H  such that 14 1  f v f v

3


 14f v 
. We may 

assume that  and  since this is 
only a matter of rearranging the colors 1, 2, 3 among 
each other. Note that 

 1f v 2

 1f v  and  11 f v
 f v 

 must be equal 
to 1. From this it follows that  and   2,33

. A similar argument gives that    10 2,3f v 
   ,


6 7f v f v  must be equal to 1 and    5 2,3f v  ,  

   8 2,3f v  . This portion of the reasoning can be fol- 
lowed in Figure 1. We distinguish four cases listed in 
Table 3. Let us consider case 1. As  3 2f v   and 

, it follows that  8 2f v   12 1f v   must hold. Simi- 
larly,  must hold. But 12v  and 13  are ad- 
jacent nodes in and so we get the contradiction that 

12 13

 13f v 

  

1
H


v

f v f

 5 3f v 

v . The situation is illustrated in Figure 2. 
Let us consider case 2. From  and  

, it follows that 
 3 2f v 
 4 1f v 

v
 must hold. Simi- 

larly,  must hold. But 4  and 9  are adja- 
cent nodes in 

 9f v 1 v
H  and so we get the contradiction that 

  4 9f v f v . Each of the remaining cases can be han-
dled in an analogous way. The reasoning can be followed 
in Figure 3. 

The statement (3) can be proved by exhibiting a re- 
quired coloring. This is done in Figure 4. 

3. The Auxiliary Graph K 

Using the graph H  we construct a new graph K . Let 
 

Table 3. The cases. 

case f(v3) f(v10) f(v5) f(v8) 

1 2 3 2 3 

2 2 3 3 2 

3 3 2 2 3 

4 3 2 3 2 

v3 
2 

v10 
3 

v4 
c 

v5 
2 

v9 
c 

v8 
3 

v12 
1 

v13 
1 

 

Figure 2. Case 1. 
 

v3 
2 

v10 
3 

v4 
1 

v5 
3 

v9 
1 

v8 
2 

v12 
c 

v13 
c 

 

Figure 3. Case 2. 
 

1 14, ,x x , 1 14  be pair-wise distinct points. These 
will be the nodes of . We connect the nodes 

, ,y y
K ix  and 

i  for each y , 1i i 14  . The edge  ,i ix y  of  and 
the node  of 

K
iv H  correspond to each other mutually. 

The edges  ,i ix y  , 1 14i i 

K

 form a matching in 
In other words these edges do not have any common end 
points and their end points give all the nodes of . We 
will call these edges of primary edges. We will call 
all the other edges of  secondary edges. If i  and 

K . 

K

vK
jv  are adjacent nodes in H , then we add the following 

edges to . K

 ,i jx x   ,i jx y       (1)  ,i jy x  ,i jy y 
Figure 5 illustrates the construction. If i  and v jv  

are not adjacent nodes in H, then we do not add any new 
edge to K . The new graph K  has    42 1 28    

nodes and      14 24 4   110  edges. 

To the node i  of H we assigned the edge v  ,i jx y  
of . To the edge K  ,i jv v  of H  we assigned the 
4-clique in K whose nodes are j j, ,i i ,x y x y . Collapsing 
the nodes ix  and jy  to one point the edges (1) col- 
lapse to an edge and from  we get back an isomor-  K
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Figure 4. Graph H with colored nodes. 
 

yj 

vi 

vj 

xi yi 

xj 
 

Figure 5. The correspondence between H and K. 
 
phic copy of H . We summarize the properties of K  
we will need later in two propositions. 

Proposition 2. (1)   4K  . (2) In each 4-clique in 
K  there are exactly two primary edges. 

Proof. Clearly, K  contains a 4-clique. In order to 
prove statement (1) it is enough to verify that K  does 
not contain any 5-clique. We assume on the contrary that 
K  contains a 5-clique. As the primary edges form a 
matching in K , a 5-clique in K  can have only 0, 1, 2 
primary edges. The cases are depicted in Figures 6-8,  

 

Figure 6. A 5-clique without primary edge. 
 

 

Figure 7. A 5-clique with one primary edge. 
 

 

Figure 8. A 5-clique with two primary edges. 
 
respectively. The primary edges are marked by double 
lines. Let us suppose first that the 5-clique does not have 
any primary edge. Then there are 5 primary edges joining 
to the 5-clique. From this it follows that H must contain a 
5-clique. When the 5-clique contains exactly one primary 
edge, then the graph H must contain a 4-clique. Finally, 
when the 5-clique contains exactly two primary edges, 
then H must contain a 3-clique. But by Proposition 1, H 
does not contain any 3-clique. This contradiction proves 
statement (1). Statement (2) can be proved using the 
same technique. 

Proposition 3. (1) The edges of  have a  type 
coloring with 3 colors. (2) In each such coloring of the 
edges of  the edges 

K B

K  1 1,x y  and  14 14, x y  must 
receive the same color. 

Proof. Let  : 1, 2,f V  3  be an  type coloring L
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of the nodes of  , H V E . By Proposition 1, such col- 
oring exists. Using f  we can construct a  type col- 
oring  of the edges of 

B
 1, 2,3:g F   , K W F


 . We 

can achieve this by setting  ,i ig x y  to be equal to 

i f v . If  and iv jv  are adjacent nodes in H , then 
the nodes , , ,i i j jx y x y

 j

 are nodes of a 4-clique in .  K
Now  if v f v  and so     ji i j ,,g x y

  ,i i

g x y .  

The remaining four edges of the 4-clique we color in the 

following way. Set g x y ,  ,i jg x y  to be 

equal to  i f v  and set   ,i jg y x ,  ,i jg y y  to  

be equal to  jf v . A routine inspection shows that the 
edges of the 4-clique whose nodes are i i j j, , ,x y x

B

: 1, 2g F

1,

y

K
K

,3

 
have a type coloring with 3 colors. (The reader will 
notice that in fact we used only 2 colors to color the 
nodes of the 4-clique.) This coloring procedure can be 
repeated for each 4-clique in  which has exactly two 
primary edges. By Proposition 2, each 4-clique in  
has exactly two primary edges and so each edge of  
is colored. Therefore the edges of  have a type 
coloring with 3 colors. This proves statement (1). 

B

: 1, 2

K

K

:f V 

In order to prove statement (2) let  be 
a  type coloring of the edges of K. Using g we can 
construct an L type coloring  



 2,3
B

f V
 i

,3  of the nodes of H. Simply we set 

f v   if v  to be equal to   ,i jg x y . 

4. The Auxiliary Graph L 

Let  , K W F 
 ,

   be an isomorphic copy of  
K W F

K
  such that the sets  and W  are disjoint. 

Using  and 
W 

K 

  14 14,x y

K

 we construct a new graph  by 
adding the following edges to . 

L

 14y y

L

  14 14, , ,y x    14 14, ,x x  14,    (2) 

Figure 9 illustrates the construction. These edges con- 
nect the graphs  and K  . The resulting graph is de- 
noted by L. The graph L has   2 2 8 56  nodes and  

 4   2 110 
L

 224  edges. The properties of the  

graph  we will need later are spelled out in the next 
 

x14 

(x14)′ 

y14 

(y14)′ 

 

Figure 9. Connecting the graphs K and K′. 

proposition. 
Proposition 4. (1) The edges of  have type col- 

oring with 3 colors. (2) In such a coloring of the edges of 
 the edges 

L B

L  1 1,x y  and  14 ,x 14y  cannot receive the 
same color. 

Proof. By Proposition 3, the edges of K  have a  
type coloring with 3 colors. In such a coloring of the 
edges of 

B

K  the edges  1 1,x y  and  14 , 14x y  must 
receive the same color. Because the colors of the edges 
can be exchanged among each other freely we may in 
fact prescribe the colors of these edges. Similarly, the 
edges of K   have a type coloring with 3 colors. In 
the coloring of the edges of 

B
K   the colors of the edges  

    1 1,x y   and     14 14,x y   must be equal. Again  

the color of these edges can be prescribed. Because of the 
presence of the edges (2) the edges  14 14, x y  and  

    14 14,x y   must receive distinct colors. 

5. The Main Result 

We are ready to prove the main result of this paper. 
Theorem 1. Problem 1 is NP-complete for 3k  . 
Proof. Let  ,G V E

L

 be a finite simple graph. Us-
ing  we construct a new graph  which 
satisfies the following two requirements: 1) If the nodes 
of  have an  type coloring using 3 colors, then the 
edges of 

G

G

 ,G V E   

G  have a  type coloring using 3 colors; 2) 
If the edges of 

B
G  have a  type coloring with 3 col- 

ors, then the nodes of G  have an  type coloring 
with 3 colors.  

B
L

Let  be all the vertices of G. This means that 1, , nv v
 1, , nv

iv
V v . We assign two points i  and i  to 
the node  for each 

w z
, 1i i n 

iz

. We choose the points 

1 , 1  to be pair-wise distinct. We con- 
nect the nodes i  and . In other words 

, , nw w z , , n
w

z
 i iw z,  is 

an edge of G for each , 1i i n  . For each 
, , 1i j i j n    we consider an isomorphic copy  

 , , ,,i j i j i jL W F  of the auxiliary graph  ,L W F . If  

iv  and jv
G

 are adjacent nodes in , then we insert 
 to 

G
,iL j   such that the edge  of  ,i iw z G  is iden- 

tified with the edge   L, ,1 , ,1,i j i jx y  of . Further the  ,i j

edge  ,j jw z  of G  is identified with the edge  

   , ,1 , ,1,i j i jx y  
 
 

 of . If  and ,i jL iv jv  are not adja- 

cent in , then we do not add any new node or new 
edge to 

G
G . 

We may say that the graph  is a blown up version 
of the graph . Each node of  is replaced by two 
connected nodes in 

G
G G

G . Further an isomorphic copy of 
the graph  plays the role of each edge of  in GL G  . 
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One can collapse the nodes  and  of Giw iz   to one  

point. If   and  ,i iw z ,j jw z  are connected with an  

isomorphic copy ,i j  of , then one can collapse  
to a single edge. In this way one recovers the graph  
from the graph .  

L

G

L ,i jL
G

Let us suppose first that the nodes of  ,G V E

E . We


3
 ,V 

 
have an  type coloring . We define 
an edge coloring :g  G   
set  

L

,i i

1: , 2,
2,3  of

f V
1,E 

g w z be equal to  to if v iv  and . If jv  
e adjacent nodes in G , then in the way we have seen 

in the proof of Proposition 4 we can extend the coloring 

of the edges    , ,1 , ,1, ,i i i j i jw z x y  and  

ar
 


h e e graph  

 Thus the edges of a

tha  is a 
ty

     , ,1 , ,1, ,i i i j i jw z x y   


   to eac

 have 

t 

dge

 

: 1

 of th

type coloring as 

 , 2,3

,i jL .
clai

G
 

 B
med in statement (1).

Let us suppose next g E B  
pe coloring of the edges of  ,G V  

coloring 
E   . We define a

 : 1, 2,3f V   of t G  by setting 
 i

he nodes of 
f v  to   , be equal to i ig w z . We claim that 

 f v  and i j at iv  and  f vi j  imply th jv  are 
des in In order to pro e the claim let 

us assume on the contrary that    if v f v , i j
not adjacent no G . v

j   
and the nodes iv , jv  are adjacent in ro  

 
G

, ,

. By P posi-

tion 4,     , ,1 , ,1 , ,1 , ,1i j i j i j i jg x y g x y     
  

g giv

 holds.  

On the other hand the definitio h rin es tn of t e colo hat  

       , ,f v g w z g x y  . Similarly, by the  , , ,1i i i i1 ,i j

, ,1i


j

,1i
 

 

definition of the coloring  


m

we get the contradiction

      , ,
     ,i i i j jf v g w z g x y 
 

. Fro  this  

    i jf v f v

ld recall t

 graph a

. This 

o th

nd su

proves

 the proof on ou e result 
th

6. The Derived Graph 

ple ppose

pa

From  we construct a new graph . The 
nodes of 

G  ,U F 
  are the edges of , that is, UG E . Two 

distinct nodes  ,x y  and   of   are connected  ,u v
   , ,u vx y 

 
statement (2). 

To complete e sh
at the problem of deciding if the nodes a given simple 

graph have a L  type coloring with 3 colors is an NP- 
complete problem. Proofs of this well-known result can 
be found for example in [6,7]. 

Let  ,G V E  be a finite sim  
that find a B  type coloring of the edges of 
G . A possible interpretation of the main result of this 

per is that determining the optimal number of colors is 
a computationally demanding problem. In practical com- 
putations we should be content with suboptimal values of 
the number of colors. 

we want to 

in Γ if   and , , ,x y u v  are not nodes  

of a 4-clique in . In the lack of established terminal- 
ogy we call  the derived graph of G. The essential con- 
nection between G and 

G

  is the following result. 
Proposition 5. The nodes of  have an  type col- 

oring with k colors if and only if the edges of  have a 
 type coloring with k colors. 

 L
G

B
The reader will not have any difficulty to check the 

veracity of the proposition. The result makes possible to 
apply all the greedy coloring techniques developed for 
coloring the nodes of a graph. When the graph  has n 
nodes it may have 

G
 2O n
G

G

 edges. For instance when  
has 4000 nodes, then  may have 10 millions edges. In 
this case the adjacency matrix of does not fit into the 
memory of an ordinary computer. Thus one should 
compute the entries of the adjacency matrix from the 
adjacency matrix of  during the coloring algorithm. 
The most commonly used greedy coloring of the nodes 
of a graph takes 

G



 2O n  steps. Applying this technique 
to the derived graph we get an algorithm whose compu-
tational complexity is  4O n . The author has carried 
out a large scale numerical experiment with this algo-
rithm. The results are encouraging. 
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