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ABSTRACT 

The combined optimization problem of resource production and allocation is considered. The spatial character of the 
problem is emphasized and cellular modeling is introduced. First a new enhanced harmony search algorithm is applied 
combined with cellular concepts. Then another new approach is presented involving a cellular automaton combined 
with harmony search. This second approach renders solutions with greater compactness, a desirable characteristic in 
spatial optimization. The two algorithms are compared and discussed. 
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1. Introduction 

In spatial optimization the combined problem of resource 
production and allocation is particularly challenging. It 
presents the difficulty of non-linearity in the objective 
function, if the production process is to be represented 
realistically and, also, the undesirable effects of high 
complexity. 

Characteristic problems of this category, involving 
water extraction and allocation, have been treated by the 
author and collaborators by means of cellular automata 
combined with meta-heuristics, such as genetic algo- 
rithms [1-3], simulated annealing [4] and stochastic and 
simulated evolution [5]. 

The introduction of cellular automata enables the 
representation of the spatial character of the problem, 
while the meta-heuristics serve the purpose of guiding 
the cellular automaton toward optimal arrangements or 
configurations. 

Harmony Search (HS) is a relatively new meta- 
heuristic [6] that has been studied intensively during the 
recent years and has been applied to a great variety of 
optimization problems [7-10]. This paper presents a new 
variant of harmony search designed for the solution of 
the spatial optimization problem just outlined. 

The next (second) section reviews the HS algorithm 
introducing notation that paves the way toward sub- 
sequent developments. The third section gives a descrip- 
tion of the problem, demonstrating at the same time the 
applicability of HS. The fourth section presents a new 
enhanced version of HS for spatial optimization. This 
version performs the so called “pitch adjustment” within 

cellular neighborhoods and it introduces local per- 
turbations on all members of the harmony memory, 
contrary to the conventional HS version. 

The fifth section presents a new alternative cellular— 
operative approach, combining the concept of cellular 
automaton with HS. The operative concept has been 
presented by the author in connection to a genetic 
algorithm [1,2] and it is again utilized here in connection 
to HS. Results and discussion are given in the sixth 
section, where the two approaches are compared and it is 
noted that the operative method yields more compact 
configurations. 

2. Review of the Harmony Search Algorithm 

The Harmony Search (HS) algorithm is presented in this 
section in a notation suitably adapted to the needs of the 
problem under study. 

Let f be a function to be minimized and 

 i 1 2g ,g , g lC =                (1) 

be a possible —component argument of f. This may 
also be considered as a possible solution to the optimi- 
zation of f.  



A set of I such “solutions” 

 i i1 i2 ig ,g , g , i 1, 2 I lC =             (2) 

will be called the “harmony memory”: 

 1 2 IHM , , , C C C                (3) 

and its members “harmonies”, according to the 
terminology of the HS (harmony search) algorithm [6], 
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while fi denotes the value of : iC

 i if f , i 1, 2, , I  C           (4) 

The harmony memory is obtained initially by ran- 
domly taking each gij, j = 1, 2, ···,  in Equation (1) 
from its respective domain Gj ( ij jg G ). 
Subsequently the following steps are executed: 


, j 1,2  

1) A new harmony is generated as follows: 
Let hmcr be a preset parameter of the algorithm called 

the “harmony considering rate”. A typical value of hmcr 
is 0.9. 

For j = 1, 2, ···,  
Let rj be a random number with   jr 0,1
If rj < hmcr, then  

    Let sj be an integer with   js 1,2, I 
    and , i.e.  is taken from 

jj s , j j

      the existing elements of the HM.  
h g  h

Else  is taken at random from its j

 respective domain Gj. 
h

  End If  
Next For 
2) The new harmony 

new 1 2h , h , h    lC 

j





            (5) 

thus formed is further modified by the so called “pitch 
adjustment rate”, which is another preset parameter of 
HS denoted as par. 

For j = 1, 2, ···,  
Let rp be a random number with   pr 0,1
If rp < par, then 

   h h ,  j j

   Else, , 
h   

h hj j

End If 
Next For 

where j  is a perturbation of j  within a pre- 
assigned allowable “bandwidth” and always inside the 
respective domain Gj. The bandwidth is another 
parameter of HS. Thus the new harmony of Equation 5 
becomes 

h h

new 1 2h , h , h lC =             (6) 

and its corresponding value, just as in Equation (4), is 
denoted as 

new newf f C                 (7) 

3) In order to decide whether the new harmony will 
enter the harmony memory, let max be the index of the 
harmony with the largest fi (Equation 4). 

If fnew < fmax, then Cnew is introduced into the harmony 
memory and Cmax is deleted. The HM is now renewed 
and control is transferred to step 1). 

The whole process is repeated for a maximum number 
of iterations. 

The HS algorithm has been tested for a large number 
of optimization problems [7]. A number of improvements 
have been suggested, mainly in the domain of continuous 
optimization. These improvements and/or variants con- 
cerned the adaptive, dynamic adjustment of parameters 
involved, such as the pitch adjustment rate and the band- 
width [8,9], as well as the application of concepts from 
particle swarm optimization [10]. 

The present optimization problem does not involve 
any continuous decision variables. It is a combinatorial 
optimization problem with a predominantly spatial character 
and the application of HS will require the formulation of 
a variant that will take special account of the spatial 
character. The problem is defined in the next section. 

3. Problem Description 

A two-dimensional array of cells may be employed in 
order to represent a rectangular area divided into land 
blocks. Each one of the cell-blocks receives a commodity 
from one of a certain number of production points. 

Let  1, 2, ,  C  be the set of cells numbered 
consecutively and let  

 P,Q,R, W
C W

 be the set of production points. 
Let w:  be a function assigning to each one of 

the cells the production point to which it is connected, i.e. 
 w j ,3 , , j 1, 2 W . 
The function w may be called a configuration or a 

mosaic, if each one of the cells takes the color of the 
production point to which it is connected, as shown in 
Figure 1. If this whole cell arrangement is considered as 
a cellular automaton [1], then w(j) may be considered to 
be the state of cell j.  

A neighborhood structure and a local transition rule 
will be needed in order to complete the definition of the 
cellular automaton. This issue will be addressed to later, 
in Section 5, in connection to a purely cellular approach. 
The present section will demonstrate the adaptation of 
the HS to the present problem, taking into account its 
spatial character. 

A cost s will be assigned to every configuration w. The 
cost s will be divided into a production cost sP and a cost 
of transportation sT: 

p Ts s s                 (6) 

The cost s is a functional mapping the set of all 
configurations to the set of positive reals: 

 

3     2    1

 

Figure 1. Problem representation. 
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 s w   

The functional s is determined as follows: 
Let q(j) be a function from the set of cells to the set of 

positive reals, expressing the quantity of the commodity 
supplied to cell j: 

q :  C  

If v is a production point, vW , then 

    1
v w v j : w j v   C C  

is the inverse image of v under the mapping w. It 
represents the set of cells connected to production point 
v. 

It follows that the total quantity required at production 
point v will be equal to 

 
v

v
j C

Q q


  j



              (9) 

The total production sp cost of Equation (8) is a 
function of the quantities of Equation (9), Q1, Q2, ···, QJ, 
where J is the number of production points. Thus, 

p p 1 2 Js s Q ,Q , ,Q           (10) 

The present treatment considers a nonlinear function in 
Equation (10). One typical example of nonlinear pro- 
duction function is the case of groundwater as the 
requisite commodity, as presented in [1,2]. In the latter 
case, the cost of production is the extraction or pumping 
cost of groundwater and the function of Equation (10) is 
formed through an appropriate model of groundwater 
movement. This paper deals with the same nonlinear 
problem by means of a different method, namely HS. 

The transport cost sT of Equation (8) is expressed as: 

 T j,w j
j 1

s d


 


              (11) 

where (x , y ) are the coordinates of the center of cell j, 

     the coordinates of the production point, to 
which cell i is connected and 

j j

 w j w jx , y 

       2 2

j ji,w i w j w jd x x y y     

the distance of cell i from the production point. 
It is obvious from Equations (9)-(11), that both types 

of cost, sP and sT, are functionals of w. 
The objective of the problem is to find the con- 

figuration that minimizes the cost s. The same problem 
has been solved by Sidiropoulos and Fotakis [1,2] by 
means of genetic algorithms, and recently by the same 
authors [5] using simulated and stochastic evolution. A 
similar spatial nonlinear problem was presented by Si- 
diropoulos [4] using simulated annealing.  

This paper presents another evolutionary procedure for 
the problem, competitive to the ones mentioned above, 
based on HS. Two alternative formulations are developed. 
The first one, described in the next section, is a more 
straightforward application of HS, while the second one 
is more indirect and more closely related to the cellular 
automaton concept. 

4. Solution through an Enhanced HS 

A small population of configurations or mosaics is 
initialized. Each one of these may be identified as a 
harmony, while their set forms the harmony memory, 
according to the definitions given in Section 2. Thus the set 

      i i i= w 1 , w 2 , , wiC        (12) 

where  iw j W , j = 1, 2, ···,  forms the harmony 
memory with wi(j) I = 1, 2, ···, I denoting I different 
possible configurations. 



The generation of new harmonies from the harmony 
memory may now proceed in the standard fashion as 
described in the Section 2. However, a specific definition 
is now needed for the pitch adjustment process. A natural 
proposal for this purpose is to consider each one of the 
cells in succession and apply pitch adjustment with a 
probability equal to par, as outlined above.  

In view of the cellular representation of the problem, it 
is also plausible to confine the pitch adjustment of each 
cell to its own neighborhood. Indeed, for each cell j a 
neighborhood N(j) is defined in the sense of von 
Neumann, as in [2] (Figure 2). 

The pitch adjustment process will be defined as 
follows: 

Let rp be a random number with .  pr 0,1
If rp < par, then pick one of the neighbors of the cell in 

question at random and exchange attributes between the 
cell and the chosen neighbor, Specifically. 

Let  jn N j  be the randomly chosen neighbor of 
the cell j. Then 

 
   
 

temp

j

j te

w w j

w j w n

w n w





 mp

 

End If 

 

Figure 2. Von Neumann neighborhood. 
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The above process is applied to all cells j (j = 1, 2, ···, 
) in succession and in a synchronous fashion. 
Although the spatial element was introduced into the 

algorithm through the pitch adjustment process, the overall 
approach did not yield satisfactory results presenting 
premature convergence to suboptimal solutions. For that 
reason the following novel modification to HS is intro- 
duced: 

Let  be the set of objective function 
values corresponding to the members of the harmony 
memory, sorted in ascending order.  

 1 2 If , f , , f 

If  I 1f f f εI  , where ε is a pre-assigned problem- 
dependent small number, the harmony memory is 
considered to have stagnated and it is subjected to 
perturbation. The perturbation is the same as described 
above for the pitch adjustment and it is applied to all 
members of the harmony memory, except the first one. 
The latter remains unaltered as an elite member. 

The purpose of this device is to escape local minima 
by giving a mild restart to the harmony memory. A 
similar idea is applied in the so called micro-genetic 
algorithms [11], in which the small population undergoes 
frequent restarts with the exception of the best member. 

This additional new characteristic helped in obtaining 
definitely improved results. The procedure described in 
this section may be termed an HS enhanced method. A 
cellular HS method will be presented in the next section. 

5. A Cellular-Operative Approach 

As in the previous section, let N(j) be the neighborhood 
of the cell j and let    n j N j  be one of the neighbors 
of cell j. Then the set 

      n 1 , n 2 , , n  O          (13) 

can be considered as an operator acting on a con- 
figuration 

      w 1 , w 2 , , w  C           (14) 

like the ones of Equation (12), as follows: 
Let    w j w n j  . Then the derived configuration 

     w 1 , w 2 , , w  C   

may be thought of as the product of an operation of the 
set  of Equation (13) on the configuration C  of 
Equation (14) and thus be denoted as 
O

 C O C                (15) 

This operative concept expressed by Equation (15) has 
been introduced in conjunction to a genetic algorithm for 
spatial optimization problems in [2], where more details 
can be found. Here, it will be embedded into an HS 
process. In this new approach the harmony memory will 
consist of a small population of operators of the type of 

Equation (13), instead of configurations of the type of 
Equation (12), as in the previous section. 

These operators will be applied to a base configuration 
(mosaic) generating an equal number of new mosaics. 
The latter are evaluated and the best one is singled out in 
order to form the next base mosaic. At the same time, the 
where    in j N j , j 1,2, ,     is randomly initialized, 
along with a random “best” configuration Cbest of the 
type of Equation (14). Then 

1) Obtain a new operator I+1 through generation of a 
new harmony and subsequent pitch adjustment, 
according to the HS scheme. 

O

2) Operate with the I + 1 operators on the best mosaic 
and obtain I + 1 new, derived mosaics: harmony memory 
of operators is renewed by the generation of a new 
operator according to the standard HS scheme. These 
operators act again on the current best mosaic and the 
process is repeated for a number of iterations. More 
specifically, 

A population of I operators of the type of Equation 
(13) 

      i i in 1 ,n 2 , , n , i 1, 2, , Ii    O     (16) 

i i best , i 1,2, , I 1   C O C   

3) Evaluate the I + 1 mosaics:  
 i if f , i 1, 2, , I 1  C  

4) Sort the I + 1 fi’s in ascending order and let “new” 
be the index such that  

 new i
1 i I 1

f min f
  

 and worst be the index such that 
 worst if max f
O1 i I 1  

5) Drop worst from the harmony memory. Thus I 
operators remain. 

. 

6) Single out new and let C best new

7) With best from step 6 and with the I operators of 
step (5) go to step (1). 

C C  
C

Repeat the above steps for a maximum number of 
iterations. 

Figure 3 shows a schematic representation of the 
cellular-operative HS. 

6. Results—Discussion 

A fictive rectangular area is considered with 15 × 15 
rectangular blocks with three wells placed in the 
following positions: 

     1 1 2 2 3 3x 20, y 0 , x 18, y 0 , x 20 y 0      .  

The hydraulic data of the problem are given in [5]. 
The problem of minimizing the combined water 

extraction-transport cost was treated by means of the HS 
enhanced algorithm of Section 4 and by the cellular-op- 
erative HS of Section 5 presented in this paper.  

Figure 4 shows the initial randomly generated mosaic, 
Figure 5 the resulting mosaic given by HS enhance  
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Figure 3. Cellular-operative algorithm. 
 

 
 

Figure 4. Initial configuration. 
Figure 6. Cellular-operative approach.  

 

 

The cellular-operative approach of Section 5 yields 
within a relatively small number of iterations satisfactory 
results that are also compact. Compactness of 
configurations is important in spatial optimization, as 
documented in [12]. The HS enhanced method, after a 
large number of iterations, gave results with slightly 
better objective function values, but inferior in terms of 
compactness.  

It is important to stress that the operative approach is 
fully consistent with the notion of the cellular automaton, 
in the sense that the cellular automaton is identified with 
the “best” mosaic and the HS scheme of the operators 
selects each time the most suitable operator that will 

Figure 5. HS enhanced method. 
 

method and Figure 6 the corresponding result of the 
cellular approach. 
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carry the current best mosaic to the next. It also needs to 
be noted that the operators may be considered as the car- 
riers of the local rules that transform mosaics. 

Finally, since the harmony search method does not 
seem to have been applied to problems of spatial optimi- 
zation, more research is needed in terms of extensive 
comparisons to other methods and for many more real- 
world problems of this category. 
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