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ABSTRACT 

The Kuhn-Tucker theorem in nondifferential form is a well-known classical optimality criterion for a convex program- 
ming problems which is true for a convex problem in the case when a Kuhn-Tucker vector exists. It is natural to extract 
two features connected with the classical theorem. The first of them consists in its possible “impracticability” (the 
Kuhn-Tucker vector does not exist). The second feature is connected with possible “instability” of the classical theorem 
with respect to the errors in the initial data. The article deals with the so-called regularized Kuhn-Tucker theorem in 
nondifferential sequential form which contains its classical analogue. A proof of the regularized theorem is based on the 
dual regularization method. This theorem is an assertion without regularity assumptions in terms of minimizing se- 
quences about possibility of approximation of the solution of the convex programming problem by minimizers of its 
regular Lagrangian, that are constructively generated by means of the dual regularization method. The major distinctive 
property of the regularized Kuhn-Tucker theorem consists that it is free from two lacks of its classical analogue speci- 
fied above. The last circumstance opens possibilities of its application for solving various ill-posed problems of optimi- 
zation, optimal control, inverse problems. 
 
Keywords: Sequential Optimization; Minimizing Sequence; Stable Kuhn-Tucker Theorem in Nondifferential Form; 

Convex Programming; Duality; Regularization; Optimal Control; Inverse Problems 

1. Introduction 

We consider the convex programming problem 
(P)            min, = , 0,if z Az h g z 

= 1, , , ,i m z D Z 
1

 

where :f D R  is a convex continuous functional, 
:A Z  H  is a linear continuous operator, h H  is a 

fixed element, 1:ig Z R , , are convex 
functionals, D is a convex closed set, and Z and H are 
Hilbert spaces. It is well-known that the Kuhn-Tucker 
theorem in nondifferential form (e.g. see [1-3]) is the 
classical optimality criterion for Problem (P). This 
theorem is true if Problem (P) has a Kuhn-Tucker vector. 
It is stated in terms of the solution to the convex 
programming problem, the corresponding Lagrange mul- 
tiplier, and the regular Lagrangian of the optimization 
problem (here, “regular” means that the Lagrange multi- 
plier for the objective functional is unity). 

= 1, ,i  m

Note two fundamental features of the classical 
Kuhn-Tucker theorem in nondifferential form (e.g. see 

[4-7]). The first feature is that this theorem is far from 
being always “correct”. If the regularity of the problem is 
not assumed, then, in general, the classical theorem does 
not hold even for the simplest finite-dimensional convex 
programming problems. In particular, the corresponding 
one-dimensional example can be found in [7] (see Exam- 
ple 1 in [7]). For convex programming problems with 
infinite- dimensional constraints, the nonvalidity of this 
classical theorem can be regarded as their characteristic 
property. In this case a simple meaningful example can 
be found in [7] (see Example 2 in [7]) also. 

The second important feature of the classical Kuhn- 
Tucker theorem is its instability with respect to per- 
turbations of the initial data. This instability occurs even 
for the simplest finite-dimensional convex programming 
problems. The following problem can be a particular 
example. 

Example 1.1. Consider the minimization of a strongly 
convex quadratic function of two variables on a set 
specified by an affine equality constraint: 

2 2 1 1 1
min, = , , , .

0 0 0
x Ax y x R A y

  
     

  


 





 (1) 
*This work was supported by the Russian Foundation for Basic Re-
search (project no. 12-01-00199-a) and by grant of the Ministry of 
Education and Science of the Russian Federation (project no. 
1.1907.2011) The exact normal solution is . The = 0,5;0,5x

Copyright © 2012 SciRes.                                                                                  AM 



M. I. SUMIN 1335

dual problem for (1) has the form 

    
2

,

1
= , , max,

4

V L x

,AA y

  

   



   R
 

where           2
, ,L x x Ax y      

and          2 1
, , =argmin

2
x L x x R A     . 

Its solutions are the vectors   11, R   

> 0

. It is easy 
to verify that every vector of this form is a Kuhn-Tucker 
vector of problem (1). For   consider the following 
perturbation of problem (1)  

2 2

2

min, = , ,

1 1 1
, .

0

x A x y x R

A y

 

 

 

 

   
    
   

    (2) 

The corresponding dual problem  

     2, max,V L x       R  

has the solution 
3

2 2 2 4
= ,  

 
  

 
 

. 

According to the classical Kuhn-Tucker theorem, the 
vector  

    2 1 1
, , = 1 ,argminx L x x R    

 
    
 
  

is a solution to perturbed problem (2). At the same time, 
this vector is an “approximate” solution to original 
system (1), and no convergence to the unique exact 
solution occurs as 0  . 

It is natural to consider the above-mentioned features 
of the classical Kuhn-Tucker theorem in nondifferential 
form as a consequence of the classical approach long 
adopted in optimization theory. According to this ap- 
proach, optimality conditions are traditionally written in 
terms of optimal elements. At the same time, it is 
well-known that optimization problems and their duals 
are typically unsolvable. The mentioned above examples 
from [7] show that the unsolvability of dual problems 
fully reveals itself even in very simple (at first glance) 
convex programming problems. On the one hand, op- 
timality conditions for such problems cannot be written 
in terms of optimal elements. On the other hand, even if 
they can, the optimal elements in these problems are 
unstable with respect to the errors in the initial data, 
which is demonstrated by Example 1.1. This fact is a 
fundamental obstacle preventing the application of the 
classical optimality conditions to solving practical pro- 
blems. An effective way of overcoming the two indicated 
features of the classical Kuhn-Tucker theorem (which 

can also be regarded as shortcomings of the classical 
approach based on the conventional concept of op- 
timality) is to replace the language of optimal elements 
with that of minimizing sequences that is sequential 
language. In many cases this replacement fundamentally 
changes the situation: the theorems become more general, 
absorb the former formulations, and provide an effective 
tool for solving practical problems. 

So-called regularized Kuhn-Tucker theorem in non- 
differential sequential form was proved for Problem (P) 
with strongly convex objective functional and with 
parameters in constraints in [7]. This theorem is an 
assertion in terms of minimizing sequences (more pre- 
cisely, in terms of minimizing approximate solutions in 
the sense of J. Warga) about possibility of approximation of 
the solution of the problem by minimizers of its regular 
Lagrangian without any regularity assumptions. It con- 
tains its classical analogue and its proof is based on the 
dual regularization method (see, e.g. [4-7]). The specified 
above minimizers are constructively generated by means 
of this dual regularization method. A crucially important 
advantage of these approximations compared to classical 
optimal Kuhn-Tucker points (see Example 1.1.) is that 
the former are stable with respect to the errors in the 
initial data. This stability makes it possible to effectively 
use the regularized Kuhn-Tucker theorem for practically 
solving a broad class of ill-posed problems in optimi- 
zation and optimal control, operator equations of the first 
kind, and various inverse problems. 

In contrast to [7], in this article we prove the re- 
gularized Kuhn-Tucker theorem in nondifferential se- 
quential form for nonparametric Problem (P) in case the 
objective functional is only convex and the set D is 
bounded. Just as in [7], its proof is based on the dual re- 
gularization method. Simultaneously, the dual regula- 
rization method is modified here to prove the regularized 
Kuhn-Tucker theorem in the case of convex objective 
functional. 

This article consists of an introduction and four main 
sections. In Section 2 the convex programming problem 
in a Hilbert space is formulated. Section 3 contains the 
formulation of the convergence theorem of dual 
regularization method for the case of a strongly convex 
objective functional including its iterated form and the 
proof of the analogous theorem when the objective 
functional is only convex. In turn, in Section 4 we give 
the formulation of the stable sequential Kuhn-Tucker 
theorem for the case of a strongly convex objective 
functional. Besides, here we prove the theorem for the 
same case but in iterated form and in the case of the 
convex objective functional also. Finally, in Section 5 we 
discuss possible applications of the stable sequential 
Kuhn-Tucker theorem in optimal control and in ill-posed 
inverse problems. 
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2. Problem Statement 

Consider the convex programming Problem (P) and 
suppose that it is solvable. Its solutions we denote by . 
We also assume that  

0z

       1 2 1 2 1 2

1 2 1 2

,

,

M

M

f z f z L z z g z g z

L z z z z D S

   

     ,M

 

where  is a constant and  > 0ML

 :MS z Z z M   . 

Below we use the notations: 

     , , , , ,L z f z Az h g z        

  : , , = 1, , ,iD z D Az h g z i m          0.

R

 

Define the concave dual functional called the value 
functional  

   , , , , ,inf
m

z D
V L z H     


   

and the dual problem  

   , sup, , mV        .H R      (3) 

In what follows the concept of a minimizing ap- 
proximate solution to Problem (P) plays an important 
role. Recall that a sequence , , is 
called a minimizing approximate solution to Problem (P) 
if 

kz D = 1,2,k 

 kf z  , for , and . 
Here 

, k 0 k 
kkz D

  is the generalized infimum: 

 0
0

, , ,lim inf
z D

f z if D
  


    

 

     = .  

If f is a strongly convex functional and also if D is a 
bounded set,   can be written as  

  0 0, exists; otherwise .f z if z    

Recall that in this case the Kuhn-Tucker vector of 
Problem (P) is a pair  , mH R  

   such that  

   
   

0 , ,

, ,

f f z L z

,f z Az h g z z

 

  Z 

 

     



  

 

where  is a solution to (P). It is well-known that 
every such Kuhn-Tucker vector 

0z
 ,    is the same as 

a solution to the dual problem (3), and combined with 
 constitutes a saddle point of the Lagrangian  0z

   , , , , , mL z z D H R       . 

3. Dual Regularization Algorithm 

In this section we consider dual regularization algorithm 
for solving Problem (P) which is a stable with respect to 
perturbations of its input data. 

3.1. The Original and Perturbed Problems 

Let F be the set formed of all collections of initial data 
 , , , , = 1, ,if f A h g i m   for Problem (P). Each col- 

lection consists of a functional f, which is continuous and 
convex on D, of a linear continuous operator A, an 
element h and functionals , = 1, ,ig i  m , that are 
continuous and convex on D. Moreover, it holds that 

   1 2 1 2 ,Mf z f z L z z    

   1 2 1i i M 2g z g z L z z    

1 2, , = 1,Mz z D S i m, ,     

where the constant LM is independent of the collection. If 
the objective functional of Problem (P) is strongly 
convex, then a functional f in each collection is continuous 
and strongly convex on D and has the constant of strong 
convexity > 0  that is independent of the collection. 

Furthermore, we define collections 0f  and f   of 
unperturbed and perturbed data, respectively:  

 0 0 0 0 0, , , , = 1, ,if f A h g i m    

and        , , , , = 1, ,if f A h g i m      ,  

where  00, 
0 > 0

 characterizes the error in initial data 
and   is a fixed scalar. Assume that  

     20 1 ,f z f z C z     

0 0, ,A A C h h C              (4) 

     20 1 ,g z g z C z     

where  is independent of > 0C   and  

 1 , , mg g g   
  . 

Denote by (P0) Problem (P) with the collection 0f  of 
unperturbed initial data. Assume that (P0) is a solvable 
problem. Since  

  0 0 0 0: = , 0, = 1, ,iD z D A z h g z i m      

is a convex and closed set, we denote the unique solution 
of Problem (P0) in the case of strongly convex 0f  by 

. The same notation we leave for solutions of Problem 
(P0) in the case of convex 

0z
0f  also. 

The construction of the dual algorithm for Problem (P0) 
relies heavily on the concept of a minimizing ap- 
proximate solution in the sense of J. Warga [8]. Recall 
that a minimizing approximate solution for this problem 
is a sequence , such that  , = 1, 2,iz i 

  0i if z0    ,  

where 0 iiz D   and nonnegative scalar sequences ,i i  , 
, converge to zero. Here = 1,i 2, 0  is the ge- 
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neralized infimum for Problem (P0) defined in Section 2, 
and  

  0 0 0 0: , , = 1,iD z D A z h g z i m       ,

0

. 

It is obvious that, in general 0
0  , where 0

0  is 
the classical value of the problem. However, for Problem 
(P0) defined above, we have 0 0

0=  . Also, we can 
assert that every minimizing approximate solution 

 of Problem (P0) obeys the limit relation  , = 1, 2,iz i 

   0 0

0
, ,min

i

z D

f z f z i


   

both in the case of convex 0f  and in the case of 
strongly convex 0f . 

Since the initial data are given approximately, instead 
of (P0) we have the family of problems  

           
 

   
inf , = ,

0, = 1, , , ,i

f z A z h

g z i m z D P

  

 



 
 

depending on the “error”  . 
Define the Lagrange functional  

   

 

, , ,

, , , , m

L z f z A z h

,g z z D H R

   



  

 

  

    

.R

 

and the concave dual functional (value functional)  

   , , , , ,inf
m

z D
V L z H      


   

If the functional f is strongly convex, then due to 
strong convexity of the continuous Lagrange functional 

, for all  , , ,L z z D     , mH R   
m

, where  

  1= , , : 0, = 1, ,m iR x x x R x i m    m ,  

the value  ,V     is attained at a unique element 

    , , ,argminz L z    ,z D .  

If D is a bounded set, then obviously the dual functional 
V   is defined and finite for all elements  , mH R    . 
When the functional f is convex, in the last case the value 

 ,V    is attained at elements of the non-empty set  

  , , ,Argmin L z z D    . 

Denote by  , ,,       the unique point that 
furnishes the maximum to the functional  

 

 

 

,

2 2

,

, ,

, m

R

V

H R

 



 

     

  

  

 

 

on the set mH R . 
Assume that the consistency condition  

   0, 0, 0
   

 
         (5) 

is fulfilled. 

3.2. Dual Regularization in the Case of a 
Strongly Convex Objective Functional 

In this subsection we formulate the convergence theorem 
of dual regularization method for the case of strongly 
convex objective functional of Problem (P0). The proof 
of this theorem can be found in [7]. 

Theorem 3.1. Let the objective functional of Problem 
(P) is strongly convex and the consistency condition (5) 
be fulfilled. Then, regardless of whether or not the 
Kuhn-Tucker vector of Problem (P0) exists, it holds that  

       2
, ,, 0          ,  

      , ,0 0, ,f z f z            
0 0,

,

 

   , ,0 0, 0A z h             
      , ,0 , ,ig z               

   0, 0, 0,        

    
       

, ,

, ,, ( )

, ,

, , ,

0, 0.

A z h g z

     

               

 

   



,   
  

 

  

Along with the above relations, it holds that  

      , ,0 0 0 0, ,f z f z            0,  

    
         

, ,

, , , ,0 0 0 0 0

, ,

, , ,

0, 0

A z h g z

     

           

 

   



   
  

 

  

and, as a consequence,  

    

 
   

, ,0

0

0 0

,

,lim

= , =sup
mH R

V

V f

     



 

 

 



  

0 .z
      (6) 

If the dual problem is solvable, then it also holds that  

      , , 0 0, , ,           0,  

where  0 0, mH R     is the solution to the dual 
problem with minimal norm. 

If the strongly convex functional 0f  is subdiffer- 
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entiable in the sense of convex analysis  on the set D, 
then it also holds that  

( )

   , , 0, 0,z z        0.     

,



k

 

In other words, regardless of whether or not the dual 
problem is solvable, the regularized dual algorithm is 
regularizing one in the sense of [9].  

3.3. Iterative Dual Regularization in the Case of 
a Strongly Convex Objective Functional 

In this subsection we formulate the convergence theorem 
of iterative dual regularization method for the case of 
strongly convex objective functional of Problem (P0). It 
is convenient for practical solving similar problems. The 
proof of this theorem can be found in [4]. 

We suppose here, that the set D is bounded and use the 
notation  

     0, 0,, ,
k k k k k        

2,

,  

where 

 0, 0,, , = 0,1,
k k

k     

is the sequence generated by dual regularization 
algorithm of Theorem 3.1. in the case  ,= 0    , 

= k  . Here  is an arbitrary sequence of 
positive numbers converging to zero. Suppose that the 
sequence 

, = 1,2,k k 

 , , = 1, 2,k k k    is constructed according 
to the iterated rule  

 
   
 

1 1,

= , ,

2 , , = 0,1,2,

k k

kk k k k
mH R

k k k k

Pr V

k



 

,

k   

   

 

 
 







     (7) 

where  0 0, mH R    , 

       , = , , ,V A z h z            ,g  

and the sequences , ,k k k   , , obey the 
consistency conditions  

= 1,k 2,

  01

k



0, > 0, > 0,

= 0, ,lim

k k k

k k k
k

k
C

  

  




  
    (8) 

     

1

3 3 6
=1k



 0, 0, 0, = .
k k k k

k k

k k k k

     
   

 
    

The existence of sequences k  and k , , 
satisfying relations (8) is easy to verify. For example, we 
can use 

= 1,2,k 

1 6=k k   and  1 5 3= k k . 
Then, as it is shown in [4], the limit relations  

   
0

, , 0,

, , 0,

k k k k

k k k k kz z k

   

   

 

         
   (9) 

hold and, as consequence, we have  

   0 0 0

0 0 0

, ,

, ,

k k k

k k k k k

f z f z

A z A z





 

   

   

        0,

   (10) 

   0 0 0, ,

= 1, , , ,

k k k k k
i ig z g z

i m k

           

 

0,
 

0 0, ,k k k kz z           0,  

, ,
k kk k k kz z            0.  

Besides, if the strongly convex functional 0f  is sub- 
differentiable at the points of the set D, then we have 
also  

0 0, 0,k kz z k   .     

The specified circumstances allow us to transform 
Theorem 3.1. into the following statement. 

Theorem 3.2. Let the objective functional of Problem 
(P0) is strongly convex, the set D is bounded and the 
consistency conditions (8) be fulfilled. Then, regardless 
of whether or not the Kuhn-Tucker vector of Problem (P0) 
exists, it holds that  

   0 0 0[ , , 0,
k k k kf z f z k        ,

 
0 0, 0

k k kA z h       ,
 

       0 , , 0, 0,
k k k k k k

ig z             
 

    , , , , ,

0, 0, .

k k k k kk k k k k k

k

A z h g z

k

         



     

  


 

Along with the above relations, it holds that  

   0 0 0 0, ,k kf z f     z  

    0 0 0 0 0, , , , ,

0, 0,

k k k k k k

k

A z h g z

k

     



     

  


 

and, as a consequence,  

 
 

   0 0

0 ,

, = , =suplim
k k

k mH R

V V
  

   
   

0 0 .f z  

If the dual problem is solvable, then it also holds that  
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   0 0, , ,k k k     ,  

where  0 0, mH R     is the solution to the dual 
problem with minimal norm. 

If the strongly convex functional 0f  is subdif- 
ferentiable (in the sense of convex analysis) on the set D, 
then it also holds that  

0, 0,
k k kz z k        .  

3.4. Dual Regularization in the Case of a Convex 
Objective Functional 

In this subsection we prove the convergence theorem of 
dual regularization method for the case of bounded D and 
convex objective functional of Problem (P0). 

Below, an important role is played by the following 
lemma, which provides an expression for the super- 
differential of concave value function  ,V    , 
 , mH R   

V

 in the case of a convex objective 
functional and a bounded set D. Here, the super- 
differential of a concave function (in the sense of convex 
analysis)   is understood as the subdifferential of the 
convex functional V   taken with an opposite sign. 
The proof is omitted, since it can be found for a more 
general case in [4]. 

Lemma 3.1. The superdifferential (in the sense of 
convex analysis  of the concave functional )  ,V     
at a point  , mH R     is expressed by the formula  

 

 

  
    

,

= ,

= ,clconv lim

, , , , ,inf

C

i i i

i

i

z D

V

V

w A z h g z z D

L z L z i





  

 

 

 

   









  

 

:





,
 

where  ,CV   


 is the generalized Clarke gradient of 
 ,V     , at   , and the limit  is under- 

stood in the sense of weak convergence in 
-limw

mH R . 
Further, first of all we can write the inequality  

        
      

 

, ,
1 2

, ,

, 2 ,

, ,

0 ,

,

' '

' '

m

I I

H R

     

     

   

   

 







 

 

,

 

for an element  

      , ,
1 2, ,I I V         .  

Then, taking into account Lemma 3.1. we obtain 

 
    

          

,

, ,
=1

, , , ( ) , ( )

, ,lim lim

2 , , , ,

l s
j j

i s i s i
s ji

' '

s w A z h g z


  

           

 

       

 

   
 

0  



(11) 

 
 

 
,

=1

, , ,
l s

' ' m
i

i

H R s


       = 1,  

  , 0, = 1, , ,i s i l s  ,     

where  is such sequence that  , , = 1, 2,j
s iz D j 

    
    

, ,
,

, ,

, ,

, , ,min

j
s i

z D

L z

L z j

  

     

 

 


 

  

.
 

Suppose without loss of generality that the sequence 

,  converges weakly, as , to an 
element 

, = 1, 2,j
s iz D j 

,s iz D
j 

  belonging obviously to the set  

    
    

    
    

, ,

, ,

, ,

, ,

,

: , ,

= , ,min

( , , : }.Argmin

z D

M

z D L z

L z

L z z D

     

     

     

     

 

 

 

 

 



 

 

 

Due to weak lower semicontinuity of the convex 
continuous functionals , = 1, ,ig i  m  and boundedness 
of D we obtain from (11) the following inequality  

  
        

             
 

,

, ,
=1

, , , ,

, ,lim

2 , , , ,

0 , ,

l s n

i s n i s n i
n i

' '

' ' m

s n A z h g z

H R


  

           

 

       

 







 

   



 

where   , = 1,2,s n n 
= 1,2,s 

 is some subsequence of the 
sequence . 

To justify this inequality we have to note that in the 
case  for some k the limit relation   , > 0k

  

   , ,=lim
j

k s i k s i
j

g z g z 


  

holds despite the fact that the sequence ,  
converges only weakly to ,

, = 1, 2,j
s iz j 

s i . This circumstance is 
explained by specific of Lagrangian (it is the weighed 
sum of functionals) and the fact that the sequence 

 is a minimizing one for it. 

z

, , = 1, 2,j
s iz j 
As consequence of the last inequality, we obtain  

  
         

,
,

,
=1

, = 2lim
l s n

i s n i
n i

s n A z h


,       


  

(12) 
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,
,

( ),
=1

, = 2lim
l s n

i j s n i j
n i

s n g z


      


 ,

> 0,

,

 (13) 

  
       

,
,

,
=1

, > 0,lim
l s n

i j js n i
n i

s n g z if


    


  

  
    

 

,

,
=1

,

, ( ) 0lim

= 0, = 1, , .

l s n

i j s n i
n i

j

s n g z

if j m




  

 







   (14) 

In turn, the limit relations (12)-(14) and boundedness 
of D lead to the equality 

  
     

 

     

,

( ), ( ),
=1

, ( ) , ( )

2 2
, ,

, , (lim

,

= 2

0.

l s n

i s n i s
n i

s n A z h g z


  

     

     

 

 

   




  
 



 ,n i

 

(15) 

Further, we can write for any  

   0 0 0 0 0

0
: = min

z D

z Z z D f z f z 



    
 

 

the following inequalities  

 
    

    
 

 
  

    
       
     

       

, ,
,

,
, ,

,
,

, ,0

, ,0 0

0 0 0 0 0

, ,0 0

, ,

,

,

, ,

, ,

.

s n i

s n i s n i

s n i

L z

f z A z h

g z

L z

f z A z h g z

f z f z f z

0

0 0A z h g z g z

     

    

   

     

        



       

 





 

 

 

  





   

    

   

 

From here, due to the estimates (4), we obtain  

    
 

 
  

   
       

,
, ,

,
,

20 0 0

2, ,0 0

,

,

1

1 1

s n i s n i

s n i

f z A z h

g z

f z C z

z C z

    

   

     







   

   



  

   

 

or  

 
 

 
  

        

, ,
, ,

, , 0 0
1 1 1 ,

, ,s n i s n i

s n i

A z h g z

C C C f z f z

       

      

 

    

 

    
 

or  

  
    

 

 
  

     
  

     

,
,

,
=1

,
,

, , 0 0
1 1 1

,

,
=1

, ,

,

,

l s n

i s n i
i

s n i

l s n

i s n i
i

s n A z h

g z

C C C f

s n f z


    

   

     




  



    

 





   







z
 

or  

  
    

 

 
  

       

,
,

,
=1

,
,

, , 0 0
1 1 1

, ,lim

,

min

il s n

i s n i
n i

s n i

z D

s n A z h

g z

C C C f z f


    

   

      

  



    









    



z

 

or, because of the equality (15)  

     

   

   

   

   

2 2, ,

, ,
1 1

0 0
1

2 2
, ,

1

0 0
1

2

min

2

min

z D

z D

C C

C f z f z

C

C f z f z

     

     



     



   

   



  







  
 

 

  

 

  

 

or  

     

   

   

2 2
, ,

2 2, ,
1

0 0
1

2

2

0.min
z D

C

C f z f z

     

     



   

  




  
 

 

   

 

From the last estimate it follows that  

   

   
 

2 2, ,

2 2
1 12 2 8

,
4

C C K

      

    
 



 


 

where  

     0 0
1min

z D
K f z f z C 


   .  

Thus, we derive the following limit relations  
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       , ,0, 0, 0.             

0, 0,

, .

   (16) 

The limit relations (12)-(14), (16) give the possibility to 
write  

  
     

,

,
=1

,lim
l s n

i s n i
n i

s n A z h


   


     (17) 

  
     

   

,

,
=1

,lim

, 0, 0, = 1,

l s n

i j s i
n i

s n g z

j m




 

    



  





 

Further, let us denote by  

    , ,,z M      
     

any weak limit point of the sequence  

  
    

,

,
=1

,
il s n

i s n i
i

s n z


  , .  = 1,2,n 

Then, because of the limit relations (17) and the obvious 
inequality  

  
    

  
     

,

,
=1

,

,
=1

,

,

l s n

j i s n i
i

l s n

i j s n i
i

g s n z

s n g z







 

 













  

we obtain  

 
  

     
 

,

,
=1

0,

,lim

, 0,

j

l s n

i j s n i
n i

A z h g z

s n g z

  
 


 

  



 



 

  

and, as consequence, due to boundedness of D  

     0 0 00, , 0, 0.jA z h g z            

Simultaneously, since  

 
    , ,

, ,s n iz M           

and the inequality  

    
 

 
  

   

   

,
, ,

,
,

,

,

,

,

,

, ,

s n i s n i

s n i

f z A z

g z

f z A z h

g z z D

   h  

   

    

   









 



  

  

 

holds, we can write for any  due to the limit 
relation (15)  

0z Z

  
  

     

,

( ),
=1

, ,0 0

, ( )liminf

( ) , , .

l s n

i s n i
n i

s n f z

f z A z h g z




       

 

 



   


0

 

From the last limit relation, the consistency condition (5), 
the estimate (4) and boundedness of D we obtain  

  
     

     

,
0

,
=1

0 0

,liminf

, 0,

l s n

i

0

s n i
n i

s n f z

f z



 

    



   



 
 

or  

 
  

    

  
     

     

0

,
0

,
=1

,
0

,
=1

0 0

,liminf

,liminf

, 0,

l s n

i

0.

s n i
n i

l s n

i s n i
n i

f z

f s n z

s n f z

f z







 

 

    





 
   

 



   




 

 

Thus, due to boundedness of D and weak lower 
semicontinuity of 0 0, jf g  we constructe
depending on 

d the family of 
  elements  

such that  

    , ,,z M         

     

0 0

0

0,

, 0, 0, = 1,j

A z h

, ,g z j



     

 

    m
 

and simultaneously  

   0 0

0
, 0min

z D

f z f z 


  ,  

where any weak limit point of any sequence  
, is obviously a solution of Problem (P0). , = 1,2,kz k




Along with the construction of a minimizing sequence 
for the original Problem (P0), the dual algorithm under 
discussion produces a maximizing sequence for the 
corresponding dual problem. We show that the family  

    , ,,         

is the maximizing one for the dual problem, i.e. the limit 
relation  

    
 

, ,0 0

,

, ,sup
mH R

V V     

 

   
  

      (18) 

holds. 
First of all, note that due to boundedness of D the 

evident estimate  

    0, , 1V V C  ,              (19) 

is true with a constant  which depends on  > 0C
0

sup
z D

z
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but not depends on  , , mH R     . 
Since  

      

   

     

2, , ,

2,

2 2

, ( )

, ( ) , m

V

V H ,

        

  



    

  

          R





     

 

we can write, thanks to (19), the estimates  

    
         

     

, ,

2, ,0

2 2

,

,

1

V

V

C

     

     

 

       
2

| | ,        

  

    

 

    
    

         
         

, ,0

, ,

, , , ,0

, , , ,

,

= ,

, ,

, 1

V

V

V V

V C

     

     

           

           

 

 

   

    

   

    ,

 

whence we obtain  

    
       

    
   

, ,0

22 ,0 , ( )

, ,

,

,

1

1 , .m

V

V

C

C H

     

    

     

 

       

  

     

  

  

     R

 

From here, we deduce, due to the consistency condition 
(5) and limit relations (16), that for any fixed  
and for any fixed 

> 0M
> 0  there exists such   > 0   

for which the estimate  

    

 
 

, ,0

0

, : ,

,

,sup
mH R M M

V

V

     

   

 

  
   

 
    (20) 

   
 

,

, : ,m H R M M



   

   



 

    

 

holds. 
Let us, suppose now that the limit relation (18) is not 

true. Then there exists such convergent to zero a 
sequence , = 1,2,s s   that the inequality  

    
 

 

, ,0

0

,

,

, , = 1, 2,sup

s s s s

mH R

V

V l s

     

 

 

 
  

  
 

is fulfilled for some . > 0l
Since 

 
 

 
 0 0

, , : ,

, ,sup sup
m mH R H R M M

V V
     

   
      

  0,  

for , we deduce from the last estimate that for 
all sufficiently large positive M the inequality  

M  

    
 

 

, ,0

0

, : ,

,

, 2sup

s s s s

mH R M M

V

V l

     

   

 

 
   

 
 

takes a place. This estimate contradicts to obtained above 
estimate (20). The last contradiction proves correctness 
of the limit relation (18). 

At last, we can assert that the duality relation  

 
 

 

 
 

0

,

0

0

0

,

,sup

= min

= ,maxmin

mH R

z D

mz D H R

V

f z

L z

 

 

 

, 

  



   

       (21) 

for Problem (P0) holds. Indeed, similar duality relation is 
valid due to Theorem 3.1. (see relation (6)) for the 
problem  

  20 0min,f z z z D   , > 0 , 

with strongly convex objective functional. Writing this 
duality relation and passing to the limit as 0   we 
get because of boundedness of D the duality relation 
(21). 

In turn, from the duality relation (21), the estimate (19) 
and the limit relation (18) we deduce the limit relation  

       , ,, , , 0,A z h g z        
     0.  

So, as a result of this subsection, the following 
theorem holds. To formulate it, introduce beforehand the 
notations  

  0 0: ,ArgminZ f z z  D  

    , , ,Argmin : .Z L z z D       

Theorem 3.3. Let the objective functional of Problem 
(P0) is convex and the consistency condition (5) be 
fulfilled. Then, regardless of whether or not the 
Kuhn-Tucker vector of Problem (P0) exists, it holds for 
some  

     
    

, ,

, ,

, , :Argmin

,

z L z z

M

     


     

 

 

 



D
 

that 
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, ,

0 0

0

, 0

, 0min
z D

f z f z

     



   






 

,

,
      (22) 

   0 0 00, ,iA z h g z       

   0, 0, 0,        

       , ,, , , 0,A z h g z        
     0.

0 .z

 

Along with the above relations, it holds that  

    

 
  

, ,0

0

0

0
,

,lim

= , =sup min
m z DH R

V

V f

     



 

 

 


  

     (23) 

If the dual problem is solvable, then it also holds that  

      , , 0 0, , ,           0,  

where           0 0, mH R      

is the solution to the dual problem with minimal norm. 

4. The Stable Sequential Kuhn-Tucker 
Theorem 

At first, in this section we give the formulation of the 
stable sequential Kuhn-Tucker theorem for the case of 
strongly convex objective functional. Next we prove the 
corresponding theorem in a form of iterated process in 
the same case and, at last, prove the theorem in the case 
of the convex objective functional. 

4.1. The Stable Kuhn-Tucker Theorem in the 
Case of a Strongly Convex Objective 
Functional 

Below the formulation of the stable sequential Kuhn- 
Tucker theorem for the case of strongly convex objective 
functional is given. The proof of this theorem can be 
found in [7]. 

Theorem 4.1. Assume that 0 : 1f D R  is a con- 
tinuous strongly convex subdifferentiable functional. For 
a bounded minimizing approximate solution to Problem 
(P0) to exist (and, hence, to converge strongly to ), it 
is necessary that there exists a sequence of dual 
variables  

0z

 ,k k mH R    , ,  = 1,2,k 

such that  

 , 0k k k    , ,  k 

the limit relations  

0, ,
k kk k kz D       

 

  
, ,

, , ,

0, ,

k k

k k k k kk k k kA z h g z

k

    

 

        

 



k 

  (24) 

are fulfilled, and the sequence  

, , = 1,2,
k k kz k      ,  

is bounded. Moreover, the latter sequence is the desired 
minimizing approximate solution to Problem (P0); that is,  

0, ,
k k kz z       . 

At the same time, the limit relations  

   0 0 0 0, ,k kf z f z      

 

  0 0 0 0 0

, ,

, , ,

0,

k k

k k k kA z h g z

k

 

        

 

   (25) 

are also valid; as a consequence,  

 
 

0 0

,

, ,supk k ' '

' ' mH R

V V
 

 ,  
  

       (26) 

is fulfilled. The points  , , = 1,2,k k k   , may be 
chosen as the points  

    , ,,       ,  = 1,2,k 

from Theorem 3.1. for = k  , where ,  
. 

0k 
0,k k  

Conversely, for a minimizing approximate solution to 
Problem (P0) to exist, it is sufficient that there exists a 
sequence of dual variables  

 ,k k mH R    ,   = 1,2,k 

such that 

 , 0k k k    , , k 

the limit relations (25) are fulfilled, and the sequence  

, , = 1,2,
k k kz k      ,  

is bounded. Moreover, the latter sequence is the desired 
minimizing approximate solution to Problem (P0); that is,  

0, ,
k k kz z       k  .  

If in addition the limit relations (25) are fulfilled, then 
(26) is also valid. Simultaneously, every weak limit point 
of the sequence  

 , , = 1k k mH R k     , 0,  , 2,
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is a maximizer of the dual problem 

   0 , max, ,V     m
 . H R

4.2. The Stable Kuhn-Tucker Theorem in a 
Form of Iterated Process in the Case of a 

In th hn- 
Tuck e case 

Strongly Convex Objective Functional 

is subsection we prove the stable sequential Ku
er theorem in a form of iterated process for th

of strongly convex objective functional. Note that the 
regularizing stopping rule for this iterated process in the 
case when the input data of the optimization problem are 
specified with a fixed (finite) error > 0  can be found 
in [4]. 

Theorem 4.2. Assume that the set ounded and f0: 
D → R

D is b
1 is a continuous strongly convex subdifferentiable 

functional. For a minimizing approximate solution to 
Problem (P0) to exist ( and, hence, to converge strongly 
to 0z ) , it is necessary that for the sequence of dual 
variables  ,k k mH R    , = 1,2,k  , generated by 
iterat process (7) with the consistency conditions (8) 
the limit re

ed 
lations  

 

  

0,
k k

, 0,

, ,

, , ,

0, ,

k k

k k

k k k k kk k k kA z h g z

k

    

 

         

 

 (27) 

are fulfilled. In this case the sequence 

kz D      

,
k k kz    

ution to Probl
 is 

the desired minimizing approximate sol em 
(P0); that is,  

0k k kz z k     , ,  . 

Simultaneously, the limit relation  

 
 

 , ,' '

m
V0 0

,

, supk k

' ' H R

V
 

 
 

  


   (28) 

is fulfilled. 
Conversely, for a minimizing approximate solution to 

) to exist, it is sufficient that for the sequence 
of
Problem (P0

 dual variables  

 ,k k mH R    , = 1,2,k  , 

generated by iterated process ) with the onsistency 
conditions (8), the limit relations (P0) are fulfilled. 

 (7  c

Moreover, the sequence  

, , = 1, 2,
k k kz k      ,  

is the desired minimizing approxim solution to 
Problem (P0); that is,  

ate 

0, ,
k k kz z k       . 

Simultaneously, the limit relation (28) is v lid. 
Proof. To prove the necessity we first observe that 

ons on its 

a

Problem (P0) is solvable because of the conditi
input data and existence of minimizing approximate 
solution. Now, the limit relations (27), (28) of the present 
theorem follow from Theorem 3.2. Further, to prove the 
sufficiency, we first can observe that Problem (P0) is 
solvable in view of the inclusion  

0,
k kk kz D     , 

the boundedness of the sequence  

, , = 1, 2,
k k kz k      ,  

and the conditions imposed on the initial d a of Problem 
(P0). Hence due to asserted in Subsectio  there exists 

at
n 3.3

the sequence  

     0, 0,, , ,
k k k k k k          ,  

generated by dual regularization algorithm of S ection 
2.2 and, as consequence, the sequence  

ubs

 , , = 1, 2,k k k   ,  

generated by iterated process (7) wi he consistency 
conditions (8), obey the limit relations  (10) and (28). 

th t
 (9),

Thus, the sequence  

, , = 1, 2,
k k kz k        

is the desired minimizing approxima ution to 
Problem (P0). 

ve Functional 

hn- 
Tuck ective 

te sol

4.3. The stable Kuhn-Tucker Theorem in the 
Case of a Convex Objecti

In this subsection we prove the stable sequential Ku
er theorem in the case of the convex obj

functional. 
Theorem 4.3. Assume that the set D is bounded and 
0 1:f D R  is a continuous convex functional. For a 

minimizing approximate solution to problem (P0) to exist 
every its weak limit point belongs to Z*), it is 

necessary and sufficient that there exists a sequence of 
dual variables  

(and, hence, 

 ,k k mH R    , = 1,2,k  ,  

such that  

 , 0k k k    , k  , 

and the relations  

,0, , 0,
k kk k kz D k            (29) 
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, ,k k 

, , ,

0, .

k k k k kk k k kA z h g z

k

             

 

 (30) 

hold for some elements  

, ,
k kk k k kz Z          .  

approximate solution, and 
every weak limit point of this sequence is a solution to 
Problem (P0). As a consequence of th limit relations 

Moreover, the sequence  

, , = 1,2,
k k kz k      , 

is the desired minimizing 

e 
(29), (30) the limit relation  

 
 

 0 0

,

, ,supk k

mH R

V V
 

   
  

       (31) 

holds. Simultaneously, every weak limit point of the 
sequence  

1, 2, , , =k k mH R k     , 

is a maximizer of the dual problem  

   0 , max, ,V H     . m
R

e first observe that 
, because of the 

conditions on its input data an e of minimizing 
ap

Proof. To prove the necessity, w
Problem (P0) is solvable, i.e. Z   

d existenc

 follo
proximate solutions. Now, the first two limit relations 

(29), (30) of the present theorem w from Theorem 
3.3. if  ,k k   and ,

k k kz      are chosen as the 
points  

   , ,
,

k k k k      
= 1,2,    





, 


k

and kz


 
d the lim

respectively. Further, due to the estimate (19) 
an it relation  

 , 0k k k    , k  ,  

.

ing into account the equality (see (23))  

,z

  

we have 

   0, , 0,
k k k kV V k       k 

Then, tak

 
   0 0

0
,

, =sup min
m z DH R

V f
 

 
  

 

the limit relation (30) and obtained limit relation  

   0 0 0, ,
k k kf z f z k       

(see (22)) we can write  

 

 
 

  
 0 0

,

= ,
k k

, ,

, , ,

,

k k k

k k

k k

k k k k kk k k k

V

A z h g z

f z



    

 

 

   



f z     

      



 

and, as consequence, the limit relation (31) is valid. So, 
we have shown that the limit relation (31) is a 
consequence of the limit relations (29), (30). Now, let the 
sequence  

 , , = 1, 2,k k mH R k     ,  

be bounded. Then, since the concave continuous func- 
tional V0 is weakly upper semicontinuous, every weak 
limit point of this sequence is a maximiz f the dual er o
problem    0 , max, , mV H     . R 

Now we prove the sufficiency. We first observe that 
the set  

0,
k kk kZ D     ,  

is nonempty in view of the inclusion  

0,
k kk kZ D     ,  

the boundedness of the sequence  

, , = 1,2,
k k kz k      ,  

initial data of Problem 
able. Furthermore, since 

the point 

and the conditions imposed on the 
(P0). Hence, problem (P0) is solv

,
k k kz      is a minimizer of the Lagrange 

functional  , ,
k k kL   , we can write  

 
 

  
     

,
k k

, ,

, , ,

, , , .

k k

k k k k kk k k k

k k k kk k

A z h g z

k k

f z

f z A z h g z z D

    

   



   

 

      

   



  



    

 

By the hypotheses of the theorem, this implies that  

 
     

,

, , ,
k k k kk k kf z A z h g z   

, 0, .

k k k k

k

f z

z D k

   

     



  

   

 

We set 0=z z Z   in this inequality and use the 
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consistency condition  

 , 0k k k    , k  ,  

to obtain  

   0 0,
k k k kf z f z 0        , 0,k k    .  

In addition we have  

0,
k kk kz D     .  

lassical properties of the weak compactness 
vex closed bounded set and the weak lower 

semicontinuity of a convex conti ous functional, 
easily deduce from the above facts that  



  

proximate solution of Problem (P0). 

5. Possible Applications of the Stable 

Below in this section we consider two illustrative exam- 
e results 
ose is to 

trol problem with 
fixed time and with functional equality and inequality 

 

, , = 1,2,
k k kz k     

is a minimizing ap

Sequential Kuhn-Tucker Theorem 

ples connected with possible applications of th
obtained in the previous sections. Its main purp
show principal possibilities of using various variants of 
the stable sequential Kuhn-Tucker theorem for solving 
optimal control and inverse problems. 

5.1. Application in Optimal Control 

First of all we consider the optimal con

Using the c
of a con

nu we 

0 k k   0 0, ,kf z f z k      , 

i.e. the sequence 

         
constraints  

         0 , d min, , OC

1

00
,f u A t x u t x u t    

 

B t u t u t t u D P    

        1

0 0i ia u c  
1

, d = 0, = 1, , ,t x u t t t i k    , did t u t

                1

0
, , d 0,i i i = 1, , ,g u A t x u t x u t B t u t u t t i        m

      1 , , ,kA u A u a u a u       and  00, 

        1 0, , , 0, .mg u g u g u       

  

      0, 0, , 0,1x u t K u D t        .    (32) 

Assume that  
Here and below, 0   

ta, 0

is a number characterising an 
error of initial da > 0     

0 0
is a fixed number,  

  1
2: 0,1f L R   is a convex functional,  

2 ,1 1: 0 , = 1, ,ig L R i m    

are conv nals,  ex functio

 , = 0,1, , , : 0,1 n n
iA i m A   R ,  

 , = 0,1,iB i , , : 0,1 n lm B R     

are Lebesgue measurable and uniformly bo ed with 
respect to 

und
 00,   matrices,  

   : 0,1 , : 0,1 , = 1,n l
i ic R d R i   ,k   

are Lebesgue measurable and uniformly bounded with 
respect to  00,   vectors,  

      2 0,1 : . . 0,1D u L u t U for a e t    ,  

olU R  is a c nvex compact set,     , 0,1x u t t   is 
a solution t hy problem o the Cauc  

         0= , 0 = ,nx A t x B t u t x x R t    0 ,1 .

Obviously, for each control u D  em 
has a unique solution 

this Cauchy probl
   ,x u t t 0,1  

y boun th respe
and all these 

solutions are uniforml ct toded wi  u D  

0,1 0,12 2L L
, , = 0,1, ,i i i iA ,A B B i        m

   

 

 

0,12

0

0,12

,

,

,

,

L

L

d d

A A

B B









 

 

 



 

whence we obtain due to the estimate (32) for some
constant 

0 0

0,1 0,12 2

0

i i i iL L
c c 





 
> 0L  

   0 ,f u f u L    

0 ,A u A u L    

   0 .g u g u L u D      

Define the Lagrange functional  

     , , , , ,L u f u A u g u u D           

and the concave dual functional  

   , , , , ,inf
k m

u D
V L u R       .R


   

Define also the notations  
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  0 0: ,ArgminU f u u    D

  , ArgminU L u    , ,   : .u D

Here and below, we leave the notation D  accepting 

Let               

that maximizes on 

in Section 1. 

    , ,,      

denote the unique point in
this set the functional  

 k mR R  

      2 2
, sup, , k mV R         ,R      

   0, 0, 0  
 

   .


 

uation, for exam  in the case of 
co

Applying in this sit ple
nvexity of f  , Theo btairem 4.3 we o n the following 

mizing ap
result. 

Theorem 5.1. For a mini proximate solution 
to Problem  0

OCP
elong
sts a seq

 to exist (and, hence, every its weak 
limit point b s to  it is necessary and sufficie  
that there exi of dual variables  

U  ),
uence 

nt

 ,k k k mR R    ,   

su

= 1,2,k  ,

ch that      , 0k k k    , k  , 

and the relatio  ns 

0 , 0, ,
k k

,
k k ku D k          (33) 

    , , , , ,
k k k kk k k k kA u g u              

0,

k

k 

(34) 

ements  hold for some el

, ,
k kk k k kU u         .  

Moreover, the sequence  

,  

is the desired minimizing approximate solution, 
every weak limit point of this sequence is a solution to 
Problem 



, , = 1, 2,
k k ku k     

and 

 0
OCP . As a consequence of the limit relations 

n  (33), (34) the limit relatio

 
 

 0 0

,

, ,supk k

k mR R

V V
 

  
  

  

holds. Simultaneously, every limit point of the sequence  

1,2 , , =k k k mR R k    , ,  

is a maximizer of the dual problem  

  , max, , k mR R       . 

The points 

0V

 , , = 1k k k  , 2, , may be chosen as the 
points  

   , ,
,

k k k k     
 
 
  , 
 

= 1,2,k  ,  

where 
 we note that the 
be used for finding 

optimal elements 

> 0k , 0,k k   . 
In conclusion of this subsection,

Pontryagin maximum principle can 
u D  in the problem  

 , , mk kL u    in, .u D        (35) 

Denote  

 
   

    
    
   

    
1 1

, , , , ,

,

, , , ,

, , , , ,m m

H t x u

A t x B t u

A t x x B t u u

A t x x B t u u



 

 

 

  







 

 



where 

0 0, ,

,

A t x x B t u u

C t x D t u

 

 

 

 
 

 C t  is  n n  matrix with lines  
  ,ic t n , = 1,i  ,  D t  is  n m  matrix with lines 
  ,id t

Then o 
, = 1,i 
, due t

n . 
convexity of lem (35) we can 

assert that any its minimizer satisfies the following 
maximum principle. 

Theorem 5.2. The maximum relation  

 the prob
u  

      
    

 

, , , , ,

= , , , , ,max

. . 0,1 ,

k k

k k

v U

H t x u t u t t

H t x u t v t

for a e t

 

 

  

  

 





  

   



holds for the Lagrange multipliers  ,k k k mR R    , 
where  t ,  0,1t  is the solution of the adjoint 
problem 

 

      , 1k
x  = , , , , ,kH t x u t u t        = 0. 

5.2. Application in Ill-Posed Inverse Problems 

Now we consider the illustrative example of the ill-posed 
inverse problem of final observation for a linear 

rm for recovering a

 and ry
drical domain for the third boundary value 

problem. Here we study the simplified inverse problem 
with a view of compact presentation. Similar but more 

ex 

parabolic equation in the divergent fo  
distributed right-hand side of the equation, initial 
function,  bounda  function on the side surface of 
the cylin

general inverse problem may be found in [10]. 
Let mU R , 1V R  and 1W R  be conv
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compacts,  

 0, ,TQ T S    ,  

    , : , 0,TS x t x S t T   ,  

  be a bounded domain in nR , 1 2 3D D D D   ,  

    1 : , . .T TD u L Q u x t U a e on Q  
,  

    L v a e on2 : . .D v    x V  ,  

3D     : , . .Tw L S w x t W a e on S  . T

Let us consider inverse problem of fi ng a triple 
 of unknown distributed, initial, and 
cients for the third boundary value 

pr near parabolic equati f 
the divergent form  

ndi
 π , ,u v w D 

boundary coeffi
oblem for the following li on o

    

     

, , ,

, , , ,

t i j x i

= 0,

xj i
i

z a x t z b x t z
x

a x t z g x t u x t


 


 

    (36) 

   ,0 = ,z x v x  

,x  

   , = , ,
z

x t z w x t  
N






 , ,Tx t S  

determined by a final observation  

 ,  

whose value is known approximat , at a certai
Here, similar to [11],  

  0 0
2= ,h z T L  

ely n T . 

       ,

,
, , cosi j x ij

z x t
a x t z x t x t

N






 ,

and  ,i x t  
 and the 

is the angle between the external normal to 
S ix  axis, and 0 

,
 is a number cha- 

racterising an error of initial data  0 > 0  is a fixed 
ution number. The sol  z

di

learl
atem

  to t
ng to t

y, the sol
ent m

he bound
he desir

ution to
y be 

ary value 
ob respon ed actions 

h
 the inverse 

 a st a not unique. 
Therefore, we will be interested in finding a norm
solution, i.e., a solution with the minimal norm  

pr

pro

lem (3

lem in s

6) cor

uch

 π , ,u v w D   is a weak solution in the sense of t e 
class  1,0

2 TV Q  [11]. C
b

al 

2 2 2

2, 2, 2,Q ST T
u v w


  ,  

which we denote by 0 . 
It is easy to see that the above-formulated inverse 

prob ding the normal solution by a given 
 L   is equivalent to the following 

fixed- mal control problem on finding a mini- 
mum-norm control triple 

lem of fin
observation 

time opti

0
2h 

  with strongly convex ob- 
jective functional and a semi-state equality constraint  

 0 0 0inf , = ,f A h    

     2 2L 2 ,T TD L Q L S Z             

   0
2 ,0

IPh H L P    

where  

  2 2 20

2, 2, 2,
,

Q ST T
f u v w


     

    0 0 , .A z T     

The input data for the in se problem , hence, for ver  (and
Problem  0

IPP
s:  

 are assum d to meet the following 

1) functions  

e
condition

  1
, , , : 0, , , = 1, ,i j ia b a R i j n  T ,  

 : 0, mg T R     

are Lebesgue measurable; 
2) the estimates  

 
 

2 2

, ,

. . , , , > 0,

i j i ja x t

fo a e x t Q

     

 

 


 

r T

     

   

 

, , ,

. , , , ,

. . , ,

T

t a x t g x t K, ,i

T

b x

for a e x t Q x t K

for a e x t S







 



 

> 0 is a constant not depending on hold, where K 
 00,  ; 

the boundar3) y S is piece-wise smooth.  
Denote by  2h L    

ter) and assum
approximate final observation 

(with parame e that  
0 0

, 2
, .

QT
g g h h 

,
 

 
        (37) 

From conditions 1) - 3) and the theorem on e existence 
of a weak (generalized) solution of the third boundary 
value problem for a linear parabolic equation of the 
div
follows that the direct problem (36) is uniquely solvable 

th

ergent type [11], (Chapter III, Section 5), [12] it 

in  1,0
2 TV Q  for any triple  , ,u v w Z  and any T > 0 

an riory estimd besides a p ate  

    z z C u     2, 2,2,Q Q ST S T TT
v w


   

is true, where a constant C > 0 not depends on 

2,

 00,  . The last facts together with the estimates (37) 
lead to corresponding necessary estimate for deviation of 
perturbed linear bounded operator :A Z H  ,  
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  ,A z T     ,  

from rturbed analog ay be found in 
[10])  

 its unpe  (details m

 0 1A A C z z        Z

where a constant C > 0 not depends on  . 
Define the Lagrange functional  

   0, , ,L f A h D          

with the minimizer     and t cavehe con  dual 
functional  

Let 

     2, , = .inf
D

V L H L


  


     

 ,    denotes the unique point in  2H L   
th  on this set the functional  at maximizes

    2
sup,V H       ,  

   0, 0, 0.
   

 
    

Applying Theorem 4.  this situation of strong 
convexity of

1. in
 0f  we obtain the following result. 

Theorem 5.3. For a bounded minimizing ap te 
solution to Problem 

proxima
 0

IP

conv rongly to 0  as k  ), it is  
that there exists a sequence of dual vari

P  to exist (and, hence, to 
erge st  necessary

able k H  , 
 such that= 1,2,k  ,  0k k   ,  k  , the limit

relations  

0 , 0,

, 0, ,
k k kk kA h k        

k kk kD      
  (38) 

ar
u

e fulfilled. Moreover, the latter sequence is the desired 
minimizing approximate sol tion to Problem  0

IPP ; that 
is,  

k k   

At the same

0 , k  . 

 time, the limit relation  

   0 0 ,supk '

' H

V V


 


       (39) 

is fulfilled. 
Conversely, for a minimizing approximate solution to 

problem  0
IPP  to exist, it is sufficient that there exists a 

sequence of dual variable k H  , = 1,2,k   that   such

0k k   , k  ,  

the limit relations (38) are fulfilled. Moreover, the latter 
sequence is the desired to Problem  0

IPP ; that is,  



Besides, the limit relation (39) is also v
taneously, every weak limit point of the sequence 

, is a maximizer of the dual problem  

0 ,
k k k       . 

alid. Simul- 

, =H k  1, 2,k 

 0
, max,p rV H   . 

The points , = 1,2,k k  , may be ch he points  osen as t

 ,k k  
 , = ,  1,2,k 

where > 0k , 0,k k   . 
Since the set D is bounded in Pr   0oblem IPP , we can 

apply for solving our inverse problem t ularized 
Kuhn-Tucker theorem in a form of iter d process also. 

he reg
ate

Thus, Theorem 4.2. leads us to the following theorem. 
Theorem 5.4. For a minimizing approximate solution 

to Problem  0
IPP

0π ), it 
e 

 to exist (and, hence, to converge 
is necessary that for the sequence of strongly to 

dual variabl k H  , nerated by = 1,2,k  , ge
iterated process  

 1

0

= 2 ),

1,2, , ,

k kk k k k k kA h

H

              


 (40) 

w t rela

= 0,k 

kk

ith the consistency conditions (8) the limi tions  

0 , 0,
k kk k

, 0, ,A h k  
k k kk k

D 

  

     

    

are fulfilled. In this case the sequence  

  (41) 

k k      

is the desired minimizing approximate solution to Pro- 
blem  0

IPP ; that is,  

0 ,
k k k       . 

Simultaneously, the limit relation  

  0 0supk '

' H

V V


 


 (42) 

is fulfilled. 
imate solution to Conversely, for a minimizing approx

Problem  0
IPP  to exist, it is sufficient that for the 

sequence riable  of dual va k H , , ge- 
nerated ed process (40) with ency 

r, t e  

 = 1,2,k 
 the consistby iterat

conditions (8), the limit relations (41) are fulfilled. 
Moreove he sequenc

, = 1,2,
k k k     ,  

is the desired minimizing approximate solution to Prob- 
lem  0

IPP ; that is,  

0 ,
k k k       . 

Simultaneously, the limit relation (42) is valid. 
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