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ABSTRACT

In this paper, a new augmented Lagrangian function with 4-piecewise linear NCP function is introduced for solving
nonlinear programming problems with equality constrained and inequality constrained. It is proved that a solution of the
original constrained problem and corresponding values of Lagrange multipliers can be found by solving an uncon-
strained minimization of the augmented Lagrange function. Meanwhile, a new Lagrangian multiplier method corre-
sponding with new augmented Lagrangian function is proposed. And this method is implementable and convergent.
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1. Introduction

Considering the following nonlinear inequality constrained

optimization Problem (NLP):
min f (X) )
st H(x)=0 G(x)<0,

where f:R" - R and
G(X)=(g(Xl),g(Xz),...’g(Xm))T:Rn_)Rm

H (x) = (h, (%).h, (x).--,h, (X)) :R" > R?

are continuously differentiable functions.
We denote by

D={Xe R" g(xi)SO’ i=(1’2,...’m),

h(x,)=0.j=(1.2.p)}

the feasible set of the problem (NLP).
The Lagrangian function associated with the problem
(NLP) is the function

L(X,@,4)=f(x)+@ H(X)+A'G(x),

where
o=(o,0,) €RP,A=(4,2) €R"

are the multiplier vectors, For simplicity, we_ use
(X,@,1) to denote the column vector (X', o', A" )
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Defintion 1.1. A point Q,E,Z)eR”xRpme is
called a Karush-Kuhn-Tucker (KKT) point or a KKT
pair of Problem (NLP), if it satisfies the following condi-
tions:

(QZ) )=0,6(x)<0,H(x)=0,

2
2
>0,49,(x)=0,viel,
where | = } we also say _;_is a KKT point if
there exists a g such that (X, o, /1) satisfies (2).
For the nonlinear inequality constrained optimization

problem (NLP), there are many practical methods to
solve it, such as augmented Lagrangian function method
[1-6], Trust-region filter method [7,8], QP-free feasible
method [9,10], Newton iterative method [11,12], etc. As
we know, Lagrange multiplier method is one of the effi-
cient methods to solve problem (NLP). Pillo and Grippo
in [1-3] proposed a class of augmented Lagrange func-
tion methods which have nice equivalence between the
unconstrained optimization and the primal constrained
problem and get good convergence properties of the re-
lated algorithm. However, a max function is used for
these methods which may be not differentiable at infinite
numbers of points. To overcome this shortcoming, Pu in
[4] proposed a augmented Lagrange function with Fischer-
Burmeister nonlinear NCP function and Lagrange multi-
plier methods. Pu and Ding in [6] proposed a Lagrange
multiplier methods with 3-piecewise linear NCP function.
In this paper, a new class augmented Lagrange function
with 4-piecewise linear NCP function and some La-
grange multiplier methods are proposed for the minimi-
zation of a smooth function subject to smooth inequality

AM



1410 Y.L.SHANG ET AL.

constraints and equality constrains.

The paper is organized as follows: In the next section
we give some definitions and properties about NCP func-
tion, and then define a new augmented Lagrange function
with 4-piecewise NCP function. In Section three, we give
the algorithm. In Section four, we prove convergence of
the algorithm. Some conclusions are given in Section five.

2. Preliminaries

In this section, we recall some definitions and define a
new Lagrange multiplier function with 4-piecewise NCP
function.

Definition 2.1 (NCP pair and SNCP pair). We call a
pair (a, b) to be an NCP pair if a>0,b>0 and ab=0;
and call (a, b) to be an SNCP pair if (a, b) is a pair and
a’+b’=0.

Definition 2.2 (NCP function). A function ¢:R*> — R
is called an NCP function if #(a,b)=0 if and only
(a,b) is an NCP pair.

In this paper, we propose a new 4-pieccewise linear
NCP function y(a,b) is as follows:

ka, if b>k|al,
2kb—b?/a, if a>|b|/k
v(ab)=1 , rah 3
2k’a+2kb+b’/a, if a<—|b|/k
ka +4kb, if b<-k|a|<0
f (a,b)=(0,0), then
k2
J, if b>k|al
0
2 2
0*/a J if a>|b|/k
2k —2b/a
Vi (ab)= ¢ —b/a? 4
) a],ifa<—|b|/k
2k +2b/a
2
k ] if b<kla
4k
and
A, =0y (0,0)

BILSS 2K (1-17) 3 5)
) (2k(1—t)]u[zk(1—t) J ety

It is easy to check the following propositions:

1) w(a,b)=0<=a=0,b>0,ab=0;

2) The square of  is continuously differentiable;

3) w is twice continuously differentiable everywhere
except at the origin but it is strongly semi-smooth at the
origin.
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Let

only if g;(x)<0, 4 >0 and ﬂ,lg;i(x):O for any

C>0.
We construct function:

(% A.C)=(fh (. 4:C).r oty (X, 20.C)

Clearly, the KKT point condition (2) is equivalently
reformulate as the condition:

®(x,4,C)=0,H(x)=0,VL(X,0,1)=0.

If (gi (X),/Ii);t(0,0) , then ¢ (x,4,C) is continu-
ously differentiable at (x,1)e R™™. We have

Vl//(ﬂ’li_cgi (X))

0
k2 )

if ~Cg. (x)2k|4]

(—2kC—%I‘(X)JVg (%) ’
(ngiz(x)//?“lz)ei

if 4 >Clg, (x)]/k
( —2kC + MJVgi(x)
(Zk2 297 (X)) 4 2)

if 4, <— C|g (x)|/k

)

if -Cg (x)<—k|4|<0 (6)

>

where €, =(0,-~-,0,1,---,O) eR™ is the ith column of
the unit matrix, its jth element is 1, and other elements
are 0, in this paper take k= 1.

If (g,(x).4)=(0,0) , and then ¢ (x,4,C) is
strongly semi-smooth and direction differentiable at
(x,4)e R™". We have

ow (%, 4)

(ke 2K° (1t ) o
- [ZCk(l—t)Vgi(X)JU[ZCk(l—t)Vgi(X)J st

For Problem (NLP), we define a Di Pillo and Grippo
type Lagrange multiplier function with 4-piecewise lin-
ear NCP function is as following:
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S(%®,2,C,D)

e

=f(X)+o H(x)+

J D(hj(x))z/z
+Z[( 4 (x4.C)- /)2+(/11/2)2}/(2C)

2
Ve () v,L (ko) /2.

1

®

where
A =(/11,m,im )T eR"™, w=(a)1,---,wP)T e RP are the

Lagrange multiplier, C and D are positive parameters.

In this section, we gave some assumptions as follows:

Assumpion 1f, h;(x), j=L--,p, g(x)

i=1,---,m are twice Lipschitz continuously differen-
tiable.

Define index set 1, and |, as follows:

(% 2)={i[(g,(x),4)=(0,0),i =1,2,---,m}
1 (% /1)={i|(gi(x),/1,)¢(0,0),i=1,2,-..,m}
forany iel,,according to definition of ¢ , have

V. (4 (x2.C)-2/2) +(4/2) |-

forany iel,, wehave
1) if A,,>C|gi(x)| we have

v [(4.(64.C)-4/2) +(4/2) | 2
= (41 (6 4,C)=4/2)(-2-2C0, ()/4)Va,(x) (o)
=(-2-2Cg, (x)/4 )¢ (x.4,C) Vg, (x) +
l,Vgi( )+2Cgi( )Vgi( )
The gradient of S(X,@,4,C,D) is
v,5(% ®,4.C.D)
:Vf(x)+(VH(X))wT+Zp:D<hj(X)th(X))

+YV(4 (% 4.C)-4/2) J2¢

+I;|;3(X)VZL(X,G)J,)VTG(X)VL(X,a),ﬂ)
(x))e +2.B(h, ()71, ()
+>(-2-2Cg; (x)/4 )¢

iely

+ iZZ‘,ZCgi (x)Vg, (x)

+VG(X)V’L(X,@,4)V'G(X)VL(X, @, 1)

(10)
=VL(x,@,2)+(VH

(%4,C) Vg (x)

_The Henssian matrix of S(x,®,4,C,D) at KKT point
(x, o, z) is

Copyright © 2012 SciRes.

o

v’s(x@.1C.D)
(n

+v<;( Jv2L(x.0.2)(V6 (%)) ViL(x.0.7)

+(4/2) J/zc
(¢ (x.4,C)—4/2)(-2+2Cg, (x /A,I)Vgi(x),(lz)
=(-2+2Cg, (X)/4)4 (% 4,C) Vg, (¥)

+4Vg,; (x)-2Cg; (x) Vg, (x)
The gradient of S(X,®,4,C,D) is
V.,S(x,®,4,C,D)

= VE (x)+(VH (x)) " +Zp:C(hj (x)9h, (x))
+YV(4(x4.C)-4/2) J2¢

il
+VG (X)V2L(%,@,2) V' G(X)VL(X,@,1)

VL (x.,2)+(VH (X))o +z‘_’c(hj (x)h; (%))
+2,(=2+2Cg; (x)/ 4 )4 (x.4.C) Vg, (x)

iel;

—Zmlz(:gi (X)Vg; ()

L(X,@,2)V'G(X)VL(X,0,1)

2)if 4 < C|g | then

VX[ 4 (% 4.C)-4/2)

(13)

+VG(x)V?
_The Henssian matrix of S(X,®,4,C,D) at KKT point
(X,a),/i) is
VZS(X,E,Z,C, D)

-t (57) S0(5h, (3)on, (1 |

j=1

#3240V, (x)(va )
xod)ve () v

Definition 2.3 A point (X,®,1) is said to satisfy the
strong second-order sufficiency condition for problem

(NLP) if it satisfies the first-order KKT condition and if
d'ViL(x e, /l)d >0 forall

{d[d"Vh, (x) =0, =12+, p;
d"vg, (x ):o,ue{||=1,2,---, m, 4 >0}},

(14)

V6 ()v? L(xa7)

dep
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and d=#0. L
Assumption 2 At any KKT point (x,w,/l)
strong second-order sufficiency condition.
Lemmalf A, is a positive semi-definite matrix, for
any d eR", Ad =0, matrix B,
then exist m,, for any m>m,, B+mA is positive
definite matrix (see [4]).
Theorem 2.1 If X,w,/i) is KKT point of problem
(1), then for sufficiently large C and D, S (X,a),/I,C, D)
is strong convex function at point (X,a), /1) .
Proof: Let B =V’L(x,®,1)

A= 3(v, (1), () )+ Ve, (0(v0, ()

for de p(x) we have

satisfied

from A2, we have d'Bd > 0. Furthermore there is m,
if min{6C,4C,D}>m,, forany m,>m , B+m,A is
positive definite matrix. And then for any x#0 and
sufficiently large C and D have

XTVZS(ZZ),ZC,D)X
o _ p W2
= xTV2L<x,w,A)x+;D(xTth (x))

+ Zm:6C (xTVgi (Q))z > X'V L(i,aj) X
i=1

+mx" Ax >0

by its continuously, we may obtained that there is 7 >0,

for all
(x,@,2)€B, (X,E,Z,c, D)
“{Jowo.2)- (0.2 <.

we have X'S(X,@,4,C,D)x>&>0 the theorem hold.

3. Lagrange Multiplier Algorithm

Step 0 Choose parameters C° >0, D’ >0, 0<p <1,

0<6 <1<8@,,givenpoint X" eR",and
a)oz(a)f’,--',a)g)eRp,
,102(,110,...’,12)€Rm,

Let k=0.
Step 1 Solve following, we will obtain x**'

Copyright © 2012 SciRes.

satisfied d"Bd >0,

def

minS(X,a),/i,C, D)

=f(x)+0" H(X)

S[(#(xA.C)-4/2) +(4/2)]
2C
v () v,L(xa. ) /2

if “H k“ <n and “(D X, Ak Ck) <n then
stop

Step2F0r1-12 P, h k“l<c9‘h ‘ then
D*'=D* or D**' =6,D" fo i=12,---,m,if

‘¢| (Xk+1’/1k,ck ‘S@M Xk’ﬁkjck) i

then C*'=C*,or C*' =4,C*
Step 3 Compute "' and A*"

a):_<+1 — a)f +Dh j(XkH) j’|k+1 :;le +Cgi (Xk+1)

Step4 Letk=k+1, goto Step 1.

4. Convergence of the Algorithm

In this section, we make a assumption follow as:
Assumption 3 For any o, A, C*, D¥,
S (Xk+1 0", 2%,C*, D" ) exists a minimizer point x**'
Theorem 4.1 Assume feasible set of problem (NLP) is
non-empty set and f (x) is bounded, then algorithm is
bound to stop after finite steps iteration.
Proof: Assume that the algorithm can not stop after
finite steps iteration, by the sack of convenience, we de-
fine index set as following

Je—( limh (x )iO),jeI(i
3= (o) =0). 31

according to assumption A3, it is clearly that J,UJ; or
J.NJ; are non-empty set. for any k, obtain
S(Xkﬁ-l’a)k’ﬁkyck’Dk): f (Xk+1)

£ (0 (<ot 0 (o 0

lim D¥ = oo)

X—o0

ilim c* :oo)

X—x0

+§:Ck[(¢(xk+',,11k,ck)/ck—z,lk/zck)ﬂ(zf/zck)z}/z
+“VG(X)VL(X““,w",/1k )H2/2
from above assumption, we obtain that for any a k

there is k>k, for any ieJ, andz >0, D*'>D"
and hi(xk”)>r, for sufficiently large k, it is not
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difficult to see that
0! (n (x") 4t /0 ~(at /0 | 2512

Orforany ieJ and 7>0, C*'>C* and
g; (Xk”) > r, for sufficiently large Kk, have

2
Ck|:(¢| (Xk+1’ﬂik,ck)/ck_ﬂ1k/zck) +(ﬂ1k/2ck)2:|/2
> kzrz/Z

When Kk — o0 we can hold

(X", 0, 4%,C*, D" ) > 0

Which contradicts A3, the theorem holds.

Theorem 4.2 Let XxPxM < R™ ™ is a compact
set, sequence (Xk“,a)k,ﬂk) are generated by the algo-
rithm, and (x*"', ", 2 ) € int(X xPxM ) , in algorithm,
0 take the place of 7, either algorithm stops at itskth

and x*"' is solution of problem(NLP), or for any an

accumulation X of sequence {Xk”},x* is solution of

problem (NLP).
Proof: Because the algorithm stops at its kth, then

we have
kil gk k) _ [y
¢|(x ,/?,I,C)—O,gl(x )so, 0s)
/llk >0, /llkgi(XkH):O

for g,(x)=0, 4 >0, it is easy to see that for any
C>0 have

4 (x.45.C)=0 A =af+Cg (X )= A
It is from Step 2 of the algorithm that we have
|l@(x,4,.C)|, =0.|H (%), =0 (16)
putting (15) (16) into (10) or (13), we can obtain
VS (x“', e, 2",C*, D)
=VL(xk”,wk,ﬂ,k)
VG (X VL (X, 0, A ) VTG (X
xVL(x", 0, 2%)
:(E+VG(xk“)vzl_(x“‘,wk,zk)VTG(x“'))
xVL(X, 0", 1) =0
for g;(x)<0, 4 =0, according to definition of
®(x,4,C), we can obtain, that
VL(x, 0", 25)=0

k+1is solution of

First part of the theorem holds, X
problem (NLP).
On the other hand, if the algorithm is not stop at kth,

for any accumulation point (x*,a)*,ﬂ*) of sequence

Copyright © 2012 SciRes.

(Xk+l ,a)k ,ﬂk ) , from theorem 4.1, we can obtain, for any
positive number C, that
H (x)

(x.2".C)=0, =0

forany Xe X , have

f(3)2 )

20 (A ()t /0°) (ot /D) |

+§ck [(gﬁ(xk”,/ﬁk,ck)/ck — 2k /2 )2 +(4 /zck)z}/z
Ve (¥ VL (¢, ot 2° )Hz/z

() Ve (¢ )L (0t 24 ) 20 (1)

Let k — oo have

f(x)2 £ (<) Ve (¢ )L (x4 ) 22 1 (x)
Clearly, second part of the theorem holds. X’
tion of problem (NLP).

is solu-

5. Conclusion

A new Lagrange multiplier function with 4-piecewise
linear NCP function is proposed in this paper which has a
nice equivalence between its solution and solution of
original problem. We can solve it to obtain solution of
original constrained problem, the algorithm correspond-
ing with it be endowed with convergence.
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