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ABSTRACT 

In this paper we consider three problems in continuous multi-criteria optimization: An application of the Berge Maximum 
Theorem, properties of Pareto-retract mappings, and the structure of Pareto sets. The key goal of this work is to present 
the relationship between the three problems mentioned above. First, applying the Maximum Theorem we construct the 
Pareto-retract mappings from the feasible domain onto the Pareto-optimal solutions set if the feasible domain is 
compact. Next, using these mappings we analyze the structure of the Pareto sets. Some basic topological properties of 
the Pareto solutions sets in the general case and in the convex case are also discussed. 
 
Keywords: Multi-Criteria Optimization; Maximum Theorem; Pareto-Retract Mapping; Pareto-Optimal; Pareto-Front 

1. Introduction 

The Berge Maximum Theorem, shortly the Maximum 
Theorem, has become one of the most useful and power- 
ful theorems in optimization theory, mathematical eco- 
nomics and game theory. The original variant of the 
Maximum Theorem is as follows: 

Theorem 1 [1] [2, Theorem 9.14]. Let nX R

R

 and 
,  be a continuous function, and 

 be a compact-valued and continuous multi- 
function. Then, the function  defined by 

 is continuous on X, 
and the multifunction  defined by 

mY R
:D X 

 m x

 

:u X Y R 
Y

 max , |u x y y
:

  

:m X 

Y

D x
S X 

   x| ,y D x u x S x y m  is compact-valued 
and upper semi-continuous on X. 

The Maximum Theorem is often used in a special 
situation when the multifunction D is convex-valued and 
the function u is quasi-concave or concave in its second 
variable in addition to the hypotheses of Theorem 1. 

Now, we give a presentation of the classical variant of 
the Maximum Theorem. 

Theorem 2 [2, Theorem 9.17 and Corollary 9.20]. Let 
nX R  and , mY R :u X Y R 

Y
 be a continuous 

function, and  be a compact-valued and con-
tinuous multifunction. Define m and S as in Theorem 1. 

:D X 

(a) Then m is a continuous function on X, and S is a 
compact-valued and upper semi-continuous multifunc-
tion on X. 

(b) If ( , )u x   is quasi-concave in y for each x X , 
and D is convex-valued, then S is convex-valued. 

(c) If ( , )u x   is strictly quasi-concave in y for each 
x X , and D is convex-valued, then S is a continuous 
function on X. 

(d) If u is concave on X Y , and D has a convex 
graph, then m is a concave function on X and S is a con- 
vex-valued multifunction on X. 

(e) If u is strictly concave on X Y , and D has a con- 
vex graph, then m is a strictly concave and continuous 
function on X, and S is a continuous function on X. 

Remark 1. It is important to note the following two 
facts [2, Example 9.15 and 9.16]: 

(1) S is only upper semi-continuous, and not necessar- 
ily also lower semi-continuous. 

(2) The continuity of u on X Y  cannot be replaced 
with one of separate continuity, i.e., that  ,f y  is con-
tinuous on X for each fixed y Y  and that  ,f x   is 
continuous on Y for each fixed x X . 

Let us consider Theorem 2. It is possible to have 
( ) 1S x   for all x X . Obviously, the following theo- 

rem is true. 
Theorem 3. Let nX R  and , mY R :u X Y R 

Y
 

be a continuous function, and  be a com- 
pact-valued and continuous multifunction. Define m and 
S as in Theorem 1. If 

:D X 

  1S x   for all x X , then m 
and S are two continuous function on X. 
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2. Basic Concepts and Definitions 

It is easy to show that Theorems 1, 2 and 3 imply the 
following two theorems. 

Theorem 4. Let nX R
:D X 

 |y y D
:S X

 

,  be a continu- 
ous function, and  be a continuous multi-
function. Then, the function  defined by 

 is continuous on X, 
and the multifunction  defined by  

:u X R
X

:m X 
x
X

R
  max ,m x u x

   




  m x| ,u x yS x y D x    is upper semi-con- 
tinuous on X. 

Theorem 5. Let mX R
:D X X

,  be a continuous 
function, and  be a continuous multifunc- 
tion. Define m and S as in Theorem 4. If 

:u X R

  1S x   for 
all x X , then m and S are two continuous function on 
X. 

Now we will apply these two theorems to multi-crite- 
ria optimization. 

The general form of the multi-criteria unconstrained 
optimization problem is to find a variable  
 1 2, , , m

mx x x x R
     1 2, ,

, , so as to maximize  1m 
, n  f x f x f x f x  subject to x X , 

where the feasible domain X is nonempty and compact, 
 1,2, ,J n   is the index set, , 2n  :if X R

J
 is 

a given objective continuous function for all . i
Now we will introduce several solution concepts for 

our multi-criteria optimization problem. 
Definition 1. 
(a) A point x X  is called an ideal Pareto-optimal 

solution if and only if    i if x f y  for all y X  
and all . The set of the ideal Pareto-optimal solutions 
of X is denoted by 

i J
 ,IPO X f  and is called an ideal 

Pareto-optimal set. 
(b) A point x X  is called a Pareto-optimal solution 

if and only if there does not exist a point y X  such 
that    i if y f x  for all i  and J    k kf y f



x

 ,

 for 
some . The set of the Pareto-optimal solutions of X 
is denoted by  and is called a Pareto-optimal 
set. Its image 

k J
 ,PO X 

 
f

( ,f PO X f  PF X f  is called a 
Pareto-front set. 

(c) A point x X  is called a strictly Pareto-optimal 
solution if and only if there does not exist a point y X  
such that i  i f y f x  for all i  and J x y . The 
set of the strictly Pareto-optimal solutions of X is denoted 
by  and is called a strictly Pareto-optimal 
set. 

 ,X f SPO

The above definition qualifies Pareto-optimal solutions 
in the global sense. 

In literature, the term Pareto-optimal is frequently used 
synonymously with efficient, non-inferior and non-domi- 
nated. 

In our optimization problem, it can be shown that: 
 is nonempty, but   ,PO X f

 


,
1

, arg max
n

ii
IPO X f f X


  and   

may be empty; 

 ,SPO X f

  , , IPO X f PO X f  and  
   ,SPO X f  ,PO X f , see also [3-5]. 

Remark 2. It is well-known that  
   , ,O X f PO X f IP  when ,IPO X f

, n

 is nonempty 
[6]. 

Usually, a Pareto-optimal solution is not necessarily 
uniquely determined, but there are several Pareto-optimal 
solutions. 

For a better understanding of this paper, we recall 
some useful notations and definitions. 

To be precise, we introduce the following notations: 
for every two vectors x y R ,  
   1 2, , ,n n1 2, , ,x x x x y y y y   means i ix y  for all 

i J ,    , , , , , ,n n1 2 1 2x x x x y y y y   means i ix y  
for all i J  (weakly component-wise order),  
   1 2, , ,n n1 2, , ,x x x x y y y y   means i ix y  for all 

i J  (strictly component-wise order), and  
   1 2, , ,n n1 2, , ,x x x x y y y y   means i ix y  for all 

i J  and k kx y k J for some  (component-wise 
order). 

Remark 3. Let X and Y be two topological spaces. A 
homotopy between two continuous functions , :f g X Y

: [0;1]
 

is defined to be a continuous function H X Y   
such that    ,0H x f x   and  ,1H x g x  for all 
x X . Note that we can consider the homotopy H as a 
continuously deformation of f to g [7].  

Definition 2. 
(a) The set Y  is a retract of X if and only if 

there exists a continuous function  such that 
X

:r X Y
 r x x  for all x Y . The function r is called a re- 

traction of X to Y. 
(b) The set  is a deformation retract of X if 

and only if there exist a retraction r X  and a 
homotopy 

Y X
:

: [0;1]
Y

H X X   such that  ,0H x x  
and    ,1H x  r x  for all x X

:r X Y

. 
Remark 4. From a more formal viewpoint, a retraction 

is a function  such that    x r xr r  for 
all x X , since this equation says exactly that r is the 
identity on its image. Retractions are the topological 
analogs of projection operators in other parts of mathe- 
matics. It is true that every deformation retract is a retract, 
but in generally the converse does not hold [7]. 

Applications of retractions in multi-criteria optimization 
have been discussed by several authors [3,8-12]. 

We are now ready to define: 
1) A multifunction : X X   by  
    | ( )x y X   f y f x  for all x X . 
2) A multifunction : X X   by  
      |x y X   f y f x  for all x X . 
3) A function :s X R   by  1 jj

n
s x  f

 x  for 
all x X . 

Note that, for each x X ,  x  is equal to the in-
tersection of all the upper contour sets and  x  is 
equal to the intersection of all the level sets. Clearly, 
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   x x   for all x X . 
Remark 5. From Definition 1 it is easy directly verify 

that for x X : 
(1)  , x PO X f  is equivalent to    x x   (or 

equivalently    1f x
 ,




). 
(2) x SPO X f  is equivalent to  { }x x . 
Choose x X  and consider an optimization problem 

with a single objective function as follows: 1) Maximize 
 s y  subject to  y x  or 2) maximize  kf y  sub- 

ject to  y x . By letting x vary over all of X we can 
identify different Pareto-optimal solutions. This optimi- 
zation technique will allow us to find the whole Pareto- 
optimal set and analyze its structure. 

Remark 6. It is known that  
   max , , Arg s x PO X f   for all x X  [6]. 

The above remark allows us to present a new defini- 
tion. 

Definition 3.  
(a) A multifunction : ,X PO X f   is a called 

Pareto-retract (Pareto-retract point-to-set mapping) if and 
only if  x x  for all  ,x PO X f . 

(b) A function  : ,PO X fr X

 ,

 is called a Pareto- 
retract (Pareto-retract point-to-point mapping) if and only 
if  for all  r x x x PO X f . 

Thus we introduce the concept of the Pareto-retract 
mappings. Here the fundamental idea is based on the 
observation that for any x X  which is not Pareto- 
optimal there exists at least one other  ,y PO X f  
such that    i if y f x  for all  and strictly ine- 
quality holds at least once. 

i J

According to Remark 6, one can see that there exists a 
Pareto-retract multifunction, but an open problem is its 
continuity (lower or upper semi-continuous). 

3. Assumptions and Theorems in the  
General Case 

In this section, we will discuss the role of the following 
assumptions that affect the characteristics of a Pareto- 
retract mapping (Pareto-retract multifunction and Pareto- 
retract function) if the feasible domain X is compact: 

Assumption 1.   is lower semi-continuous on X. 
Assumption 2a.   max , 1Arg s x   for all x X . 
Assumption 2b. There exists  such that   1

n

k i i
f f




  max , 1kArg f x   for all x X . 
Note that if Assumption 2a holds, then there exists a 

Pareto-retract function, see also Remark 6. Again, an 
open problem is its continuity. 

These assumptions allow us to present our theorems of 
this section. 

Theorem 6.   is upper semi-continuous on X. 
Proof. We will prove that if   1k k

x X



  and 

  1k k
y X






0lim k
k

 are a pair of sequences such that 
x x


  X  and  k ky x  for all , then 

there exists a convergent subsequence of 

k N

  1k k
y




 whose 

limit belongs to  0x . 
The assumption  ky kx  for all  implies k N
   k kf y f x

 y X
 

 for all . From the condition 

1k k
 it follows that there exists a convergent 

subsequence 
1 1k kk k

k N

 y q
 

 
 such that  

0
k


Xlim kq y  . Therefore, there exists a convergent 

subsequence 
1 1k kk k p  x

 

 
 such that   k kq p  

and 0
k
lim kp x . Thus, we find that    k kf q f p  

for all k N . Taking the limit as k  we obtain 
   0 0f y f x , i.e. 0 y 0x . This means that   

is upper semi-continuous on X. 
The theorem is proven. 
We are now ready to prove the following basic theo- 

rem. 
Theorem 7. If Assumption 1 holds, then: 
(a)   is continuous on X. 
(b) There exists an upper semi-continuous Pareto-re- 

tract multifunction. 
(c)  ,PO X f  and  are compact.  ,PF X f 
Proof.  
(a) Assumption 1 and Theorem 6 imply that   is 

continuous on X. 
(b) According Remark 6 we are in a position to con- 

struct a multifunction  ,: X PO X  f  such that 
    max ,x Arg s x   for all x X . It is easy to 

show that  x x  for  ,x PO X f . This means 
that    ,X PO  X f . 

The function s is continuous and the multifunction   
is compact-valued and continuous. Now applying Theo- 
rem 4, we conclude that   is an upper semi-continuous 
multifunction on the compact domain X. 

(c) We recall that X is compact; therefore, part (b) im- 
plies that    ,X PO X f  is compact too. Trivially, 

    , ,PF X f f f PO X  is compact. 
The theorem is proven. 
Remark 7. Let Assumption 1 be satisfied. Remark 1 

shows that the multifunction   is not necessarily lower 
semi-continuous. 

Theorem 8. If Assumption 2a or 2b holds, then 
   , ,O X fPO X f SP . 

Proof. It is well-known that    . , ,SPO X X ff PO
Let  ,x PO X f  and assume that  ,x SPO X f . 

From the fact that  , x SPO X f  it follows that there 
exists y X  such that  i  if y f x  for all i J  
and x y . Hence, ( ) 1x  . 

There are two cases: 
(1) If Assumption 2a holds, then there exists a unique 

 ŷ x  such that   ˆ s y s z  for all    ˆz x y . 
But we get that    s y s x  and x y . This means 
that ŷ x ,    ˆs y s x  and i ˆi  f y f x  for all 
i J . As a result we obtain i ˆi  f y f x  for all i J  
and    jˆjf y f x  for some . This leads to a 
contradiction. 

j J
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(2) If Assumption 2b holds, then there exists a unique 
 ŷ x  such that    ˆk kf y f z  for all    ˆz x y . 

But we know that   i i f y f x  for all i J  and 
x y . This means that , ŷ x  ˆi  if y f x  for all 

 and i J  ˆk  kf y f x . This leads to a contradiction 
too. 

Finally, we obtain .    , ,PO X f SPO X f
The theorem is proven. 
Remark 8. While studying the proof of Theorem 8, one 

can see that if x X  and   arg max , 1kf x  , then 
    max , ,kArg f PO X f x  . 

Theorem 9. If Assumptions 1 and 2a (or 1 and 2b) 
hold, then: 

(a) There exists a continuous Pareto-retract function. 
(b)  is homeomorphic to .  ,PO X f   ,PF X f
Proof. (a) First, let Assumptions 1 and 2a be satisfied. 

In this case, we construct a function  :r X PO X f ,  
such that     arg max ,r x s x  for all x X . From 
Theorems 5, 7 and 8, and Remark 6 it follows that r is a 
continuous Pareto-retract function. 

For the second part of this proof, let Assumptions 1 
and 2b be satisfied. Now we construct a function 

 :r X PO X f ,  such that    max ,kr x Arg f x  
for all x X . From Theorems 5, 7 and 8, and Remark 8 
it follows that r is a continuous Pareto-retract function. 

(b) Recalling that the function : nf X R  is con- 
tinuous; therefore, a restriction  

 of f is continuous too. From 
Remark 5 and Theorem 8 we have that the function h is 
bijective. Consider the inverse function  

 of h. We proved in Theo- 
rem 7 that  is compact; therefore, 

  : , ,h PO X f PF X f

  1 : ,h PF X f PO X 
 ,PO X f



, f
1h  is 

continuous too [13]. As a result we conclude that the 
function h is homeomorphism. 

The theorem is proven. 
Remark 9. From Theorem 9 we can easily check the 

following: 
(1) For each  ,x PO X f

   ,r x PO X f
 ,

,  is nonempty 
compact and . 

 1r x

 x1

(2) If x PO X f  and x y , then  
.  r x 


 1 1r y   

  
1r x

(3) . ,x PO X f

(4) By Assumption 2a, for each 
X

 , x PO X f  we 
have    s x s y  and    f x f y  for all  

   1y r x x . 
(5) By Assumption 2b, for each  , x PO X f  we 

have    k kf x f y  and    f x f y  for all  
   1y r x x . 

4. Structure of Pareto Sets 

The structure of Pareto sets is very important, from an 
algorithmic point of view. 

Let  be the Euclidean metric in  and d mR   be the 

topology induced by . In a topological space d  ,mR  , 
for  we now recall some general topologi-
cal definitions. 

mY X R 

Definition 4. A property is called a topological prop-
erty if and only if an arbitrary topological space X has 
this property, then Y has this property too, where Y is 
homeomorphic to X. 

Definition 5. 
(a) The set Y is connected if and only if it is not the 

union of a pair of nonempty sets of  , which are dis-
joint. 

(b) The set Y is path-wise connected if and only if for 
every ,x y Y  there exists a continuous function 

 such that  and : [0;1]p Y  0p  x  1p y . The 
function p is called a path. 

(c) The set Y is simply connected if and only if it is 
path-wise connected and every path between two points 
can be continuously deformed into every other. 

(d) The set Y is contractible (contractible to a point) if 
and only if there exists a point  such that {  is 
a deformation retract of Y. 

a Y }a

Remark 10. Recalling that the following statements are 
true: 

(1) Convexity implies contractibility, contractibility im- 
plies simply connectedness, simply connectedness im- 
plies path-wise connectedness, and path-wise connect- 
edness implies connectedness. However, in general the 
converse does not hold. 

(2) Contractibility, simply connectedness, path-wise 
connectedness and connectedness are topological proper- 
ties of sets. 

(3) Compactness, path-wise connectedness and con- 
nectedness of sets are preserved under a continuous func- 
tion. 

(4) Compactness, connectedness, path-wise connect- 
edness, simply connectedness and contractibility of sets 
are preserved a under retraction. 

(5) The image of a simply connected set under a con-
tinuous function need not to be simply connected. 

(6) The image of a convex set under a retraction need 
not to be convex. 

Remark 11. We now focus our attention to contracti- 
bility of sets. Let . Remark 10 has shown that if 
Y is a retract of X and X is contractible, then Y is con-
tractible too. The converse does not hold in generally. 
But for every deformation retract the following statement 
is true: “If Y is a deformation retract of X, then Y is con-
tractible if and only if X is contractible.”  

Y  X

Definition 6. 
(a) The topological space Y is said to have the fixed 

point property if and only if every continuous function 
 from this set into itself has a fixed point, i.e. 

there is a point 
:h Y Y

x Y  such that  x h x . 
(b) The topological space Y is said to have the Kaku-
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tani fixed point property if and only if every upper 
semi-continuous multifunction :Y Y   from this set 
into itself has a fixed point, i.e. there is a point x Y  
such that  x x . 

(1) Remark 12. We will use the following statements 
for each compact set: 

Convexity implies the fixed point properties (fixed 
point property and Kakutani fixed point property). 

(2) The fixed point properties of sets are topological 
properties. 

(3) The fixed point properties of sets are preserved 
under retraction. 

(4) A set having the fixed point property is equivalent 
to this set having the Kakutani fixed point property. 

Now we focus our attention on the compactness, con-
nectedness, contractibility and fixed point properties of 
the Pareto sets. Compactness of these sets is studied in 
[3,8,12,14-16]. Connectedness is considered in [3,6,8, 
16-24]. Contractibility of Pareto sets is discussed in [9, 
10,12,25]. Fixed point properties have been addressed in 
[10,12,26]. 

Corollary 1. If Assumptions 1 and 2a (or 1 and 2b) hold, 
then: 

(a) If X is convex, then  and  ,PO X f   ,PF X f  
are contractible and have the fixed point properties. 

(b) If X is contractible, then  and   ,PO X f 
 ,PF X f  are contractible. 

(c) If X is simply connected, then  ,PO X f  and 
 ,PF X f  are simply connected. 

(d) If X is path-wise connected, then  ,PO X f  and 
 ,PF X f  are path-wise connected. 

(e) If X is connected, then  ,PO X f  and  , fPF X  
are connected. 

(f) If X has the fixed point properties, then  ,PO X f  
and  ,PF X f  have the fixed point properties. 

Proof. Directly, from Theorem 9, Remarks 10 and 12 
imply the proof. 

5. Convex Case 

We often use the Maximum Theorem under convexity as 
a mathematical tool in convex optimization. Here we will 
present two special variants of this theorem and their 
applications to convex multi-criteria optimization. 

In this section, we are going to study our optimization 
problem when the functions 1{ }n

i if   are concave and a 
function k  of 1{ }f n

i if   is strictly quasi-concave on the 
compact and convex domain X. 

Concavities of the objective functions play a central 
role in optimization theory, for more information see [27] 
and [28]. We will use the definitions of quasi-concave 
and concave functions in the usual sense. 

Definition 7. A real function g on a convex subset 
mX R  is called to be: 

(a) Quasi-concave on X if and only if for any 
,x y X  and [0;1]t , then  

       in ,1 mg tx   t y x g yg . 
(b) Strictly quasi-concave on X if and only if for any 

,x y X , x y  and  0;1t , then  
       1 m ,ing tx   t y g x g y . 

(c) Concave on X if and only if for any ,x y X  and 
[0;1]t , then       11 ( )g tx t y tg x    t g y . 

Now, from Theorems 2 and 4 we get the first special 
variant of the Maximum Theorem under convexity. 

Theorem 10. Let nX R
:D X 

,  be a continu-
ous function, and  be a continuous multi-
function. Define m and S as in Theorem 4. If u is quasi- 
concave on X and D is convex-valued, then S is a con-
vex-valued and upper semi-continuous multifunction on 
X. 

:u X R
X

Remark 13. If 1{ }n
i if   are all quasi-concave and one 

of them is strictly quasi-concave, then  
   , ,O X fSPO X f P  [3,6]. 

We are ready to prove the first theorem in this section. 
Theorem 11. Let 1{ }n

i if   be all concave on the com- 
pact and convex domain X. Then: 

(a)   is convex-valued and continuous on X. In par- 
ticular, Assumption 1 holds. 

(b) There exists an upper semi-continuous Pareto-re- 
tract multifunction. 

(c)  ,PO X f  and  ,PF X f  are compact. 
(d)  ,PO X f  is convex when  ,IPO X f   . 
(e)     max ,Arg s x x   for all  

 ,x PO X f . 
(f) There exists a continuous function  

 :b X PF X f ,  such that    ,b X PF X f . In 
particular,  ,PF X f  is path-wise connected. 

Proof. (a) Define a multifunction 1 : X X   such that 
      1 1: 1x y X f y f x     for all x X . It is easy 

to show that the multifunction 1  is convex-valued. 
We will prove continuity of 1  on X using a two-step 

procedure. 
Step 1. We will prove that if   1k k

x X
 


 and 
 are a pair of sequences such that  

0
k

  1k k
y






lim k

X
x x X


   and k 1ky x  for all k N , then 

there exists a convergent subsequence of   1k k
y




 whose 

limit belongs to  01 x . 
The assumption  1k ky x  for all k  implies N
   1 1k kf y f x

 y X
 

 for all . From the condition 

1k k
 it follows that there exists a convergent 

subsequence 

k N

   y
1 1k kk k

q
 

 
 such that 

k
 0q y Xlim k   . 

Therefore, there exists a convergent subsequence  

1k   1k k
p x

k

 

 
 such that  and  

0


lim k
k

p x


1k k pq 
 . Thus, we find that 1k k 1  f q f p  for all 

k N . Taking the limit as  we obtain  k 
   1 0 1 0f y f x . As a result we have  00 1y x . In 

other words, 1  is upper semi-continuous on X. 
Step 2. We will prove that if   1k k

x X


 is a se-
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quence convergent to 0x X  and  0 1 0y x
X

, then 
there exists a sequence 

1k
 such that   ky

 
 1k ky x  for all  and . k N

 1 1k

0ky y

0

lim
k

 
There are two cases: 
(1) Suppose that f x f

 1 1

x
0

. 
We get that   1 0kf x f x  f y , i.e.  k0 1y x . 

In this case let . 0y yk

(2) Suppose that 


 1 1  0kf x f

 

x

1

. 
In this case, we will consider two possibilities: 
(2.1) Suppose that 01 0f y f x . 
From 0k

k
lim x x

 


 implies 0k
k

. With- 
out loss of generally we can study the case when  

1k

   1 1f x f xlim

0 1 0 1 f y f
 0 1 k

x  f x . As a result we obtain  
y x  and let . 0ky y

 1 0(2.2) Suppose that  1 0f y f
f

x . 
From the fact that 1  is continuous and concave on 

the compact and convex domain X, we deduce that 
 1arg max ,f X  is nonempty, convex and compact. De-

note the distance between  and 0y  1arg max ,f X  by 
    0 1rg maxinfd d ,y


:z az ,f X . Clearly,  
0 arg max 1,y f X


 and there exists a unique  

1,ˆ arg maxy f X

0[ ,y




 such that . Consider a 
linear segment  and a restriction  

 0ˆ,y yd d
]ŷ

  y  f y0 1 0 1  of . From the definition 
of b it follows that: 1) If 

ˆ f ˆ,  1f


: ,b y y  
0  and uˆ, y,bu v y v , then 

, 2) if    b u b v  0 ˆ, y y ,u v  and    b u b v , then 
    1b tu t  v b v  for all  0, 1  t , i.e.  vb u  b  

implies . It is easy to show that b is bijective and 
continuous on 

u  v
 0 ; therefore, there exists a unique ˆ, yb y

 0 ˆ,ky y y  such that   k k f x f y 1b  and   is con- 
tinuous. We obtain: 0lim k

k
x x


 ,    x1 1m kf x f


 0 , 

, 
li
k  lim k

k
f y


 f y 01 1     1 1

1 1b f 

  1k
y X






0lim b f
 k

k
y

k

y , 
. 0

As a result we get a sequence  such that 

k

lim k
k

y y




 1ky x  for all  and k
k

. This means 
that 

k N 0y ylim

1  is lower semi-continuous on X. 
In summary, 1  is continuous on X. 
Now, define a multifunction 2 : X X   such that 

2 1 2 2    :     x y x  f y  f x   for all x X . By 
analogy, we prove that 2  is convex-valued and con- 
tinuous on X. 

This procedure is repeated until all objective functions 
have been considered. At the end, define a multifunction 

:n X X 
 

 such that  

1n n n n  :    x y x   f y  f x   for all x X . 
Similarly, we prove that n  is convex-valued and con-
tinuous on X. 

Observe that n  . Hence,   is continuous on X 
and Assumption 1 holds. 

(b) The proof follows directly from Theorems 7(b) and 
11(a). 

(c) This is immediate from Theorems 7(c) and 11(a). 
(d) If  , IPO


X f  is nonempty, then  
    1

n
  ,PO X f , f arg mi ax ,if XIPO X . In fact 

 arg max ,if X  is nonempty and convex, we deduce 
that  ,PO X f  is convex. 

(e) It is obvious that   arg max , 1s x   for all 
x X . 

We will prove that if   1 2, arg max ,y y s x , then 
   1 2y y  . 
There are two possibilities:  
(1) Suppose that   arg max , 1s x  . 
The statement is trivially true. 
(2) Suppose that   arg max , 1s x  . 
Let   , max ,Arg s x1 2y y  , , 1 2y y  0,1t  

and  t y1 1z ty  2 . In fact,   arg max ,s x


 is 
convex, it follows that  arg maxz

i J
,s  x  and s (z) = 

s (y1) = s (y2). But for each  there is 
       1 1 i 2i if z tf y  t f y . By using this result we 

derive that      1 2s z s y s y  . Since 
     21s z s y  s y  implies 
       1 1 i 2(i if z tf y  t f y . This means that 
       1 21 i(i if z tf y  t f y  for all  and all i J
 0,1t , i.e.   ( ) .i if z f y t  2 1if y f  i y 2  for 

all 


 0,1t . Thus, we get  i 1 i 2f y f y  for all 
i J , i.e.    1 2y y . 

Finally, according to this result and Remarks 5 and 6 
we conclude that     arg max ,s x  x  for all 

 ,x PO X f . 
(f) Consider the multifunction  : ,X PO  X f  

from Theorem 7(b). Theorem 11(e) allows us to define a 
function  : ,PF X fb X   by b f 

 ,PO X f

. The func-
tion b is continuous on X because ρ is upper semi- con-
tinuous on X and f is continuous on . Clearly, 
   f,b X PF X . 
So, we get the continuous function b and we know that 

X is path-wise connected; therefore,  is path- 
wise connected too. 

 ,PF X f 

The theorem is proven. 
Note that convexity plays an essential role in path- 

wise connectedness of the Pareto-front set. 
We give the second special variant of the Maximum 

Theorem under convexity. It follows immediately from 
Theorems 2, 4 and 5. 

Theorem 12. Let nX R
:D X 

,  be a continu- 
ous function, and  be a continuous multi- 
function. Define m and S as in Theorem 4. If u is strictly 
quasi-concave on X and D is convex-valued, then S is a 
continuous function on X.  

:u X R
X

Continuing with this analysis we have the following 
theorem. 

Theorem 13. Let 1{ }n
i if   be all concave on the convex 

domain X and  be strictly quasi-concave on X. Then: k

(a) Assumptions 1, 2a and 2b hold. 
f

(b) There exists a continuous Pareto-retract function. 
(c)  ,PO X f  and  are contractible and 

have the fixed point properties 
 ,PF X f 

(d)    , ,f PO X fSPO X . 
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(e)  is infinite and uncountable when 
. 

 ,PO X f
 ,X f  




IPO

(f) ,PO X f 1  when .  ,IPO X f  
Proof. (a) Since Theorem 11(a) implies that Assump- 

tion 1 holds. 
Let us fix an arbitrary point x X . It is obvious that 

  max , 1Arg s x  . Let us assume that  
  max , 1Arg s x  . Hence, there exist  

 such that . Accord- 
ing to Theorem 11(e) we derive 

 1 2, max ,y y Arg s x  1 2y y
   1 2y y

2k

 

1k

. But 
 is strictly quasi-concave; therefore,  

1 2k

kf
    min ,k k    f z f y f y f y f y . This 

leads to a contradiction; therefore,   arg s xmax , 1 . 
Thus, we prove that Assumption 2a holds. 

In fact, k  is strictly quasi-concave on X, we have 
that Assumptions 2b holds. 

f

(b) It follows from Theorems 12 and 13(a). 
(c) We recall that X is convex; therefore, it is con- 

tractible and has the fixed point properties. Part (b) im- 
plies the proof. 

(d) It follows from Theorems 8 and 13(a). 
(e) Part (c) implies that  ,PO X f  is path-wise con- 

nected and  implies that   ,IPO X f  
 ,PO X f 1 . From this, we obtain that  ,PO X f  is 

infinite and uncountable. 
(f) Of course, from Theorem 11 and strictly quasi- 

concavity of  we have kf  , 1PO X f  . 
The theorem is proven. 
Remark 14. We can easy verify that the Pareto-optimal 

set  ,PO X f  is not convex in general; see also Theo- 
rems 13(c) and (e). 

Remark 15. It is interesting to note that for  
 the existence of a Pareto-re- 

tract multifunction does not necessarily imply the exis- 
tence of a Pareto-retract function. 

  ,SPO X f PO X f ,

,

To answer the problem of the above remark, we give 
the following theorem. 

Theorem 14. If    are concave on the convex 
domain X and , then Assump- 
tions 1 and 2a hold. In particular, there exists a continu- 
ous Pareto-retract function. 

1

n

i i
f


 O X f ,SP PO X f

Proof. From Theorem 11 it follows that Assumption 1 
holds. 

Let us assume that   arg max , 1s x  . In the proof 
of Theorem 13(a) we have that if  

 and 1 2 , then   1 2, max ,y y Arg s x
   1 2

y y
y y  . This leads to a contradiction; see also 

Remark 5. 
The theorem is proven. 

6. Conclusions 

We have shown an application of the Maximum Theo- 
rem to multi-criteria optimization for the construction of 

the Pareto-retract mappings and the role of these map- 
pings to analyze the structure of the Pareto-optimal and 
the Pareto-front sets. Here, we made our considerations 
in two cases—A general case and a convex case. It is im- 
portant to note that, in this work, we introduced the con- 
cepts of the Pareto-retract multifunction and the Pareto- 
retract function in a multi-criteria optimization problem. 
By means of these concepts, we have seen how one can 
use these mappings to analyze the topological properties 
of the Pareto sets. 

The authors see three directions for future research re- 
lated to this article: One would look for general condi- 
tions on the objective functions without the assumption 
of their concavity; one would analyze specific types of 
concave or quasi-concave objective functions; and one 
would study the relationship between the first two. 
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