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ABSTRACT 

In this paper, new sufficient optimality theorems for a solution of a differentiable bilevel multiobjective optimization 
problem (BMOP) are established. We start with a discussion on solution concepts in bilevel multiobjective program- 
ming; a theorem giving necessary and sufficient conditions for a decision vector to be called a solution of the BMOP 
and a proposition giving the relations between four types of solutions of a BMOP are presented and proved. Then, under 
the pseudoconvexity assumptions on the upper and lower level objective functions and the quasiconvexity assumptions 
on the constraints functions, we establish and prove two new sufficient optimality theorems for a solution of a general 
BMOP with coupled upper level constraints. Two corollary of these theorems, in the case where the upper and lower 
level objectives and constraints functions are convex are presented. 
 
Keywords: Bilevel Multiobjective Optimization; Multiobjective Optimization; Sufficient Optimality Condition; Strict 

Convexity; Pseudoconvexity; Quasiconvexity 

1. Introduction 

The class of bilevel optimization (programming) prob- 
lems (BOP) arises from the stackelberg games theory [1]; 
and many problem in such fields as economics, man- 
agement, politics and behavioral sciences which used to 
be successfully modeled using Stackelberg games theory, 
can be modeled as bilevel optimization problem [2]. BOP 
occurs also in diverse applications, such as transportation, 
engineering, optimal control etc. 

A bilevel optimization problem requires to solve a 
parametric optimization problem at the lower level (the 
follower problem) to get feasible solutions for the main 
optimization problem called upper level or leader problem. 

The general formulation of a BOP is given by: 
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With  *
1 2 1 2, , , , , ,n n m m p q r

nFor  fixed, the problem: 1x
      min , : , 0, , 0

y
f x y g x y h x y   is called the  

lower level or the follower problem parameterized by x. 
F and f are respectively the leader (or higher level) and 
the follower (or lower level) objective functions. G and H 
(respectively g and h) are leader’s inequality and equality 
constraints (respectively follower’s inequality and equal- 
ity constraints) functions. 

If 1 2 1m m   then, the functions F and f are scalar 
valued; meaning that the higher and lower level decision 
makers are optimizing each only one objective. This class 
of problems is called bilevel single objective optimiza- 
tion problems, or simply bilevel optimization problems. 
Bilevel optimization is an important research area since 
about three decades and there exists a huge quantity of 
studies related to that class of problems (see for example 
the book [3] and bibliography reviews [4-6]). 

If 1  and/or 2 , then leader and/or follower 
objective functions are vector valued. We obtain a more 
general problem called bilevel multiobjective optimiza- 
tion problem (BMOP). In this case, the upper level deci- 
sion maker and/or the lower level one are optimizing 
more than one (in general conflicting) objective simulta- 
neously. This class of optimization problems has not yet 
received a broad attention in the literature and there are  

1m  1m 
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only few studies in the literature dealing with it (see for 
example [7-11]). According to Pieume et al. [12], this 
issue can be explained by at least three reasons: The dif- 
ficulty of searching and defining optimal solutions; the 
lower level optimization problem has a number of trade- 
off optimal solutions; and it is computationally more 
complex than the conventional multiobjective program- 
ming problem or a bilevel programming problem. 

We are interested in this paper in establishing optimal- 
ity conditions in bilevel multiobjective optimization, in 
the general case were both the higher and the lower level 
problems are multiobjectives. Inspired by optimality con- 
ditions given by A. A. K. Majumdar in [13] and D. S. Kim 
et al. [14] for (single level) multiobjective optimization 
problems (MOP), we established new sufficient optimal- 
ity conditions for a solution of a general BMOP with 
coupled upper level constraints. To our knowledge, there 
are very few studies in the literature dealing with opti- 
mality conditions in bilevel multiobjective programming. 
In [7], using the Kunh Tucker conditions for MOP, A. 
Dell’Aere stated a necessary condition for solution of a 
BMOP in the case where lower level inequality constraints 
are absent. Jane J. Ye presented in [15] for bilevel pro- 
grams in which only the leader problem is vector valued, 
necessary optimality conditions in the case where the 
Karush-Kuhn-Tucker (KKT) condition is necessary and 
sufficient for global optimality of all lower level prob- 
lems near the optimal solution, by replacing the lower 
level problem by its KKT conditions. In the case where 
the KKT conditions are not necessary and sufficient for 
global optimality, she derives necessary optimality con- 
ditions by considering a combined problem where both 
the value function and the KKT conditions of the lower 
level problem are involved in the constraints. More re- 
cently, S. Dempe et al. in [16] presented for the optimis-
tic formulation of a bilevel optimization problem with 
multiobjective lower-level problem, necessary optimality 
conditions by considering the scalarization approach for 
the lower level multiobjective program and transforming 
the problem into a scalar-objective optimization problem 
with inequality constraints by means of the optimal value 
reformulation. 

The rest of the paper is organized as follows: In the 
next section, definition of solution concepts and charac- 
terization of bilevel multiobjective programming prob- 
lems are presented. In Section 3, after presenting some 
preliminary notions, we present sufficient optimality con- 
ditions for a solution of BMOP; the paper is concluded in 
Section 4. 

2. Definition and Characterization of Bilevel 
Multiobjective Programming Problems 

Let  1, , nx x x  and  1, , ny y y  be two vec-

tors of , . The following ordering relations (in 
) will be used: 
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With 2  and 1 2 since 

1 2 , the problem is a Bilevel Multiobjective Op-
timization Problem (BMOP). 
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  P x  is the set of the pareto optimal solutions of the 
follower’s problem parameterized by 1nx . 

  wP x  is the set of weak pareto optimal solutions of 
the follower’s problem parameterized by 1nx . 

Definition 2.1.  * *,x y  is said to be a solution of 
BMOP1 if and only if  * *,x y Z ,  *y P x *  and 
there exists no  ,x y Z ,  y P x  such that 
   * *, ,F x y F x y . 
Definition 2.2.  * *,x y  is said to be a weak solution 

of BMOP1 if and only if  * *,x y Z ,  * *
wy P x  

and there exists no  ,x y Z w,  y P x  such that 

Copyright © 2012 SciRes.                                                                                  AM 



F. FOUODJI DEDZO  ET  AL. 1397

   * *, ,F x y F x y
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. 
Let’s consider a BMOP with uncoupled upper level 

inequality constraints and without equality constraints in 
both levels: 
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Then under the strict convexity of the upper and lower 
level objective and constraints functions, the definition 
2.1 of a solution of a Bilevel Multiobjective Optimization 
problem is equivalent to the following conditions: 

Theorem 2.1. Assume that F and G are strictly convex, 
and that    ,.  and ,.f x g x  are strictly convex. 
Then,  * *,x y Z  is a solution of (BMOP2) if and 
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Hence  y P x* * ; which contradicts the fact that 
 * *,x y


 is a solution of (BMOP2). 
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Hence there exist 2  satisfying 1), which is a contra- 
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Hence there exist  satisfying 2); which con- 
tradict the hypothesis. 

1  and d 2d

The main difficulty when solving a BMOP comes 
from the fact that for each feasible alternative x, the 
leader must know exactly, in order to take his decision, 
what will be the reaction of the lower level decision 
maker. But since the lower level problem is a multiobjec- 
tive one, for each leader’s alternative x, the follower has 
many (sometimes infinite) possible responses, which are 
represented by the entire follower pareto optimal set P 
(x). To circumvent this difficulty, there are rational re- 
formulations of the problem, which really speaking are 
relaxations of the BMOP. They are: The optimistic or 
risky formulation, the pessimistic or conservative for- 
mulation, the mean formulation and the stochastic for- 
mulation. 

Definition 2.3. 
1) Optimistic or risky formulation of a BMOP 
An optimistic or risking leader always chooses for all 

feasible alternative x, the follower Pareto optimal solu- 
tion  which satisfy his objective (in the sense 
of minimization).  

 *y P x

 * *,x y Z  is said to be an optimistic optimal solu-
tion of a BMOP if and only if 
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y P x x F x y


    
 

 

2) Pessimistic or conservative formulation of a 
BMOP 

A conservative or pessimistic leader always prefer to 
choose for all feasible alternatives x, the follower pareto 
optimal solution  which is the worse for him 
(in the sense of minimization). 
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4) Stochastic formulation of BMOP 
Suppose that for all leaders’ alternative x, there exists 

a probability distribution with x  as density function 
such that the leader always has the probability  x y  to 
choose y as the follower reaction among his pareto opti- 
mal solution set  P x . Then, one can talk of a stochas- 
tic formulation of the BMOP. 
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tion of the BMOP if and only if 
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When there exists a unique solution to the lower level 
problem for any x, the above mentioned solutions are not 
different. But when there are multiple solutions to the 
lower level problem, the four kinds of solutions are dif- 
ferent. 

There exists a relationship between the four types of 
solutions. In [17], a theorem giving the relationship be- 
tween the optimistic optimal value, pessimistic optimal 
value and mean optimal value, in case where only the 
lower level problem is multi-objective is presented and 
proved. 

The following proposition generalize the above men- 
tion theorem (theorem 0.5 in [11]) to the general case 
where both upper and lower level problems are multiob- 
jective. 

Proposition 2.1. 
Denote  as optimistic optimal value, 

pessimistic optimal value, mean optimal value and sto- 
chastic optimal value of BMOP1 respectively. Then, we 
have:  and V V . 
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2) By a similar reasoning as in 1), we obtain that 
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The proof of the second relation is analogous while  

using the fact that  
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3. Suffcient Optimality Conditions for a  
Solution of BMOP 

3.1. Preliminary Definitions 

Definition 3.1. Quasiconvexity, strict quasiconvexity, 
pseudoconvexity, strict pseudoconvexity ([18]) 

Let  and *: , ,n mf A n m     0x A . 
1) f is said to be quasiconvex at 0x A  (with respect 

to A) if: 
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if in addition f is differentiable, then we have the follow- 
ing equivalent definition: 
f is quasiconvex if for all 1 2, ,x x A  

      1 2 1 1 2 0f x f x f x x x ≦ ≦  

2) f is said to be strictly quasiconvex at 0x A  (with 
respect to A) if: 
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3) f is said to be pseudoconvex at 0x A  (with re- 
spect to A) if it is differentiable and 

       0 0
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0
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f x x x
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4) f is said to be strictly pseudoconvex at 0x A  
(with respect to A) if it is differentiable and 

       0 0
0

0
x A

f x x x
f x f x

 
   

 

We have the following implications [18]: 
strict convexity  convexity  strict pseudoconvex- 
ity pseudoconvexity  strict quasiconvexity  
quasiconvexity. 

 
  

3.2. Sufficient Optimality Conditions 

We consider the problem BMOP1. 
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For  fixed, let *n  0n nx x     , 

 0n nx   x≧ ≧

0
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Let ;   * * *: ,jA j g x y  
  * * *: , 0jB j G x y    be respectively the sets 

of active inequality constraints of the follower and leader 
at  * *,x y  respectively. 
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sumption 3) a) of the theorem. 

0 0 0, ,u v w

2) Suppose that   * *  and there existswy P x
   * *at , , .F x y F x y

 
By 

the same way of reasoning as in the first case, we obtain: 
   , ,  such thx y Z y P x 

   
1

11 * * * * 1

1
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u F x y x x y y u 
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It holds from the linearity of the scalar product that: 

     

    

* * 1 * * 1

* * 1 * *

, ,

, ,

t t

B

tt

F x y u G x y v

H x y w x x y y

   

 0,   


 

With  arbitrary fixed. 1 1 1, ,u v w
This violates the assumption 3) b) of the theorem. 
Conclusion:  * *,x y  is a weak solution of BMOP1. 
A suffcient optimality condition for a solution of 

BMOP1 is obtained by replacing the pseudoconvexity of 
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the upper and lower level objective function by the strict 
pseudoconvexity. 

Theorem 3.2. 
Let  * *,x y Z . 
Suppose the following: 
1)  1 , ,.nx f x   is strictly pseudoconvex at *y ; 

F is strictly pseudoconvex at  * *,x y . 
2) 1 ,n

A ,.x g x   and  are quasiconvex 
and differentiable at 

 ,.h x
*y ; BG

 *
 and H are quasiconvex 

and differentiable at * ,x y . 
3) There exists  0 0 0, ,A su v w    ≧

2m
 ≧  and 

 11 1 1, ,Bm qu v w    ≧ ≧  such that: 

a) 
     
  

* * 0 * * 0

* * 0

, ,

, 0

t t

y y A

t

y

f x y u g x y v

h x y w

  

  
 

b) 
     
  

* * 1 * * 1

* * 1

, ,

, 0

t t

B

t

F x y u G x y v

H x y w

  

  

* *

 

Then,  , x y  is a solution of BMOP1. 
Proof 
Let  * *,x y Z  


verifying 1), 2) and 3). 

Suppose that * *,x y
 *x

 is not a solution of BMOP1. 
T h e n  o r   *y P

 ,  s
  * *  and there existsy P x

   * *at , , , uch thx y Z y P x  F x y F x y  

1) Suppose that ; then  such   * *y P x  *y P x 

that   * , , * *f x y f x y
 * ,.

. By the strict pseudoconvex- 
ity of f x

t

 we have: 

      * * *
2, 0  1,y i , .f x y y y i m       

by a reasoning similar to that used in the proof of theo- 
rem 3.1. we obtain: 

     
    

* * 0 * * 0

* * 0 *

, ,

, 0

t

y y A

tt

y

t

f x y u g x y v

h x y w y y

   
   

 

20 0 0, ,Am su v w    ≧ ≧ ; which contradicts the 

assumption 3) a) of the theorem. 
2) Suppose that    * *  and there existsy P x

       *  such that , ,x F x y F x y * *

,

, , .x y Z y P   By 
the strict pseudo convexity of F, we have: 

      * * * *
1, , 0  1,

t

F x y x x y y i m        

Using a similar reasoning to that used in theorem 3.1, 
we obtain: 

     
    

* * 1 * * 1

* * 1 * *

, ,

, ,

t t

B

tt

11 1 1, ,Bm qu v w    ≧ ≧ ; which violates the as- 

sumption 3) b) of the theorem. 
Conclusion:  * *,x y  is a solution of BMOP1. 
As corollaries of theorem 3.1 and theorem 3.2, we ob-

tain the following sufficient optimality theorems: 
Corollary 3.1. 
Let  * *,x y Z . 
Suppose the following: 
1)    1 , ,. , ,.nx f x g x 

*
 and  are convex 

and differentiable at 
 ,.h x

y . 
2) F, G and H are convex and differentiable at 

 * *,x y . 
3) There exists  20 0 0, ,Am su v w    ≧ ≧  and 

 11 1 1, ,Bm qu v w    ≧ ≧  such that: 

c) 
     
  

* * 0 * * 0

* * 0

, ,

, 0

t t

y y A

t

y

f x y u g x y v

h x y w

  

  
 

d) 
     
  

* * 1 * * 1

* * 1

, ,

, 0

t t

B

t

F x y u G x y v

H x y w

  

  
 

Then,  ,* *x y  is a weak solution of BMOP1. 
Corollary 3.2. 
Let  * *,x y Z . 
Suppose the following: 
1)    1 , ,. , ,.nx f x g x 

*
 and  are strictly 

convex and differentiable at 
 ,.h x

y . 
2) F, G and H are strictly convex and differentiable at 

 * *,x y . 
3) There exists  20 0 0, ,Am su v w    ≧ ≧  and 

 11 1 1, ,Bm qu v w    ≧ ≧  such that: 

a) 
     
  

* * 0 * * 0

* * 0

, ,

, 0

t t

y y A

t

y

f x y u g x y v

h x y w

  

  
 

b) 
     
  

* * 1 * * 1

* * 1

, ,

, 0

t t

B

t

F x y u G x y v

H x y w

  

  
 

Then,  ,* *x y  is a weak solution of BMOP1. 
The corollaries 3.1 and 3.2 can be proved in two ways; 

either analogously to the proofs of theorem 3.1 and 3.2 or 
using the fact that: Strict convexity  convexity  
strict pseudoconvexity   pseudoconvexity  strict 
quasiconvexity quasiconvexity. 

 




0

F x y u G x y v

H x y w x x y y

   
    

 

4. Conclusion 

In this paper, we have established new sufficient opti- 
mality theorems for a solution of a differentiable bilevel 
multiobjective programming problem. We have also 
presented a result giving a relationship between the op- 
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