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ABSTRACT 

In this paper we generalize the single-period Markowitz Mean-Variance portfolio selection problem. The Markowitz’s 
model requires that after choosing the number of each security which constructs the portfolio in the beginning of the 
investment period, these numbers remain constant during and at the end of the investment period. We drop this assump- 
tion and consider an investment model in which the number of each security can vary randomly during the investment 
period. Indeed we consider a single-period investment with the property that the initial weight of each security is not 
equal to the final weight of that security. We redefine the notion of the rate of return of each security and show that the 
return of the investment in a cash account is not certain. We investigate some alternatives among risky securities which 
acts similar to cash accounts. For this we introduce the notion of free security and relate free securities to a riskless se- 
curity. 
 
Keywords: Mean-Variance Optimization; Riskless Asset; Efficient Frontier; Free Asset 

1. Introduction 

After that Markowitz [1] originated the Modern Portfolio 
Theory (MPT) by introducing his single-period Mean- 
Variance (M-V) portfolio selection problem in 1952, 
many authors have worked on this field. Markowitz 
considered a portfolio of risky asset. In 1958 Tobin [2] 
introduced the notion of riskless asset when he entered 
cash account in his portfolio and stated the one-fund 
theorem. This theorem says that when both borrowing 
and lending at the riskless rate are allowed, there is a 
single risky fund such that every efficient portfolio 
(portfolios whose expected returns are largest among all 
portfolios with the same variance) can be constructed as 
a combination of the fund and the riskless asset. In the 
Mean-Standard Deviation space, the efficient portfolios 
can be represented by a straight line which is called the 
optimal Capital Allocation Line (CAL) (see Tütüncü [3]). 
In 1972, Merton [4] described the mathematics of the 
efficient portfolios in full analytic approach. The 
geometric viewpoint of the Mean- Variance analysis was 
developed by Merton [4] and Roll [5]. There are a huge 
contributions about asset allocation problem. Recently 
Steinbach [6] in a survey paper has a complete review on 
the different models in this case. 

In the classic one-period M-V portfolio selection prob- 
lem, the weight assigned to each security contained in 
portfolio has been considered to be constant. In other 
words, if someone at the beginning of the investment 
period (t = 0) enters in the capital market with initial 

wealth  0X  and invest his/her wealth as  

   =1
0 = 0

n

i ii
X S  

between n securities, then his/her wealth at the end of the 
investment period ( ) is  =t T

   =1
=

n

i ii
X T S T , 

where  0iS  and  iS T  are, respectively, the value of 
the ith security at the beginning and the end of the period, 
and for each i, i is the number of shares of the ith 
security. Here,  S Ti  is nondeterministic and is con- 
sidered to be a random variable, although, at the 
beginning and at the end of the investment period, i’s 
remain fixed. 

In our model, we assume that i’s are nonconstant and 
vary randomly. In fact it is possible that    0i i T   
for some i, where for each i,  is the number of 
shares of the ith security at the beginning of the period 
and 

 0i

 i T  is the number of the same one at the end of 
the period. Thus the value of portfolio at the beginning of 
the period is  

     =1
0 = 0 0

n

i ii
X S   

and at the end of the period, it is  

=1
( ) = ( ) ( )

n

i ii
X T T S T . 

We can interpret the changes in the values of the i’s 
as follows. Consider an investor who has this opportunity 
to receive some amount of the ith security, as a gift or a 
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reward, during the investment period (after constituting 
his initial portfolio), it is possible that he/she loses some 
amount of the ith security by a contract that force 
him/her to pay his obligation via the ith security. This 
variability is more plausible in the commodity markets. 
One who intends to invest his/her wealth on the com- 
modities, some activities such as holding and trans- 
porting of commodities impose additional risks; besides 
other commodity risks, caused by natural or accidental 
events, on the investment. If we consider the occurrence 
of the above events as a possibility, then the value of 

 will be a random variable.  i T
The importance of our model can be seen in the 

following conditions: 
 There is someone who is willing or is forcing to make 

an investment by imposing some obligations in 
his/her portfolio investment; 

 There might be no possibility or willing to insure the 
commodities included in the investment; 

 Moreover, since this model generalizes the Markowitz 
model, we can use the obtained results in the classic 
portfolio selection problems. 

It is important to note that although the essence of 
, as a random variable, is common between all 

investors, but the nature of 
 iS T

 i T  is special for each 
investor and can vary from one investor to another. Thus 
we fit our model to a special investor who wants to 
construct the optimal portfolio by considering the fact 
that the security weights can vary randomly. 

Under this new assumption, we want to develop the 
notion of one-period Markowitz portfolio selection problem. 
On the other hand, we know that in the classic Mean- 
Variance analysis (with invariable weights), the rate of 
return of each security i  and the rate of return of the 
portfolio r are defined. Then the mean and the variance 
of r are set the criteria for choosing the optimal portfolio. 
Indeed  and r are defined as follow: 

r

ir

   
 

0
= , =

0
i i

i
i

S T S
r i

S


1, , n     (1) 

and 

   
 

0
=

0

X T X
r

X


,              (2) 

then  

   

 
 
 

   
 

=1 =1

=1

=1

0
=

0

0 0
=

0 0

= ,

n n

i i i i
i i

n
i i i i

i i

n

i i
i

S T S
r

X

S S T S

X S

x r

 







 





 

in which  

 
 

0
= , = 1,

0
i i

i

S
, .x i

X


 n        (3) 

Clearly 

=1
= 1

n

ii
x . 

Indeed for each i, ix  is the the assigned weight 
allocated to the ith security in the portfolio. Here we 
denote each security by its weight and the portfolio by 
the vector of security weights. Thus ix  and  

 1:  = , , ' n
nx x RX   

denote the ith security and the portfolio, respectively. 
Obviously in the case that i’s are invariable, ix ’s are 
also invariable and for variable i’s, ix ’s are variable. 
The M-V portfolio selection problem minimizes the 
variance of r, subject to a desired mean return ρ. Indeed 
the problem leads to the following quadratic programming 
problem which its solution is known: 

Problem   . 

1
'min

2X
X X  

. . ' = 1,

' = ,

s t


1X

R X
 

where   is the covariance matrix of the security re- 
turns and R  is the vector of mean returns  1, , nr r ' . 
Also 1 is the n-column vector of ones. 

This paper is organized as follows: In Section 2, we 
introduce the model and its formulation. The connection 
between free securities and riskless assets is investigated 
in Section 3. In Section 4, we describe the relation be- 
tween a set of free securities with both a free security and 
a riskless security. 

2. Portfolio with Variable Weights 

Now we want to know how we should state the portfolio 
selection problem with variable weights so that we can 
apply the standard methods to solve it (see Theorem 2.5). 
To do this, we show that, if an investment asset has any 
additional benefits beyond capital gains such as random 
growths or losses of shares, then returns should be 
adjusted to include any additional components of returns. 
As the first step, it is necessary to determine the in- 
crements of the number of shares for each security.  

Definition 2.1. For a portfolio with variable weights, 
let for each i, 

   
 

0
= ,

0
i i

i
i

T 





 

where  0i  and  i T  are the number of security ix  

Copyright © 2012 SciRes.                                                                                  AM 



R. KEYKHAEI, M. T. JAHANDIDEH 1507

at the beginning and at the end of the period, respectively. 
We call i  the rate of increments of ix . 

Example 2.2. Assume that an event occurs according 
to a Poisson process  with rate λ, and for 
any arrival, the investor obligate to pay one share of the 
ith security, where i is fixed. Then at the end of the 
investment period , with ,  

  : 0N t t 

 =t T



  =

,1, 2,k

N T k

   = 0 , = 0 .i iT k     

Thus i  is a nonpositive random variable such that  

    

  

 

 = = = 0 

= =

= ,
!

i i i

k

T

P l P T k

P N T k

T
e

k


 



 

for  = 0i

By applying the above definition and (2), we have 
l k  , where . = 0,1,2,k 

      

 
   

 
   

 
   

 
  

 
  

 

 

  

=1 =1

=1

=1

=1 =1

=1

=
0

0 0
=

0 0

0 0 0

0 0 0

= 1

= 1

n n

i i i
i i

n
i i i

i i

n
i i i i

i i i

n n

i i i i i
i i

n

i i i i
i

T S T
r

X

S S T

X S

S T S T

X S

x r x r

x r r

 



  













 

 

 





 



0 0

0

,

i

i

i

S

S

 

for 

      = 0 0 0i i ix S X  

as the initial weight allocated to the ith security. r can be 
written as  

=1
=

n

i ii
r x R , 

where 

 := 1i i i iR r r  . 

Definition 2.3. Let for each , i  be the rate 
of the return of the security 

= 1, ,i 
i

n r
x . We define := 1i iu R  

and 

=1
:=

n

i ii
R x u  

as the total-return of ix  and the total-return (or briefly 
the return) of the portfolio, respectively.  

Note. Suppose we possess one share of the ith security. 
By considering its total-return , at the end of the 
period, its value becomes  

iu

    0 = 0 1 1i i i i iS u S r   ,  

as expected, since 1 i  is the number of this security. 
Also,    = 0 .X T RX  

Now we can state our portfolio selection problem in 
the form of the problem   . Assume that all the se- 
curities are risky and  is the n-column random vector 
and 

U
*  is the covariance matrix of the totalreturns 

1 . Also, define , , nu u  :=U U  as the n-column 
vector of mean total-returns 1, , nu u  of these n 
securities. The mean and covariance matrix of the total- 
returns are assumed to be known. By these assumptions, 
the portfolio selection problem with variable weights can 
be stated in the following form: 

Problem 1. Consider the desired mean total-return ρ 
for the portfolio. Our aim is to solve the following 
Mean-Variance portfolio selection problem, 

*1
 'min
2X

X X  

. . ' = 1,

' = .

s t


1X

U X
 

Assumptions. The imposed assumptions on the 
problem are as follows: 
 (A.1) The covariance matrix *  is positive definite. 
 (A.2) The mean vector U  is not a multiple of 1.  

The following constants are frequently used in the 
sequel and we define them similar to those defined in [6] 
as follows:  

* 1 * 1

* 1 2

:= ' , := ' ,

:= ' , := .

 

   

 

 

1 1 1 U

U U

 


      (4) 

Lemma 2.4. The constants α, γ and δ are positive.  
Proof. See Lemma 1.3 of [6].  
In the above lemma we realized that we can not 

specify the exact rang of β. Indeed β may not be positive. 
By applying the Lagrangian multiplier method, we can 

interpret the solution of Problem 1. In the following we 
display the primal-dual solution of Problem 1 by 
 * * *, , X . Also  2   denotes the optimal variance 
of the problem, which is the variance of the solution. 
Like [6], we call the whole graph of the optimal variance 
the efficient frontier. 

Theorem 2.5. Problem 1 has the unique primal-dual 
solution 

 
 

 

* * 1 * *

*

*

= ,

= ,

= .

 

   

   

 





X 1 U

        (5) 

Also the optimal variance is 

   2 * * 2= = 2 ,            (6) 
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Definition 3.2. Let the total-return of a risky security 
be uncorrelated with the total-return of all securities in a 
set of risky securities S. We call such a security  free 
(with respect to S) or S-free; and display it and its 
total-return by 

Proof. See Theorem 1.5 and Theorem 1.7 of [6].  
Note. Although it seems that the variability of the 

weights complicates the portfolio selection problem, we 
see that the problem can be converted to the classical 
form of portfolio selection problem with invariable 
weights (Problem   ) by using the notion of total- 
returns. Therefore, we can employ most of the results for 
portfolio selection in the situation of invariable weights 
to the case of variable weights. Clearly when 

0
iid

i  1 

for each , then we have a portfolio selection 
problem with invariable weights. Thus our model can be 
interpreted as an extension of classical M-V optimization 
problem.  

= 1, ,i  n

3. Existence of Riskless Securities 

Note that a security is riskless, if its return is guaranteed 
and hence it is deterministic. Although cash accounts are 
commonly considered as riskless securities, in our model 
they are not riskless. Because of the change in weights, 
the amount of the gain for a cash account is not de- 
terministic. Indeed the variance of its total-return is not 
zero. Now we redefine the notion of riskless security on 
the bases of its total-return.  

Definition 3.1. We say a security is riskless, if the 
variance of its total-return is zero and denote it by its 
weight 

0f
x . 

By the above definition, a cash account is riskless if 
and only if the rate of its increments is constant. In 
addition, it is not necessary for a riskless security to be of 
the form of a cash account. 

As mentioned above, in our model, it is rare that a 
portfolio contains a riskless security. In the following, we 
try to find some risky securities which act like riskless 
securities to improve our model. Clearly this can also be 
applied for M-V portfolio selection with invariable 
weights. 

fx  and fu , respectively.  
Example 3.3. We investigate the correlation coeffi- 

cients between the weekly rate of returns of a set of 
stocks chosen from S & P500: AEP, ARG, BMY, CPB, 
DPS, DUK, ERTS, LH, LLY, MCD, MKC, PGN, PPL, 
SCG, SO, SWY, UNH, WAG, WAT, WDC, WEC, WFV, 
WLP, WPI, WPO, WYNN, YHOO, YUM, ZION, ZMH. 
The data consist of daily closing stock prices over 2 
years period from 3/12/2009 to 3/11/2011. We choose 
two assets ARG and WEC, which have low correlation 
coefficients with the other assets and present the 
correlation coefficients between their rate of returns and 
the rate of returns of the other assets in Table 1. 

Suppose we can construct a portfolio for which the 
rate of increments of each asset has a mean in  1,0 , is 
independent of the rate of return of that asset and it is 
independent of the rate of increments and the rate of 
returns of the other assets. Let us say two random 
variables are uncorrelated if the absolute value of their 
estimated correlation coefficient is less than 0.1 (at a 
significant level grater than 0.05). Now we can observ 
from Table 1 that for a weekly investment, the stock 
WEC is S-free, where S = {ARG, BMY, CPB, DPS, LH, 
MKC, PPL, UNH, WAT, WDC, WFV, WLP, WPI, 
WYNN, YHOO, YUM, ZION, ZMH}, since, for WEC 
with the total-return w  and the ith asset of S with the 
total return , we have  

u

iu

 
     

    
    

    

,

= 1 1 , 1 1

= 1 1 ,

1 1 ,

= 1 1 ) , ,

w i

w w i i

w i w i

w i w i

w i w i

Cov u u

Cov r r

Cov r r

r r Cov

Cov r r

 

 

 

 

   

 

  

 

 

 
Table 1. Estimated values of correlation coefficients. 

 AEP ARG BMY CPB DPS DUK ERTS LH LLY MCD 

WEC 0.231** 0.059 0.038 0.084 0.038 0.216** 0.089* 0.044 0.090* 0.141** 

ARG 0.06 1 0.093* 0.097* 0.128** 0.099* 0.184** 0 .042 0.086 0.073 

 MKC PGN PPL SCG SO SWY UNH WAG WAT WEC 

WEC −0.052 0.211** 0.055 0.288** 0.232** 0.104* 0.016 0.107* 0.065 1 

ARG −0.019 0.024 0.183** 0.091* 0.074 0.08 0.109* 0.071 0.283** 0.059 

 WDC WFV WLP WPI WPO WYNN YHOO YUM ZION ZMH 

WEC 0.042 0.049 0.028 0.051 0.100* 0.055 0.046 0.084 0.073 0.073 

ARG 0.281** 0.165** 0.025 0.075 0.094* 0.196** 0.196 0.134** 0.132** 0.182** 

 
 

1Iid means independent and identically distributed. 
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where  =w wr r ,  =w w  ,  =ir r i  and 

 =i i  . So,  

   , ,w i w iCov u u Cov r r .  

Also, the stock ARG is S-free, where S = {AEP, LH, 
MCD, MKC, PGN, SWY, SO, WAG, WEC, WLP, WPI}. 
The correlation coefficients denoted by * and ** are 
significant at a (2-tailed) level less than or equal to 0.05 
and 0.01, respectively. In the other cases the significant 
levels are grater than 0.05. 

3.1. Portfolio with Risky Securities and One Free 
Security 

Let a portfolio consists of  risky securities 

1

1n 
, , nx x  and a free security fx . Ind

 ', f

eed the portfolio 
can be presented as 1

1 ' n:= x R X X , where 
'n 1= , ,x xX  . For convenience, throughout the paper, 

we sperate the free securities from other risky securities 
and call X and fx  the “risky part” and the “free part” of 
the portfolio and denote the portion of each part that 
appears in the primal solution by “risky solution” and 
“free solution”, respectively. Let n f  
be the random vector of total-returns and  be their 
covariance matrix. Also let  

 , ,u u u  '1 1= ,
*
1

U

   1 1 1:= = , , , 'n fu u uU U    

and 1  be the -column vectors of ones. In the 
sequel  and 

1  1n  
* U  refer to the risky part of the 

portfolio. 
Now our situation is a special case of Problem 1 with 

one additional risky security fx  and it can be stated as 
a new problem: 

Problem 2.  

*
1 1 1

,

1
 min
2x f


X

X X  

1 1

1 1

. . = 1,

= .

s t






1 X

U X
 

Assumptions. Here the assumptions are (A.1) and 
 (A.3) The mean vector 1U  is not a multiple of 1 . 1

Note. We fix these assumption throughout the paper. 
Let  

 2 :=f fVar u  

and 

  12:= fs 


. 

We define the corresponding constants which are 

stated in (4) by:  
* 1 * 1

1 1 1 1 1 1

* 1 2
1 1 1

:= ' , := ' ,

:= ' , := .

s s

s s s

 

s s    

 

 

1 1 1 U

U U

 


 

Obviously  
* 1

* 1
1

0
= .

0 s


  

 
 


  

Now 

2

= , = ,

= , =

s s

s s f

s su

su s

   

    

 

 
        (7) 

where := fu u  and  
2:= 2f u u     2,  

and α, β, γ and δ are related to the risky part of the 
portfolio and are denoted by (4). 

First, consider 2
f  as a variable, what will happen 

when 2
f  decreases to zero or equivalently when s 

increases to infinity. More precisely, what is the behavior 
of the solution or the efficient frontier of Problem 2 when 
the variance of fx  tends to zero. Although in our model 
there is no riskless cash account, by choosing assets with 
small variances, we show that one can get similar results 
in contrast with the case that we have riskless cash 
account. That is, the solution and the optimal variance of 
the problem converge to the solution and optimal 
variance in the case where the portfolio contains riskless 
security. Then with a little connivance, instead of a 
riskless security, we can use a risky (free) security such 
that its total-return has the same mean with the cash 
account and its variance is close to zero. In fact if we 
consider 2

f  as a variable, then the primal-dual solution 
and the efficient frontier are functions of the variable 

2
f  and to reach our aim, it is sufficient to show that 

they are continuous functions of . First, we 
investigate the solution of problem 2 when .  

 2 0,f  
2 = 0f

Theorem 3.4. Let f . Then, Problem 2 has the 
primal-dual solution as follows: 

2 = 0

 = , = .fu u     

   * 1

0
= , = 1fx u .     X 1 U   

Also, the optimal variance is  

 2
= .fu      

Proof. See Theorem 1.8 of [6]. 
Theorem 3.5. The primal-dual solution and optimal 

variance of Problem 2 are continuous with respect to 
 2 0,f   3. 

Proof. Let 2 0f  . By Theorem 2.5, the corresponding  

primal-dual solution of the problem for each   12= fs 


  
2This notation is similar to δc in [6], when u is considered to be a return 
of a cash account. 
3Explicitly we suppose that u is a constant. is 
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  * 1
1 1 1, ' =s f s ss

x  
 X 1  ,U       (8) 

   = , =s s s s s s s s              (9) 

Then,  

   * 1= , =s s s f ss
x s u .s   X 1 U 

s

 (10) 

Also the optimal variance is  

 2 =s s .              (11) 

By Lemma 2.4, s  is positive. Thus the assertion holds 
for .  2 0,f  

2 = 0Let f . By Theorem 3.4, Problem 2 has the 
primal-dual solution  

 = , = .fu u               (12) 

  * 1

0
= , = 1X 1 U fx  ,u            (13) 

and the optimal variance 

 2
=fu .            (14) 

To verify the assertion at , substitute the values 
in (7) in Equations (9)-(11) and take limit when 

2 = 0f
2
f  

goes to zero or equivalently when  goes to infinity 
and compar the results with Equations (12)-(14). Now 
the assertion holds.  

s

Corollary 3.6. Let a portfolio of risky securities 
contains a cash account cx  for which its rate of 
increments c  is uncorrelated with the total-return of 
the other securities. If the variance of c  converges to 
zero, then the primal-dual and the optimal variance of 
the M-V portfolio selection problem converges to the 
same values for which cx  is replaced by a riskless cash 
account cx  with the same mean total-return. 

Proof. Assume 1 n c , , ,x x x  is the portfolio. Also, 
let c , and c  be the rate of return and total-return of r u

cx , respectively. Then  

    
   

, = ,1 1

= 1 ,1 = 0,

i c i c c

c i c

cov u u cov u r

r cov u





 

 
 

for . Thus = 1, ,i  n cx  is a free asset and the assertion 
holds by Theorem 3.5. 

From now on, suppose 
0 * *

0', fxX  and  2
0   are 

the primal solution and optimal variance of Problem 2 
when , respectively (see Equations (13) and (14)).  2 = 0f

3.2. Portfolio with Risky Securities: A Free 
Security and a Guaranteed Total Loss 

Following section 1.3 of [6], consider a portfolio with 
 risky securities 11n  , , nx x  and a security lx  

with guaranteed total loss, i.e. . In this 
case the portfolio will be 

  = 0l lu u 
  1', ' n

l
ˆ := x R 

l

X X , where X 
is the risky part of the portfolio. Since x  is not risky 

then all covariances associated with lx  vanishes. Then 
the mean and the variance of the total-return of the 
portfolio become 'U X  and , respectively. To 
eliminate arbitrage opportunity, we impose the additional 
constraint . With this conditions the problem can 
be stated as follows: 

*'X X

0lx 

Problem 3. 

* 'X X
,

1
min

2xlX
 

1
ˆ = '  0  1 X 1X

U X

=

' = .

x



0l 

1,l lx. .s t

> 0

 

We apply the Karush-Kuhn-Tucker conditions to solve 
the above problem. To do this, let η be the multiplier of 
the nonnegativity constraint .  x

Theorem 3.7. Problem 3 has the following unique 
primal-dual solution: 

1) If  , then 
a) For >   , , = 0lx = > 0  , and , , X  

are the same as in the primal-dual solution of Problem 1.  
b) For    ,  

* 1= , = 1 , = = 0.lx    X U , =  
 


 

2) If 0  , then  

* 1= , = 1 , =  
 


, = = 0.lx    X U  

Note that the optimal variance in conditions 1) b) and 
2) is  

2
* 2 * 1' = ' = .




X X U  U       (15) 

Proof. The Lagrangian associated with Problem 3 is  

 

 

 

*

, , ,

1
= ' ' 1

2

' .

l

l

L x

x

x

 



 

l



  

  

X

X X 1X

U X

  

We can consider the system of necessary conditions 
for the problem as follow:  

* 0

= ,
1



 








0

0 0 1 0
   

' 1 0 0

' 0 0 0

0,   0,   = 0.

l

l l

x

x x



 

   
   
   
   
        
 

X1 U

1

U



 

Solving the above system results in =   and  

 * 1= .  X U

Consider the condition 

1  

= 0lx . If = 0 , then we have 
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= 0  and  
* 1 * 1= , = 1 ' = 1 .lx    U 1 U   X

Thus  
* 1= ' = ' = .  U X U U  

So  

= 1 .lx



              (16) 

, thenIf x = 0l   =     as in Problem 1. 
Then 0 for   ,  

= .
  
 
              (17) 

hat Note t   and δ are positive by Lemma 2.4. Now 
ethe proof of th  Theorem: 

Let > 0 , and let >   . If = 0 , then lx  is 
 other hnegative by (16). On the and, = 0 , then by 

(17) the value of λ will be negative, and hence η is 
positive. Also for 

if lx

<   , = 0lx  yields that λ is 
positive and therefore   is n e, whereas when 

= 0
egativ

 , lx  is positive. For    , = = 0lx . So 
) h ds. 

Let < 0
part (1 ol

 , since we assume that ρ is nonnegative 
then the positivity of γ implies that ρ is greater than 
  . In this case for = 0lx , > 0  and th η is 
negative, where = 0

en 
as if  , then > 0lx . 

Finally le 0t = , then = 0xl

 the ot
 leads to positivity of λ 

and then nega f η. On her hand = 0tivity o   yields 
= 1 > 0lx  and finally part 2) holds. Uniqu  of the 

ollows from strong convexity of the objective 
function and full rank of the constraint.  

In the following; we denote the primal-

eness
solution f

dual solution of 
Problem 3 by  * ˆˆ ˆˆ, , ,  X ; and  2̂   as the optimal 
variance of the p

Now consider a portfo
roblem. 

lio that contains n risky assets , 

fx  and lx . Let  

    2
1

ˆ', , ' = ', ' n
l f f

ˆ = x x x X  R

denotes the portfolio. With these assumptions Problem 3 

X X

has a new version as follows: 
Problem 4. 

*
1 1 1

, ,

1
 'min
2x xl fX

X X  

2 1 1 1

1 1

ˆ. . = ' = 1, 0

' = ,
l ls t x x


  1 X 1 X

U X
 

where  is a -column vector of ones. We 21
 th

 2n 
al-dualdisplay e prim  solution of Problem 4 by 

*
1

ˆˆ ˆˆ, , ,s s s  X .  

 3.8Corollary . Problem 4 has the following unique 
primal-dual solution:   

1) If >s u , then 
a) For > s s = 0lx   ,  and 0  and ˆˆ = >s s 

ˆ ˆ, , ,f s sx  X
Problem 2.  

 are iden the primtic n of 

b) For 

al to al-dual solutio

s s   ,  
* 1ˆ ˆ ˆ= , = 1 , = , 

ˆˆˆ = , = = 0.

s l s s f s

s s s
s

sux x   

  


 

 

2) If 

X U

s u  , then  
* 1ˆ ˆ= , ˆ1 , = , 

ˆˆˆ = , = = 0.

 =s l s s f s

s s s
s

x sux   

  


X U

 

Proof. Rearrange the portfolio  to 



1X̂  1 , 'lxX , 
where  1 = ', 'fxX X . Now apply Th em 3  
portfoli

eor .7 for the
o  1 , 'lxX  and use the definition of 1 .  

In order to ap  Corollary 3.8, specificatio f sign ply n o of 

s  is necessary. The value of β has the main role in 
ermining the sign of det s . For example when 0  , 

only part 1) of Corollary 8 gives the answer, w  
for negative β, both parts of the Corollary can be applied. 

In the following let  

 3. hereas

  *
0 0 00 0

ˆ ˆˆ ˆ', , ', , ,l fx x* *ˆ
0  X  

denote the primal-dual solution of Problem 4 when 
2 = 0f  which are stated as follows: 

osition 3.9. If > uProp  , then  and *

0
= 0lx

0 0̂= > 0  and otherŵ ise  

 * *ˆ ˆ',  0 0
'fxX ,

0̂  and 0̂  
 w

is identical to the primal-dual solution of 
Problem 2, hen 2 = 0f . Also for u  , 

* *
0 0

*
0 0 00

ˆ ' = 0, = 1 ,

ˆ ˆˆ ˆ= , = = = 0.

l

f

x
u

x
u



   

X

     (18) 

Proof. See Theorem 1.12 of [6].  
 Problem 4 when We show the optimal variance of

2 = 0f  by   2
0̂   that is  

 
 

2
20

0,  
ˆ =

,  > .f

if u

u if u


 

  





   (19) 

Theorem 3.10. The primal-dual solution and optimal 
variance of the Problem 4 are continuous with respect to 

 2 0,f   .4 
fine Proof. De the function g by  4Explicitly we suppose that u is a constant. 
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2

= ,
t u

.g t t
 

R
t u




 

Observe that for any  2 0,f   ,  2 =f s sg    . 
Let < 0 , then g is strictly increasi teng on the in rval 

 u ,  ,   and hence it is one to one. Also, < s su    
1). We fix ρ and investigate the cla

Suppose u
(see Figure im. 

   and  2 0,f   . By Corollar
th u

1
y 3.8 

e primal-d ution related to any  2= fs al sol


 is  
* 1ˆ ˆ= , = 1 , ˆ ,

ˆˆˆ = , = = 0

=s s l s s fs s s

s s s
s

x x su   

  


 

and optimal variance is  

 X U

 
2

2ˆ ˆ= = .s s
s

  


 

Because of the positivity of s , ˆs  and consequently 
each of the above terms are continuous with respect to 

 2 0,f   . By taking limit of these terms when 2
f  

goe  (or equivalently when s  goes infinity) and 
comparing the results with Equatio s (18) and (19) the 
assertion holds. 

Now let > u

s to zero
n

  and  2 0, . Note that f  

 1 <g u  . 

By Corollary 3.8 the primal-dual solution is  

   
 

2 1,  <
ˆ s s s fif g

2 1
ˆ = = ,

0,  
s s

fif g

     
 

 
 


 (20) 

 

   
 

2 1

2 1

,  <
ˆ = ,

,  

s s fs
s

s f

if g

if g

     


   





 



   (21) 

,
 
 

2 1

2 1

0,  <
=

ˆ1 ,  

f

ls
s s f

if g
x

if g

 

   







 

      (22) 

 

 

 when < 0 . 

  2 1ˆ ˆ , <s u i g

Figure 1. The continuity of ̂s

 
 2 1

 
= ,

ˆ ,  

s s f
fs

s f

f
x

su if g

   

  



 

 
  (23) 

   
 

* 1 2 1

* 1 2 1

ˆ ˆ ,  <
=

ˆ ,  

s s f
s

s f

if g

if g

   

  

 

 

 




1 U
X

U




  (24) 

and finally the optimal variance is  

     

 

2 2 2 1

2

2 2 1

,  <
ˆ = .

,  

s s s s f

s

s f

if g

if g

       
 

   





 

 

(25) 

As we know


 

 s  is positive. thus the primal
so

-dual 
lution and optim variance are continuous on  al 

  1 ,g   .  

Also, it is easily seen that two pa f all of the above rts o
terms coincide at  =f g2 1  . Now the assertion holds 
by Theorem 3.5 and in this c  the proof is complete. 

If = 0



ase,
 , then for u  , part (1).(b) of Corollary 3.8 

ho . Alsolds  for > u , conditions (20)-(25) hold. 
When β is positive the proof can be separated into two 

parts, u    or >u   . 
In the first case for u  , part 1) b) of Corollary 3.8 

holds and for    , only part 1) a) of Corollary 3.8 
holds. For < <u    , the primal-dual solution and 
optimal variance are those which have stated in 
Equations (20)-(25). Finally in the second case for 
    and u  , part 1) a) and part 1) b) of 
Corollary 3.8 hold, respectively. When < < u   , 
Equations (20)-(25) hold but with a change in two 
conditions of each equation. In all cases it is easy to 
investigate the continuity of primal-dual solution and 
optimal variance with respect to 2

f  on the interval 
 0, . This completes the proof.  

Like Corollary 3.6 we can s  the following tate
corollary:  

Corollary 3.11 Let the portfolio of Problem 3 contains 
a cash account cx  for which its rate of increments c  
is uncorrelated with the total-return of the other 
securities. If the variance of c  converges to zero, then 
the primal-dual and the optimal variance of Problem 3 
converges to the same values for which cx  is replaced 
by a riskless cash account cx  with the same mean 
total-return. 

4. Co-Mean Total-Return Free Securities 

ich In the previous section, we investigate the case in wh
the portfolio contains a free security. In this section we 
consider a portfolio with more than one free securities 

1
, ,f fi

x x  which have the same mean total-return u. We 
call such free securities co-mean total-return or briefly 
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co-mean 

and call it and its portion in the primal solution, the “free 
part” of the portfolio and the “free solution”, respectively. 

 for 

4.1. Portfolio with Risky and Co-Mean Free 
Securities 

where  and are the risky and t part of the 
portfo , respectively. Let 

free securities. Also we denote the vector 
weight of co-mean free securities by 

 1
:= , , 'i f fi

x xX   

In the following, let  

 1
2:=js 

f j
= 1, ,j i . 

In this section we assume that the portfolio is  

 := ', 'i i R X X X ,  n i

X
lio

iX  he free 

iU  and the mean *  are i

vector d the covariance matrix of total-returns of 
securities, respectively, and i  is a  n i -column 
vector of ones. So the portfolio selection problem is: 

Problem 2(i).  

an
1 n 

*1
 min
2 i i i

i


X
X X  

. . = 1,

= .

i i

i i

s t







1 X

U X
 

Note that Problems 2(1) an 2 a  equivalent. The 
assumptions are the same as those stated in section 2.1, 

re

namely (A.1) and (A.3). As before, we define the 
following constants:  

* 1 * 1 * 1:= , := , := ,i i i i i i    
1 1 1 U U U    i i i i i i 

and  

i
 2 2:= , := 2 .i

i i i i f i ir r          

In the following  * , ,i i i X  and  2
i 

ariance o
 d ote the 

primal-dual solutio mal v f roblem 
2(

 part of the portfolio, then 

en
 Pn and the opti

i), respectively. 
Lemma 4.1. Let α, β, γ, δ and δf be the constants 

related to the risky

1) 1=i is s     , 

2)  1=i is s u     , 

3)   2
1=i is s u     , 

4)   =i
f f  , 

5)  1s  f=i is     ,  

of. The proof is obvious
ention that two portfo  selection problems are 

eq e optimal variance for 
an

Pro .  
We m lio

uivalent, if they have the sam
y desired mean return ρ for the portfolio. Equivalently 

this means that their efficient frontiers coincide.  
Proposition 4.2. Let <j i . Problem 2(i) with the set 

of co-mean free securities  

 1
, ,f fi

x x   

and Problem 2(j) with the set of co-mean free securities  

 *1 1
, , ,f f j f

x x x


  

(for j = 1 this set contains *f
x  on ) are equivalent, 

where  
ly

  1
* 2 i

* =
:= = kk jf

s s 


.  

Precisely, in both problems dua olutions are 
identical and in primal solutions, individual weights of 
co

l s

mmon securities are identical and  

* = .
i

=
fkf

k j

x x   

Proof. Considering Lemma 4.1 a he simple fact that  nd t
1 *i j

=1 =1
=k kk k

s s s  ,  


Theorem 2.5 shows that both proble ave the same 
dual solutions, say 

ms h
 and ii , and c sequently have 

th
on

e same optimal variance. To complete the proof let  

 *

1
= ', , 'i f fi

x xX X  .  

Then  

 =f k i ik
x s u    

for . Now 



= 1, ,k i

  *

= =

=
i i

=f k i i i ik
k j k j

x s u s u      

which is the optimal weight of the last free asset in 
Problem 2(j). 

. Precisely, no free security 
ap

Proposition 4.3. Problem 2(i) and Problem 2(1) are 
equivalent if 2

1
pears in the primal solution of Problem 2(i), i.e.  

= 0f

   
2
, , = 0, ,0 ,f fi

x x   

and both problems have identical primal- al solution.  
Proof. Let . By Theorem 3.4, for 

 
so blem 2

du
2 = 0f
1

each free security has the following weight in the
= 2, ,i n , 

lution of Pro (i):  

 = ,f ii
x s u   

= u where . Now the assertion h lds.  
Theorem 4.4. The risky and the dual solutions, and 

mal vari ge to that of 

o

the opti ance of Problem 2(i) conver
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Pr

  

converges to zero. Besides, the sum of components of the 
free solution converges to 

oblem 2 when 2 = 0f , if  

  1i 
 * 1

=1
= kk

s s

*

0f
x .  

where 

Now the assertion follows from Proposition 4.2 and 
Theorem 3.5.  

Proof. Let = 1j  in Proposition 4.2 and construct the 
dummy portfolio  

  '1 *= ',
f

xX X , 

 * =
f

u u . 

 

Note. As indicated in Theorem 4.4, it is seen that  

2
* 2 2

1
= .

1 1f
1f fi


  

 

Obviously if more and more co-mean free securities with 
low variances are added to the portfolio, then 2

*f
  is 

e 

ean Free 
Securities and a Guaranteed Total Loss 

ence 
of c hen 

more and more close to zero (this is the advantage of a 
set of co-mean free securities with respect to on free 
security). Consequently the portfolio selection problem 
becomes equivalent to the problem in which the set of 
co-mean free securities are replaced by a riskless security 
with that total-return in the limit sense. 

4.2. Portfolio with Risky and Co-M

In this section, we investigate the effect of the pres
o-mean free securities in portfolio selection w

portfolio consists of 1n   risky securities and a total 
loss security. As before let X  and iX  be the risky and 
the free part of the olio, respectively. Now the 
portfolio is  

 

portf

  1ˆ ˆ:= ', , ' = ', n i
i lx R  X X X X X    i i 

and the problem can be stated as: 
Problem 4(i).  

*

ˆ

1
 min
2 i i i

i


X
X X  

1
ˆ. . ' = = 1, 0

= ,
i i i i l l

i i

s t x x






 1 X 1 X

U X
 

where  is a -column vector of es. Note 
that Pr s 4(  equivalent. We display the 

1i1
oblem
dua

 1n i 
1) and 4 are
on and the 

on

primal- l soluti optimal variance of Problem 
 4 i  by  * ˆˆ ˆˆ, , ,i i i i  X  and  2ˆi  , respectively.  
Theorem 4.5. Let <j i . Problem 4(i) with the set of 

securi

 ,
1
,f fi

x x   

and Problem 4(j) with the set of free securities  

 *1 1
, , ,f f j f

x x x


   

(when  the set contains only= 1j ,  *f
x ) are equivalent, 

where  

  1
* 2:= =

i

* = kk jf
s s



 .  

Precisely, in both problems dual solut are identical 
and in primal solutions, individual we s of common 

ions 
ight

securities are identical and  

* = .
i

=
fk

j
f

k

x x  

Proof. Let  

 *

1
ˆ = ', , ,i l f i

'fx x xX X  . 

 and i i   , then by T orem 3.7, we 

free ties  

If > 0i he
have  

   

* 1

11

ˆ ˆ= , = 1 ,l ix  X U

ˆ, = , , ,

i

f f i ii
x x u s s







 


 

ˆˆˆ = , = = 0i i i
i

  


 ,

and  

 
2

2ˆ = .i
i

 


 

It can be easily seen that by Lemm nd the simple 
fact that  

a 4.1 a

1 *=
i j

k k=1 =1k k
s s s

   ,  

=j i   and =j i we have . N e proof is 
straight f  part of T rem 3.7. For 

mal s  of Prob

ow th
heoorward by  1) b) 

instance in pri olution lem 4(j) 

* *
*

= =

ˆ ˆ ˆ= = = = .
i i

j i k if
k j k

fk
j

x s u s u s u x     

0i  . The claim can be proved similarly for 
If = > 0i j   and > =i i j j     , the assertion 

 3.7 plied to 
Problems 4(i) and d Proposition 4.2.

free security 
ap

follows from part 1) a) of Theorem  ap
 4(j) an  

Theorem 4.6. Problem 4(i) and Problem 4(1) are 
equivalent if 2

1
= 0f . Precisely, no 

pears in the primal solution of Problem 4(i), i.e.  

   
2
, , = 0, ,0 ,f fi

x x   

and both problems have the identical primal-dual 
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solution. 
Proof. The case is trivial. Let . Rearrange  1 *

ˆ = ', ,l f
x xX X ' ,  

= 1i  > 1i
the portfolio of Problem 4(i), ˆ

iX , to  

  2 1
', , , , , 'f l fi

where  

 * =
f

u u . fx x x xX  . 

u 
i

If , then by applying Proposition 3.9 for 
Problem 4( ), we see that the primal an ual solutions 
are as follows:  

Now the assertion holds by Theorems 4.5 and Theorem 
3.10. d d

Note. Theorems 3.5, 3.10, 4.4 and 4.7 state that a free 
security or a set of co-mean free securities which their 
total-returns have very low variances and the same mean 
with the riskless security, can be considered as a alter- 
native for the riskless security. 

   
2

= 0, , , = 0, ,0 ,X f fi
x x 

1
= 1 , = ,l fx x

u u

 


 

.

In this case the optimal variance is zero and
complete the proof for 
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