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ABSTRACT 

In Systems Biology, system identification, which infers regulatory network in genetic system and metabolic pathways 
using experimentally observed time-course data, is one of the hottest issues. The efficient numerical optimization 
algorithm to estimate more than 100 real-coded parameters should be developed for this purpose. New real-coded 
genetic algorithm (RCGA), the combination of AREX (adaptive real-coded ensemble crossover) with JGG (just 
generation gap), have applied to the inference of genetic interactions involving more than 100 parameters related to the 
interactions with using experimentally observed time-course data. Compared with conventional RCGA, the 
combination of UNDX (unimodal normal distribution crossover) with MGG (minimal generation gap), new algorithm 
has shown the superiority with improving early convergence in the first stage of search and suppressing evolutionary 
stagnation in the last stage of search. 
 
Keywords: Inverse Problem; S-System Formalism; Gene Regulatory Network; System Identification; Real-Coded  
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1. Introduction 

A system is not just an assembly of more than two 
components which have unique function and show time- 
variant behavior. Since there are principles that govern at 
the system-level, mere collection of database of com- 
ponents does not lead to the understanding of system’s 
functional property. The aim of systems biology is to 
understand how functional properties and behavior of 
living organisms are brought about by the interactions of 
their constituents such as genes, proteins, metabolites and 
so on. The research strategies of systems biology can be 
divided into the following four fields: 1) System iden- 
tification: inference of interaction between system com- 
ponents, 2) System analysis: dynamics of time-variant 
components, 3) System control: control toward the de- 
sirable condition of the system, 4) System design: design 
the system which realizes a certain dynamic or time- 
variant behavior, which expands to the research field, 
“Synthetic Biology”. These research developments are  

strongly supported by mathematical and computational 
methodologies, such as inference algorithm, statistical 
analysis, numerical calculation, nonlinear optimization, 
computer simulation and so on. Especially at the research 
field of systems identification, in order to infer the 
interaction among systems components, we have to de- 
velop the powerful inferring engine, in which large num- 
bers of real-coded parameter values related to the inter- 
actions can be estimated efficiently using experimentally 
observed time-course data; algorithm of powerful nu- 
merical optimization for inverse problem involving more 
than 100 numbers of numerical parameters. 

Organizationally complex systems such as gene re- 
gulatory networks and metabolic pathways are composed 
of many interacting components. In the many cases, the 
details of the molecular mechanism that govern inter- 
actions among system components are not well known, 
however, how do we represent mathematical model of 
such complex processes? most of theses processes are 
nonlinear. Description of these processes requires a re- 
presentation that is general enough to capture the essence  *Corresponding author. 
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of the experimentally observed response. One of the best 
approaches that satisfy this requirement is the “S-system 
[1]” which is a type of power-law formalism because it is 
based on a particular type of ordinary differential equa- 
tion in which the component processes are characterized 
by power-law functions (see Section 2). The S-system is 
suitable for conceptual modeling and describing organi- 
zationally complex systems including loop or cyclic- 
structure between system components. However, S-system 
formalism has a major disadvantage; this formalism in- 
cludes large number of parameters must be estimated. 
This number is 2n (n + 1), where n is the number of 
system components. 

Tominaga et al. have developed the numerical optimi- 
zation method based on the simple genetic algorithm 
(SGA) in S-system formalism [2]. However, the SGA 
has two problems that early convergence in the fast stage 
of search and evolutionary stagnation in the last stage of 
search. Then, real-coded genetic algorithms (RCGAs) [3] 
have attracted attention as alternative numerical optimi- 
zation methods to the SGA. One of the crossover oper- 
ators for RCGA, known as the unimodal normal distri- 
bution crossover (UNDX) [4,5], has shown good perfor- 
mance in optimizing various functions including multi- 
modal ones and benchmark functions with epistasis 
among the parameters. Sato et al. have proposed a new 
generation-alternation model called the minimal genera- 
tion gap (MGG) [6,7], to improve early convergence in 
the first stage of search and to suppress evolutionary 
stagnation in the last stage of search. So far, we have 
developed efficient numerical optimization method using 
S-system modeling and RCGAs, with a combination of 
the UNDX and the MGG. This method can be applied to 
not only the estimation of gene networks but also the 
estimation of metabolic regulatory network. Shikata et al. 
have applied this method to the estimation of the amino 
acid network [8]. However, this method has not been 
able to estimate 20 amino acids’ network (n = 20), 
because this method converges slowly in the early stage 
of search, followed by the stagnation of optimization. 

Therefore, in order to achieve the estimation of the 
larger network involving more than 100 real-coded 
parameters, we have developed a new estimation method 
using RCGA. The research group of Kobayashi has 
proposed just generation gap (JGG) [9,10], modified 
MGG. Akimoto et al. have reported that a combination 
of the adaptive real-coded ensemble crossover (AREX) 
with JGG showed the superiority in most of the bench- 
mark functions [11]. In this study, we have applied new 
RCGA, AREX + JGG, to the inverse problem in Systems 
Biology, that is inference of regulatory network in genetic 
system and metabolic pathways for realizing experimen- 
tally observed time-course data of system components, and 
have compared with conventional RCGA, UNDX + MGG. 

2. Method 

2.1. S-System Formalism 

The S-system [1] is a type of power-law formalism 
because it is based on a particular type of ordinary 
differential equation in which the component processes 
are characterized by power-law functions: 
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where n is the total number of state variables or reactants 
(xi), i, j (1 ≤ i, j ≤ n) are suffixes of state variables. The 
terms gij and hij are interactive effectivity of xj to xi. The 
first term represents all influences that increase xi, where- 
as these cond term represents all influences that decrease 
xi. In a genetic network context, the non-negative para- 
meters αi and βi are called relative inflow and outflow of 
gene xi, respectively, and real-valued exponents gij and hij 
are referred to the interrelated coefficients between genes 
xj and xi. Given the experimentally observed time-course 
data of xi, the task is to estimate the values of interrelated 
coefficients gij, hij and non-negative constant αi and βi, 
which can be realized experimentally observed time-course 
of xi. The S-system formalism has a major disadvantage 
in that this formalism includes large number of para- 
meters that must be estimated (αi, βi, gij, hij); the number 
of estimated parameters in S-system formalism is 2n (n + 
1), where n is the number of state variables (xi); the 
number of estimated parameters increases with the 
second power of the number of system component (n). 

2.2. Optimization Procedure 

Because the S-system is a formalism of ordinary 
nonlinear differential equations, the system can easily be 
solved numerically by using a numerical calculation 
program to be customized specifically for this structure. 
However, when an adequate time-course of relevant state 
variables is given, the set of parameter values αi, βi, gij 
and hij, in many cases, will not be uniquely determined, 
as it is highly possible that other sets of parameter values 
will also show a similar time-course. Therefore, even if 
one set of parameter values that explains the observed 
time-course is obtained, this set is still one of the best 
candidates to explain the observed time-courses. Our 
strategy is to explore and exploit these candidates within 
the immense searching space of parameter values. 

In this problem, each set of parameter values to be 
estimated is evaluated using the following procedure: 

Suppose that cal
d, ,i tx  is the numerically calculated time- 

course at time t of state variable xi in the d-th. Data set 
and that exp

d, ,i tx  represents the experimentally observed 
time-course at time t of xi in the d-th. Data set. The sum 
of the square values of the relative error between cal

d, ,i tx   
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and exp
d, ,i tx  gives the total relative error E; 
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where D is the total number of data sets observed under 
different experimental conditions, such as gene dis- 
ruption and over expression, N is the number of experi- 
mentally observable state variables, and T is the number 
of sampling points over time in one experimental con- 
dition. The computational task is to determine the set of 
parameter values that minimizes the objective function E. 

2.3. Real-Coded Genetic Algorithms (RCGAs) 

The genetic algorithm (GA) is stochastic search and 
optimization technique based on the mechanism of 
biological evolution, such as natural selection and natural 
genetics. The GA can seek out the “best” solution which 
will be found in regions of the search space containing a 
relatively high proportion of “good” solutions, that is, the 
GA can escape from trapping in local minima. The GAs 
employing real-valued vectors for representation of the 
chromosomes is called RCGAs [3]. The RCGAs are one 
of promising evolutional algorithms and are applied to 
several real world problems and have shown good results 
[12,13]. We have developed an efficient computational 
technique based on the RCGA called UNDX + MGG 
[14-16] and have applied to the inference of genetic 
interaction. In this study, we propose a new method using 
the RCGA, the combination of AREX (adaptive real-coded 
ensemble crossover) with JGG (just generation gap). 

2.3.1. UNDX 
The UNDX [4,5], unimodal normal distribution cross- 
over, generates offspring using the normal distribution 
defined by three parents, as shown in Figure 1. Off- 
springs are generated around the line segment, which is 
connecting two parents, P1 and P2. The third parent, P3,  
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Figure 1. UNDX for parameter search. 

is used to determine the standard deviation of the normal 
distribution. The standard deviation, which corresponds 
to the coordinate axis along the line segment, is prop- 
ortional to the distance between P1 and P2. The others are 
proportional to the distance of P3 from the line segment 
and multiplied by 1 l , where l is the number of 
parameters must be estimated; 2n (n + 1) for S-system. 
The effect of 1 l  is to keep the distribution of 
offspring around line segment against increasing the 
number of parameters must be estimated. The mathe- 
matical representation of 
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UNDX is as follows: 
where c1 and c2 are offspring vector, P1 and P2 are parent 
vectors, m is the middle point of P1 and P2, d1 is the 
distance between P1 and P2, d2 is the distance of the third 
parent, P3, from the line connecting P1 to P2. α and β are 
constants given by the user, and α = 0.5 and β = 0.35 are 
recommended. The e1 is the basis vector in a direction 
parallel to the coordinate axis along the line segment, and 
vectors ei (i = 2, 3, ···, l), which are linearly independent 
basis vectors perpendicular to the vector e1, are defined 
by Gram-Schmidt procedure for finding orthogonal 
vectors. 

2.3.2. MGG 
The MGG [6,7] is the generation-alternation model. 
Figure 2 shows the conceptual figure of the MGG the 
procedure of which can be summarized as follows: 

 

 

Figure 2. Conceptual figure of minimal generation gap 
(MGG). 
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1) Generation of initial population 
Make an initial population that is composed of random 

real number vectors. 
2) Selection for reproduction 
Select a pair of individuals by random sampling 

without there placement from the population. The select- 
ed pair of individuals becomes the parents of offspring. 

3) Generation of offspring 
Generate offspring by applying crossover to the pa- 

rents and evaluate the offspring. 
4) Selection for survival 
Select two individuals from the family containing the 

parents and their offspring; one is the best individual and 
the other is chosen using a roulette-wheel selection. 
Replace the parents chosen in step 2 in the population 
with the two selected individuals. 

5) Repeat the above procedures from step 2 to step 4 
until a certain stop condition is satisfied. 

2.3.3. AREX 
The AREX [11], adaptive real-coded crossover, is a 
crossover has been developed to improve the premature 
convergence in early stage. Akimoto et al. has proposed 
the AREX based on the REX [10,17], real-coded 
ensemble crossover, which is the generalization of 
UNDX-m [18]. The AREX generates λ candidate points 
ci (1 ≤ i ≤ μ; μ is the number of parents) around the 
center   1

1 jj
 of μ parents Pj (1 ≤ i ≤ μ), as 

shown in Figure 3. And the mathematical representation 
of the REX is as follows: 

P P
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where α is the expansion rate, all ,i j  are independently 
and identically distributed (i.i.d.) random numbers with 
the average 0 and the variance 



2 . There is arbitrariness 
in choice of the probability density function (p.d.f.) of . 
For example, if  obeys normal distribution 


  20,  , 

the candidate solution generated by Equation (4) obeys  
 

 

Figure 3. REX using normal distribution. 

the normal distribution  with mean vector 0 
and covariance matrix Equation (5). 
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The REX shows the good performance in ill-con- 
ditioned and variable dependent problems because of the 
invariance against scale transformations and rotation 
transformations. However, Akimoto et al. have reported 
that there are the situations where the REX is likely to 
cause early convergence [11]. Furthermore, being com- 
bined the adaption of expansion rate (AER) technique 
and the crossover mean descent (CMD) technique with 
the REX, they have proposed the AREX to solve the 
early convergence. 

The AER is the expansion rate which is controlled in 
the middle of the ongoing search process in AREX 
[11,17]. The CMD is a technique to shifts the center of 
the crossover to promising offspring point. The offspring 
are generated around the weighted average based on the 
ranking of evaluation values in parents. The CMD, m, is 
as follows: 

:
1

j i j
j

m w P




                 (6) 

where    2 1 1jw j       is the weight co- 
efficient under the condition of . 

1

The AREX is the crossover applying the CMD and the 
AER to the REX. The mathematical representation of the 
AREX is as follows: 
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2.3.4. JGG 
The JGG was proposed for multi-parental crossovers 
[9,10], and it is a modification model of MGG in two 
major points. First, the JGG does not employ elitist 
selection in evolution strategies. This modification makes 
a good effect on multimodal problems. Second, the JGG 
replaces parents with children completely in every 
generation. Figure 4 shows the conceptual figure of the 
JGG, and the procedure of the JGG can be summarized 
as follows: 

1) Generation of initial population 
Make an initial population that is composed frandom 

real number vectors. 
2) Selection for reproduction 
Select randomly μ parents from the population. The 

selected μ of individuals becomes the parents of 
offspring and μ = l + 1 is recommended [9,10], where l is 
the number of parameters must be estimated. 

3) Generation of offspring 
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Figure 4.Conceptual figure of just generation gap (JGG). 
 

Generate offspring by applying crossover to the pa- 
rents and evaluate the offspring. 

4) Selection for survival 
Select the top ranked μ individuals with respect to the 

fitness value from the offspring. And replace the parents 
chosen in step 2 in the population with the μ selected 
individuals. 

5) Repeat the above procedures from step 2 to step4 
until a certain stop condition is satisfied. 

3. Results 

We prepared an S-system network models composed of 
six genes, as shown in Figure 5, and of seven genes, as 
shown in Figure 6. In these figures, the arrow and T bar 
represent active and inhibitory interactions, respectively, 
and the numerals show the value of gij in S-system 
formalism. The S-system representation of Figures 5 and 
6 are shown in Table 1. We applied the conventional 
RCGA method (UNDX + MGG) and the proposed 
method (AREX + JGG) for inferring gene expression 
network candidates to these artificial gene regulatory 
network models. We prepared 7 types of time-course 
data (one a “wild-type” and six “one gene-disrupted 
strain”) for six genes network model (Figure 5) and 8 
types of time-course data (one a “wild-type” and seven 
“one gene-disrupted strain”) for seven genes network 
model (Figure 6), respectively. The number of sampling 
points in each time-course data set was 70. We calculated 
time-course data sets for the “one gene-disrupted strain” 
with the rate constant for the synthetic process of 
disrupted gene i(αi) set to 0. 

Using these networks, we prepared 4 case studies to 
compare the performance of UNDX + MGG and AREX 
+ JGG. The case studies 1 to 3 are for the estimation of 
the parameters of six genes network model, and case 
study 4 is for the estimation of the parameters of seven 
genes network model. In each case, the parameters must 
be estimate dare shown in Table 1. 

 

Figure 5. Six-genes network model. 
 

 

Figure 6. Seven-genes network model. 

3.1. Case Study 1 

First, in order to compare the convergence speed of two 
RCGA methods (UNDX + MGG, AREX + JGG), we 
performed the estimation of parameters in case study 1. 
In this experiment, we used the recommended default 
parameter [11,17] of RCGAs as follows: in UNDX + 
MGG, population size npop was set to 300, the number of 
offspring nc was set to 100, the number of parents np was 
set to 2, and in AREX + JGG, npop was set to 200, nc was 
set to 80, np was set to 21. We regarded the optimization 
terminated successfully when the total relation error E in 
Equation (2) is less than 0.1. We performed 50 trials, in 
each RCGA, and evaluated the performances with the 
average of 50 trials. Figure 7 shows the average of 50 
trials in E of each generation. As shown in Figure 7, it is 
obvious that the convergence speed of AREX + JGG is 
faster than UNDX + MGG. In all trials, both methods 
can be estimated the correct values of parameters shown 
in Figure 5. Comparing the CPU time (CPU: XeonE5540 
2.53 GHz, Memory: 8.0 GB), AREX + JGG was 
approximately 20-times faster than UNDX + MGG; the 
CPU time for AREX + JGG was 38.6 sec and that for 
UNDX + MGG was 765.0 sec. This experiment shows 
that AREX + JGG is remarkably better than UNDX + 
MGG in the convergence speed. 
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Table 1. Default parameters setting for UNDX + MGG and AREX + JGG. 

  
Total number of 
Parameters (l) 

S-system parameter must be estimated Given S-system parameters 

Case study 1 20 
gij (i = 2, 4, 5, 6, j = 1, 2, ···, 6; 
when I ≠ j) 

gij = 0.0 (when i = j), hij = 1.0 (when i = j), 
hij = 0.0 (when i ≠ j), αi = 1.0, βi = 1.0 

Case study 2 54 
gij (i = 1, 2,···, 6, j = 1, 2, ···, 6), 
hii (i = 1, 2,···, 6), αi (i = 1, 2, ···, 6), 
βi (i=1, 2, ···, 6) 

hij= 0.0 (when i ≠ j) Six-gene 
network model 

Case study 3 84 
gij (i = 1, 2, ···, 6, j = 1, 2, ···, 6), 
hij (i = 1, 2, ···, 6, j = 1, 2, ···, 6), 
αi (i = 1, 2, ···, 6), βi (i = 1, 2, ··· , 6) 

None 

Seven-gene 
network model Case study 4 112 

gij (i = 1, 2, ···, 7, j = 1, 2, ···, 7), 
hij (i = 1, 2, ···, 7, j = 1, 2, ···, 7), 
αi (i = 1, 2, ···, 7), βi (i = 1, 2, ···, 7) 

None 

 
maximum limit of generation (100,000). On the other 
hand, AREX + JGG succeeded the estimation of all 
parameters except when npop was set to 20l. Especially, 
AREX + JGG showed the best performance when npop 
was set to 30l. 

 

4. Discussion 

In this study, we proposed new inferred engine for es- 
timating the gene regulatory network using time-courses 
of gene expression data using real-coded genetic algo- 
rithm (RCGA) with combination of the adaptive real- 
coded ensemble crossover (AREX) and the just gene- 
ration gap (JGG). The combination of unimodal normal 
distribution crossover (UNDX) with the minimal gene- 
ration gap MGG has disadvantage in convergence and 
can estimate only a few parameters. The AREX works 
well in ill-conditioned and variable dependent problems, 
because the AREX has the invariance against scale 
transformations and rotation transformations [11]. The 
JGG is suited for multi-parental crossovers. The JGG is a 
modification of the MGG in the points that replaces 
parents with offspring completely every generation and 
does not employ elitist selection. Akimoto et al. reported 
the AREX + JGG outperforms the existing RCGAs in a 
number of function evaluations on various functions 
including functions whose landscape forms ridge 
structure or multi-peak structure. In this study, AREX + 
JGG showed remarkably better performance (convergence 
speed) than UNDX + MGG in all experiments. Table 2 
shows that AREX + JGG could solve the problems in 
which UNDX + MGG could not do that, and suggests 
that the adequate default parameter of the population size 
for AREX + JGG is 30l, where l is the total number of 
parameters. By employing AREX + JGG, we succeeded 
in improving the performances in the point of the con- 
vergence speed and the scalability in the number of es- 
timated parameters; compared with UNDX + MGG, the  

Figure 7. Convergence profile for AREX + JGG and UNDX 
+ MGG. 

3.2. Case Study 2, 3, 4 

Next, in order to evaluate the scalability of optimization, 
the number of parameters to be estimated increased in 
case studies 2 to 4. The default parameter of nc and np 

were set to the recommended values [11] for AREX + 
JGG. In case studies 2 to 3, in order to find an adequate 
the default parameter of npop for AREX + JGG, npop was 
scanned between 20l and 50l (l is the number of 
estimated parameters). In all runs, the maximum number 
of generation was set to 100,000. We regarded the 
optimization terminated successfully when the total 
relation error E in Equation (2) is less than 0.5. Table 2 
shows the result of convergence speed in UNDX + MGG 
and AREX + JGG. As shown in Table 2, UNDX + MGG 
could not estimate 54 and 84 parameters within the  
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Table 2. Results of convergence speed in UNDX + MGG and AREX + JGG. 

Given parameters 
 

Total number of 
Parameters (l) npop nc np 

Total relative
error (E) 

Last 
generation 

CPU time (sec)/run 

300 100 2 0.83 >100,000 27885.2 

1080 20l 216 2 0.89 >100,000 57680.5 

1620 30l 216 2 1.34 >100,000 74510.4 

54 
(Case study 2) 

2160 40l 216 2 4.00 >100,000 53628.4 

300 100 2 2.46 >100,000 27033.0 

1380 20l 336 2 3.37 >100,000 113824.0 

2520 30l 336 2 4.58 >100,000 105570.0 

UNDX + MGG 

84 
(Case study 3) 

3360 40l 336 2 5.73 >100,000 114232.2 

1080 20l 216 55 0.67 >100,000 59190.8 

1620 30l 216 55 0.50 2374 1367.2 

2160 40l 216 55 0.50 3759 2177.3 

54 
(Case study 2) 

2700 50l 216 55 0.50 3871 2228.2 

1380 20l 336 85 0.70 >100,000 139688.0 

2520 30l 336 85 0.50 3335 2801.6 

3360 40l 336 85 0.50 3931 3511.8 

84 
(Case study 3) 

4200 50l 336 85 0.50 4682 4214.7 

AREX + JGG 

112 
(Case study 4) 

3360 30l 448 113 0.50 4388 7449.0 

 
convergence speed and the scalability made rapid 
progress to approximately 5-foldand 20-fold, respectively. 

As described already, in S-system formalism, the 
number of parameters to be estimated is proportion to the 
second power of the number of system components (n). 
In this study, AREX + JGG could estimate maximum 
112 parameters, which corresponds to n = 7. Suppose we 
apply this method to the inference of regulatory network 
of all amino acids, we have to estimated 840 parameters 
because the total number of amino acids is 20 (n = 20). 
For the larger network estimation, we should further 
improve the proposed method. Substantially the GA can 
find the solution within a comparatively large searching 
range, but it is stepwise convergence, because the GA 
does not have an efficient local searching function. One 
of the methods having a local searching function is the 
modified Powell method. The modified Powell method is 
well known to have an ultimate fast convergence among 
the various direct-search methods without calculating the 
derivative of the objective function, especially where the 
objective function is well approximated by a quadratic 
form of parameters to be estimated. The modified Powell 
method can find the solution very quickly only when the 
initial guess is very near the solution; this method has no 
way to escape from a local minimum. The hybrid method, 
the RCGA and the modified Powell method, is expected 
to offer all advantages of both optimization techniques. 
We are now on going the development of the hybrid 

method by incorporation the modified Powell method 
into AREX + JGG, which is expected to become a more 
powerful optimization method for the larger network 
estimation. 
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