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ABSTRACT 

This work formulates and implements a mathematical optimization program to assist water managers with water alloca- 
tion and banking decisions to meet demands. Linear programming is used to formulate the constraints and objective 
function of the problem and tests of the developed program are performed with data from the Castaic Lake Water 
Agency (CLWA) in Southern California. The problem is formulated as a deterministic programming problem over a 
five year planning horizon with annual resolution. The program accepts annual water allocations from the State Water 
Project (SWP) in California. It then determines the least-cost feasible allocation of this water toward meeting annual 
demands in the five-year planning horizon. Local water sources, including water recycling, and water banking programs 
with their constraints and costs are considered to determine the optimal water allocation policy within the planning ho- 
rizon. Although there is not enough information to fully account for the uncertainty in future allocations and demands as 
part of the decision problem solution for CLWA, uncertainty in the SWP allocation is considered in the tests, and sensi- 
tivity analyses is performed with respect to demand increases to derive inferences regarding the behavior of the median 
minimum-cost solutions and of the risk of failure to meet demand. 
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1. Introduction 

The goal of the work is to formulate and test the feasibil- 
ity of solutions of a mathematical programming problem 
that will be suitable for annual operation and which will 
assist Castaic Lake Water Agency (CLWA) with deci- 
sions pertaining to meeting demand over a multi-year 
decision horizon. CLWA was formed in 1962 for the 
purpose of contracting with the California Department of 
Water Resources (DWR) to provide a supplemental supply 
of imported water to four retail water purveyors in the 
Santa Clarita Valley. CLWA serves an area of 195 square 
miles in the Los Angeles and Ventura Counties. CLWA 
and its retail purveyors meet demand through local 
groundwater pumping, State Water Project water imports, 
water stored in water banks, and recycled water. The 
imported water component of the water supply is based 
on reliability studies conducted and published by the 
DWR. 

There is uncertainty that enters the development of 
policy over the planning horizon of say N years for 
CLWA. This uncertainty arises due to future State Water 
Project (SWP) allocations and due to future demands in 
the CLWA region. Allocations and demands are influen- 
ced by the weather and climate in Northern California  

and the regional and local weather and climate in the 
CLWA region and the pattern of regional development. 
The statistical parameters of this uncertainty are largely 
unknown at this time to allow a reliable formulation of a 
stochastic programming problem. Therefore, a deter- 
ministic mathematical programming problem formula- 
tion is implemented at this time, that is flexible enough to 
allow for each year the examination of several possible 
scenarios of SWP allocation and demand (e.g. examina- 
tion of solutions for a sequence of expected normal years, 
examination of solutions for possible sequences of dry 
years, and examination of solution for expected sequences 
of possible future development). Although the solutions 
for water to be placed in storage and for water transfers 
among various storages will be provided for the entire 
planning horizon, only the present year solution will be 
implemented as it contains the lowest level of uncertainty. 
Even this low uncertainty may be considered in the 
decision process, as CLWA decision makers can examine 
the spectrum of possible solutions obtained with parti- 
cular emphasis in any differences for the current year 
prior to arriving at a decision. An annual time step is 
used in the formulation. 

The next section presents the sources of water supply 
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for the CLWA. Section 3 formulates a linear program- 
ming program that includes the constraints pertaining to 
water supply sources for CLWA and minimizes total cost 
while meeting demand, Section 4 places the present for- 
mulation within the context of the pertinent literature of 
mathematical programming and application to water re- 
sources problems, while Section 5 presents results of 
application and of sensitivity analysis. Concluding re- 
marks are in Section 6. 

2. Sources of Water Supply for CLWA 

1). Wholesale water imported from SWP: Maximum 
allocation 95,200 af in any one year. Actual delivery 
varies in a particular year based on hydrology, amount in 
SWP storage at the beginning of water year, restrictions 
in delivery (technological and legal), and total demand 
requested by SWP contractors. The State Water Project 
Delivery Reliability Report issued in 2007 (referred to as 
DWR07 hereafter) shows an average delivery of 66% - 
69% of maximum allocation amount under future 
conditions (set for year 2027). The same report shows an 
average delivery of 63% of maximum allocation amount 
under year 2007 conditions (two scenarios of regulatory 
restrictions in delivery). It also shows average and dry 
period deliveries under 2007 conditions and future 
conditions (for year 2027), and the distribution of the 
percent deliveries discussed above by future years. For 
instance and for five year intervals, average percent 
deliveries (maximum allocation amount) are: 
 

Year 2007 2012 2017 2022 2027 

% (Ave) 63 64 - 65 65 - 66 66 - 68 66 - 69 

 
With respect to the cost for wholesale SWP water, 

SWP income from all contractors in 2002 was approxi- 
mately $600 million for approximately 4.13 million acre- 
feet (af) of allocated water. CLWA estimated current 
costs are approximately $110/af per year. In this and 
subsequent monetary figures we use 2007 US dollars. 

2). Flexible storage account in Castaic Lake (Water 
Supply Contract DWR): CLWA has access to up to 4684 
af of the storage in Castaic Lake. This amount must be 
replaced within 5 years of its withdrawal. CLWA policy 
is to keep the account full in normal and wet years and 
then deliver the stored amount or portion during dry 
years. The account is refilled during the next year that 
adequate SWP supplies exist to do so. Cost of borrowing 
consists of the power cost to deliver out of Castaic Lake, 
while the cost to replace the borrowed amount of water is 
CLWA’s per af cost plus variable power costs. For this 
work we assume an annual cost of $120/af per year for 
deposit and no cost for withdrawal and for storage. 

3). Flexible storage account (Ventura County agencies): 

Access to another 1376 af of storage in Castaic Lake for 
10 years beginning in 2006. This amount too must be 
replaced within 5 years of its withdrawal. Costs for 
deposit and withdrawal are as in item 2 above plus $15/af 
per year for storage. 

4). Article-21 water: Water available on an unsche- 
duled and interruptible basis for average to wet years, 
generally only for a limited time. The DWR07 indicates 
average delivery under 2007 conditions of 90 af and un- 
der future conditions (2027) of 30 af. Maximum amounts 
for 2007 conditions are 590 af and for future conditions 
are 410 - 420 af. Minimum amounts are 0. It is unlikely 
that CLWA will utilize this water type in the future. 

5). The Turnback Pool: Makes a small amount of 
water available in all types of hydrologic years (less 
water in dry years). It depends on urban contractor 
demand. It is unlikely that CLWA will utilize this water 
type in the future. 

6). DWR Dry Year Water Purchase Programs: DWR 
purchases from willing sellers in areas of adequate 
supply and the DWR sells back to those willing to 
purchase it. This program is not operated in all years and 
is somewhat uncertain. It is unlikely that CLWA will 
utilize this water type in the future. 

7). Groundwater Alluvium: Governed by hydrologic 
conditions in eastern Santa Clara River watershed. Pump- 
ing ranges 30,000 - 40,000 afy during normal and above- 
normal rainfall years. For locally dry years pumping is 
reduced 30,000 - 35,000 afy (1, 2 or 3 dry year se- 
quences). Annual withdrawal costs are estimated to be 
$50/af. 

8). Groundwater Saugus Formation: This is linked to 
the availability of other water supplies in a given year, 
particularly from the SWP. During average-year con- 
ditions within the SWP system, Saugus pumping ranges 
7500 - 15,000 afy. Dry year pumping ranges between 
15,000 - 25,000 afy during a SWP drought year (reduced 
SWP deliveries). If SWP deliveries are reduced for 2 
consecutive years, pumping can increase to 21,000 - 
25,000 afy. If SWP deliveries are reduced for 3 
consecutive years, pumping can increase to 21,000 - 
35,000 afy. Such high pumping is to be followed by 
periods of reduced (average-year) pumping rates to 
recover water levels and groundwater storage. Annual 
withdrawal costs are estimated to be $150/af. 

9). Core transfer (Buena Vista Water Storage District 
and Rosedale-Rio Bravo Water Storage District): This is 
a transfer to purchase a defined quantity of water every 
year, 11,000 afy. Cost is estimated (2005 Urban Water 
Management Plan—UWMP) to be $60 - $110/afy. In this 
work, this source of water is used to reduce the demand 
in all years and it is not part of the optimization problem. 

10). Southern water banking programs: Water banking 
and exchange programs that will provide additional 
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14,000 af of storage capacity and 6900 af per year of 
pumpback capacity during a six-month emergency outage. 
Annual costs are assumed to be $100/af for deposit and 
$100/af for withdrawal. The storage cost is assumed to 
be $50/af. 

11). Semitropic Water Banking: There is currently a 
total of 50,870 af stored water, recoverable through 2013 
to meet CLWA demands as needed. Current operational 
planning includes use of the water stored in Semitropic 
for dry-year supply. Withdrawal costs are $25/af. 

12). Rosedale—Rio Bravo Water Storage District Water 
Banking: A water banking and exchange program with 
up to 100,000 af storage capacity and pumpback capacity 
of 20,000 afy. This is to support dry-year supply (not 
planned growth). Annual storage, deposit and withdrawal 
costs are $30/af. 

13). Recycled water: Table 3-1 of the 2005 UWMP 
shows 1700 afy. In this work, this source of water is used 
to reduce the demand in all years and it is not part of the 
optimization problem. 

3. Mathematical Program Formulation 

The purpose of the mathematical program formulated in 
this section is to provide feasible solutions to the water 
allocation problem for CLWA that are optimal under the 
set of parameter values used. The mathematical program 
consists of a set of constraints that define the feasible 
solutions, and an objective function that facilitates the 
selection of the “best” feasible solution. For this pro- 
gramming problem, the objective function is an expres- 
sion of annual costs associated with a certain allocation 
policy and therefore, in this context the “best” or optimal 
solution is one that minimizes the objective function. We 
formulate and interpret the set of constraints and the 
objective function in the following. It is noted that, for 
the purposes of this formulation, we adopt an annual time 
step and a planning horizon of N years. Even though 
solutions are obtained for all the years in the planning 
horizon, only the first year solution for the allocation 
policy is implemented. 

3.1. Constraints that Define Feasible Solutions 

The first set of constraints concerns the State Water 
Project (SWP) annual allocation to CLWA based on the 
existing contract between SWP and CLWA. For each 
year within the planning horizon the constraints assure 
water volume conservation in the process of delivery, 
carryover storage and CLWA allocations. The set of 
constraints is expressed as: 

1 , 1 , 1
1 1 ;  1, , 1i i i i i iX X C D i N         (1) 

where 1
iX  represents the SWP carryover storage at the 

end of time step i (one year in this case), , 1i iC   is the 

SWP annual water allocation to CLWA for time step i + 
1 (taken as the period from the end of time step i to the 
end of time step i + 1), and  is the water used by 
CLWA during step i + 1 (defined previously) to meet 
demand at that or future time steps. Due to the fact that 
carryover storage of a certain year must be used in the 
next year, the following constraint is used: 

, 1i iD 

; 1i i , 1
1 , ,i iD X N  1         (2) 

The quantity , 1i iC   is program input from actual 
and/or forecasted SWP allocation (a fraction of the 
maximum allocation for CLWA, while carryover storage 

1
1
iX   and water use by CLWA  are program solu- 

tion output. As such, nonnegativity constraints are 
imposed on the latter two quantities: 

, 1i iD

1, ,1 0;iX i 

1, ,

N



               (3) 

, 1 0 ;  1i iD i N              (4) 

while the initial condition on carryover storage 1
1X  is 

specified from: 
1
1

0
1X X             (5) 

with 1
0X  known at the beginning of the planning hori- 

zon. In addition to the nonnegativity constraints it is also 
possible to include upper bound constraints for carryover 
storage 1

iX  for all I, but at this time no such constraints 
are imposed by the CLWA operational policy. 

A second set of constraints concerns withdrawals from 
local groundwater resources (Alluvium and Saugus 
formation). These constraints are in the form of upper 
and lower bounds on withdrawals, with the bounds 
depending on the occurrence of a dry or a medium/wet 
year. This set of constraints is represented by: 

, 1
wet dry 1, 1 wet dry 1,upG ;  1, , 1i i

loG G i N        (6) 

, 1
wet day 2, 2 wet day 2,upG ;  1, , 1i i

loG GG i N       (7) 

where , 1
1
i iG   is the annual withdrawal from the Alluvium 

aquifer for period i + 1 (indicated as the period from the 
end of period i to the end of period i + 1), , 1

2
i iG   is the 

analogous annual withdrawal from the Saugus formation, 

wet dry 1,loG  signifies the lower bound on the Alluvium 
aquifer withdrawal for a wet or a dry year in the planning 
horizon, wet dry 1,up  signifies the upper bound on the 
Alluvium aquifer withdrawal for a wet or a dry year in 
the planning horizon, and with analogous definitions for 
the Saugus formation bounds. The values of the bounds 
are nonnegative and considered known once a certain 
year in the planning horizon is characterized as wet or 
dry. This eliminates the need for nonnegativity con- 
straints for the local groundwater withdrawals. The 
withdrawal amounts 1

G

, 1i iG   and 2  for all i are 
obtained from the solution of the programming program 
being formulated. 

, 1i iG 
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There are three sets of constraints associated with 
water banking programs that CLWA is currently in- 
volved in. The first pertains to the Semitropic bank 
where CLWA has transferred a significant amount of 
water already, the second is associated with a ground- 
water banking program with given constraints of 
maximum amount stored and maximum annual with- 
drawal, and the third is associated with the Rosedale— 
Rio Bravo banking program that has its own constraints 
pertaining to maximum stored amount and maximum 
annual withdrawal. These constraints are discussed next 
for each banking program. 

The Semitropic water volume conservation on a year 
to year basis may be written as: 

1 , 1
4 4 ;  1, ,  1i i i iX X S i N            (8) 

where 4
iX  signifies the water mount in Semitropic sto- 

rage at the end of year i, and  signifies the annual 
withdrawal from Semitropic storage for year i + 1 (same 
notational convention as previously defined for transfer 
amounts). It is noted that Equation (8) does not include a 
supply term for Semitropic as it is assumed that CLWA 
does not intend to increase the water stored in Semitropic. 
Should this policy change, an additional positive term 
will be added to the right hand side of Equation (8) to 
signify annual water amount added to Semitropic storage. 
Nonnegativity constraints are associated with the Semi- 
tropic bank transfers: 

, 1i iS 

4 0 ;  1, ,iX i   N

0
4

              (9) 

, 1 0;  1, , 1i iS i N                (10) 

and an initial condition is specified for the amount in 
Semitropic storage at the beginning of the planning ho- 
rizon: 

1
4X X                 (11) 

with 4
0X  being a known quantity. Lastly, there is a re- 

quirement that the amount in storage in Semitropic must 
be withdrawn by the end of a known year in the future 
(call it n), and this is enforced by: 

4 0;  1, ,iX i n N                (12) 

The southern water banking programs may be repre- 
sented by the following constraints (water amount con- 
servation, and bounds on amount stored and on annual 
amount withdrawn from this bank): 

1 , 1 , 1
5 5 – ;  1, ,i i i i i iX X DG B i N      1

,

  (13) 

max
5 50 ;  1,iX X i    N

, 1

1

         (14) 

, 1 max0 ;  1,i iB B i N            (15) 

, 10 ;  1, ,i iDG i N           (16) 

where 5
iX  signifies the water amount in bank storage at 

the end of year i, , 1i iB   signifies the annual withdrawal 
from bank storage for year i + 1, and , 1i iDG   signifies 
the annual transfer amount to bank storage by CLWA for 
year i + 1. The upper bounds for bank storage, , 
and annual withdrawal amount, Bmax, are known 
quantities, and the unknown quantities whose values 
result from the solution of the programming problem are 
the storage amounts ( 5

max
5X

iX ; i = 2, ···, N), and the annual 
transfer amounts in and out of the southern water bank 
( , 1i iDG  , , 1i iB  ; i = 1, ···, N – 1). The initial storage in 
the bank at the beginning of the planning horizon is 
considered known and equal to 0

5X : 
1
5

0
5X X                 (17) 

The analogous constraints for the Rosedale-Rio Bravo 
banking program are shown below: 

1 , – ; ,i iDR N 1 i iR , 1 1,i
6 6

iX X 1i    

1, ,

  (18) 

max
6 6 ;0 i  X X i

 i

N

1, , N

 

, 1i i

        (19) 

max0 ; 1R R  

 1



, 1

       (20) 

, 10 ; ,i Ni iDR  
0
6

         (21) 

1
6X X                (22) 

where 6
iX  signifies the water amount in Rosedale-Rio 

Bravo (RRB) bank storage at the end of year i, , 1i iR   
signifies the annual withdrawal from RRB-bank storage 
for year i + 1, and , 1i iDR   signifies the annual transfer 
amount to RRB-bank storage by CLWA for year i + 1. 
The upper bounds for bank storage, , and annual 
withdrawal amount, Rmax, are known quantities, and the 
unknown quantities whose values result from the solution 
of the programming problem are the storage amounts 
( 6

max
6X

iX ; i = 2, ···, N), and the annual transfer amounts in 
and out of the RRB bank ( , ; i = 1, ···, N − 1). 
In this case, too, the initial storage in the RRB bank at 
the beginning of the planning horizon is considered 
known and equal to 

, 1 Ri iDR ,i i 1

0
6X . 

The two Castaic Lake flexible storage accounts men- 
tioned in the water sources section can also be treated as 
water banks for the purpose of this mathematical formu- 
lation. Their separate consideration is necessary because 
one of the accounts has a 10-year active period while the 
other does not carry a termination date. The feasibility 
constraints for the two accounts may be written as: 

, 1

1, ;

i i i i iD , 1

7,8

i
kF

k

, 1;kF

,

i
k kX X

i N 1

   

 
ma

k kX X 

1 m
k kF F 

10 ;i
kDF i







 

1, , N

         (23) 

x0 ;

0 ;

 

1,i i N , ;k 

, 1;N k 

;  7k 

7,

,8

8

7,8

      (24) 

ax 1,i i    (25) 

 1      (26) 
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1 0 ; 7,k kX X k  8           (27) 

where k identifies the Castaic Lake flexible storage 
accounts ( 7

iX  and 8
iX  at the end of year i), , 1i i

kDF   is 
the deposit to the kth flexible account for year i + 1, 

 is the withdrawal from the kth flexible account for 
year i + 1, and 

, 1i i
kF 

0
kX  signifies the initial storage in the kth 

flexible account. Because of the 5-year term refilling 
conditions prescribed for the flexible accounts additional 
constraints pertaining to the repayment are imposed: 

* max ; 7,8i
k kX X k           (28) 

where i* signifies the end of the year during which refill- 
ing of the accounts must be made. 

A final set of constraints pertains to meeting demand 
for each year of the planning horizon: 

, 1 , 1 , 1 , 1 , 1 , 1
1 2 7

, 1 , 1 , 1
8 ;  1, , 1

i i i i i i i i i i i i

i i i i i i

G G S B R F

F DD T i N

    

  

    

      



   (29) 

where  is the annual demand, considered known. 
 is the residual resulting from subtracting the fixed 

core transfers from Buena Vista Water Storage District 
(11,000 af) and recycled water (1700 af) from the known 
regional demand for CLWA. The amount 

, 1i iT 

, 1i iT 

, 1i iDD   is the 
amount of the SWP allocation to CLWA used directly to 
satisfy demand, and is constrained by: 

, 1 , 1 , 1 , 1 , 1 , 1
7 8 ;

1, , 1

i i i i i i i i i i i iDR DG DF DF DD D

i N

     







1

(30) 

and the nonnegativity constraint: 
, 1 0 ;  1, , 1i iDD i N             (31) 

This amount ( ) is obtained from the solution of 
the programming problem formulated. 

, 1i iDD 

Equations (1)-(31) define the set of feasible solutions 
over all the years (N) of the planning horizon. This set of 
solutions depends very much on the values of the pa- 
rameters specified and it is possible that for certain val- 
ues of the parameters there are no feasible solutions that 
satisfy all the constraints of the problem. For instance, 
when the available amount in initial storage in the vari- 
ous banking programs, plus the maximum withdrawal 
from the local groundwater formation, plus the amount 
expected to be transferred from SWP over the planning 
horizon results in an amount lower than the total demand 
amount expected over the planning horizon, then the 
constraint set does not have a feasible solution. In such 
situations (rather emergency situations) it is assumed that 
CLWA will resort to emergency measures to reduce de- 
mand and to acquire additional amounts of water for the 
period in need. Thus, in this situation there is no gain 
from using the mathematical program formulated. The 
constraint that may be used to trigger this situation is 
(this is likely to happen in very dry periods): 

0 0 0 0 ,
1 4 5 6 1, 2,

, 1

i i
dry up dry up

i i

X X X X G G C

T





     






(32) 

where the summation (∑) is for all years i (i = 1, ···, N − 
1), and all the symbols have been defined previously. 

It is also noted that the set of constraints for the 
mathematical programming problem formulated is linear 
in the unknown quantities thus simplifying substantially 
the solution method for the mathematical program. Be- 
fore we discuss solution methods we formulate the ob- 
jective function next. 

3.2. The Objective Function 

The objective function of the mathematical program is 
used to select the optimal solution from the set of feasi- 
ble solutions allowed by the constraints formulated in the 
previous section. For the purposes of the CLWA opera- 
tions, the objective function is defined as the total cost of 
the CLWA operation due to annual water transfers and 
due to storage of water over all the years of the planning 
horizon. An optimal solution for this case, then, is the 
one that minimizes the objective function. In general 
terms, the objective function may be stated as: 

 i iJ K Y                   (33) 

with the summation extending over all the unknown 
variables Yj and with Kj representing annual cost associ- 
ated with water storage (if the variable represents storage) 
and with annual water transfer (if the variable represents 
annual water transfer amount). The unknown variables Yj 
have been identified in the discussion of the problem 
constraints of the previous section. It remains to identify 
the costs Kj (in units of constant dollars over the planning 
horizon per acre feet—$/af). The reliability of the cost 
numbers is important as it is through the relative magni- 
tude of such costs that the mathematical program will 
reliably allocate water among the various storages while 
meeting demand (assuming that the infeasibility con- 
straint of Equation (32) among parameters and future 
allocations does not hold). It is then appropriate to ex- 
amine the sensitivity of the solution of the mathematical 
program formulated with respect to the relative value of 
the costs Kj. 

4. Literature Review of Pertinent  
Optimization Problems and Their  
Solutions 

The formulated mathematical programming problem is 
linear in both the constraints and the objective function. 
Standardized methods exist (e.g. [1]) to convert any 
given set of linear equality and inequality constraints and 
a linear objective function to the standard form, which 
may be written as: 
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’J  k y                   (34) 

subject to 

Ay b                    (35) 

y 0                     (36) 

where bold face letters signify column vectors for lower 
case and matrices for upper case letters, y signifies the 
n-dimensional vector of independent variables, A is an 
mxn-dimensional vector of parameters, b is an m-dimen- 
sional vector of parameters, and k’ is an 1xn-dimensional 
vector representing the vector transpose of k, and 0 
represents the n-dimensional vector with all elements 
equal to zero. The objective function of Equation (34) is 
maximized for the standard form.  

There are several computationally efficient algorithms 
that have been developed to solve such linear program- 
ming problems in standard form. The original algorithm 
was developed by George B. Dantzig [2] and it is called 
the simplex algorithm or the simplex technique. It is 
based on the premise that the optimal solution for a linear 
programming problem that maximizes J of Equation (34) 
is at the vertices of the shape formed by the intersection 
of the linear equality constraints of Equation (35) that 
define the feasible region. The simplex algorithm then 
identifies sequentially non inferior vertex points (vertex 
points that have an objective value that is higher than 
previously found) until it finds the maximum solution 
(optimal solution for the standard form) (for details see 
[3,4]). It is a computationally efficient algorithm because 
it takes approximately between m and 2m iterations to 
arrive at the optimum. Variants of the algorithm suitable 
for large problems are in use today for implementation in 
modern day digital computers that are even more effi- 
cient (e.g. [5,6]). 

For the class of linear programming problems and for 
each linear programming problem (called the primal in 
this context), it is possible to formulate its dual pro- 
gramming problem with an optimal solution that matches 
in value exactly the value of the objective function of the 
primal at the optimum. The significance of this dual 
problem is that the optimal solution values of the 
dual-problem independent variables represent the rates of 
change of the objective function J with respect to the 
constraint parameters (elements of vector b). They are 
typically called shadow prices or marginal values and in 
several cases have an economic interpretation [7]. For the 
case of equality constraints, the dual variables are the 
so-called Lagrange multipliers involved in the solution of 
constraint optimization problems.  

Linear programming formulations and algorithms have 
been used widely to guide the solution of water alloca- 
tion and water resources planning problems (e.g. [8]). 
Their widespread use is a result of the availability of very 

efficient solvers (as discussed previously) that allow the 
planner to focus on the problem formulation rather than 
on the mechanics of the solution algorithm. Some recent 
examples are mentioned below as illustrations of po- 
tential applications. In [9], a series of linear programs are 
used to solve a water supply problem in Antelope Valley, 
California, where volumes of water was injected and 
extracted each year in an unconfined aquifer. In [10], 
linear programming was used to monitor pollutants and 
maximize the potable water in a storage reservoir that is 
used for water delivery via a number of pumping stations. 
Groundwater management in a saltwater intrusion en- 
vironment in a coastal karstic aquifer was studied in [11] 
using linear programming and physical groundwater 
modeling. In [12] linear programming was used to study 
conjunctive water use and banking in southern Cali- 
fornia. 

In addition, methods for incorporating uncertainty in 
problem parameters have been developed that retain the 
efficiency of solution of the linear programming prob- 
lems. The basis of these methods is the development of 
chance constraints where the constraint expresses the 
probability threshold imposed for the violation of the 
constraint. Under this constraint formulation and assum- 
ing knowledge of the probability distribution of the un- 
certain parameter, such constraints may be readily con- 
verted to ordinary deterministic constraints (e.g. [8,13]). 

As an alternative to linear programming problem op- 
timization methods, direct simulation is often used for 
complex problems. These approaches do not optimize the 
objective function, but serve as tools to explore various 
properties of the objective function within the feasible 
region specified by the constraints. If optimization is 
necessary for certain system components then simulation 
is combined with optimization. An example of this ap- 
proach is the CalSim model used by the US Bureau of 
Reclamation for reservoir management in California, 
whereby simulation is coupled with mathematical pro- 
gramming to distribute water volumes throughout the 
conveyance network of the Central Valley Project of 
California [14]. 

Stochastic simulations methods (also referred to as 
Monte Carlo simulation methods) have also been devel- 
oped and used to incorporate uncertainty in problem in- 
put or problem parameters during the exploration of the 
properties of the objective function. For instance, a very 
recent application of Monte Carlo simulation applied 
stochastic generation techniques to develop risk-based 
strategies for trading discharge permits in rivers [15]. 
Also, methods that combine stochastic simulation with 
systematic optimum search methods have been recently 
applied to water management problems that involve se- 
quential decisions in the operational management envi- 
ronment (e.g. [16]). The stochastic simulation methods 
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are appropriate when the uncertainty in model parameters 
can be well characterized through probability distribu- 
tions (joint probability distributions may be necessary). 
However, they are computationally expensive and good 
initial solutions (perhaps obtained by the solution of lin- 
ear programming problems using the efficient simplex 
algorithm) are necessary for effective use. 

Before we close this short excursion in the literature of 
mathematical programming for water resources we refer 
to two additional types of optimization. The first is a re- 
cent evolution of mathematical programming called 
Positive Mathematical Programming [17] and the second 
is the substantially older and well known class of dy- 
namic programming algorithms [18]. Positive Mathe- 
matical Programming is an enhanced mathematical pro- 
gram that includes constraints pertaining to the historical 
baseline operation of the system to be optimized to in- 
clude constraints that assure solutions that are similar to 
system past behavior, and a nonlinear objective function 
to be optimized for best performance. This type of pro- 
gramming is suitable for analyzing environmental policy 
when substantial data is available for the calibration 
process and requires substantial optimization expertise 
for its solution, as no efficient solvers are currently 
commercialized. In addition no significant experience 
exists in introducing uncertainty in model parameters or 
existing observed data. Dynamic programming is a pow- 
erful optimization method suitable for very large prob- 
lems that involve decisions in stages, with nonlinear ob- 
jectives and constraints. Well established algorithms ex- 
ist for stochastic dynamic programming problems with 
non-negligible uncertainty. There is a long history of the 
use of dynamic programming in water management with 
recent applications in participatory decision making for 
operational water resources management (e.g. [19]). For 
the application at hand, however, the mathematical pro- 
gram is not large and the linear programming formula- 
tion is very efficient so there is no need to introduce dy- 
namic programming as a solution method. 

5. Example Programming Problem Solutions 

To illustrate the type of solutions that may be obtained 
from the formulated mathematical program and to dem- 
onstrate the feasibility of the formulation, we have con- 
structed a MATLAB sample code that implements a par- 
ticular version of the formulation using a number of as- 
sumed parameters and we perform a small scale sensitiv- 
ity analysis with respect to demand to illustrate the bene- 
fits of such a mathematical programming approach. The  
mathematical program formulation is solved with a vari- 
ant of the simplex algorithm implemented in MATLAB. 
It is noted that the numerical experiments conducted al- 
low for the generation of many possible scenarios of 
SWP allocations and determine the ensemble of mini- 

mum cost solutions as well as certain quantiles of the 
minimum cost solution ensemble. In all cases, the ex- 
periments assume initial condition at the beginning of 
year 2009, and the planning horizon for the problem is 
set through year 2013 (5 years). 

5.1. Nominal Input and Demand 

Table 1 lists the assumed mean annual SWP allocation 
for each of the years of the planning horizon together 
with the associated standard deviation of the annual al- 
location. It is noted that the first year in the planning ho- 
rizon (Y2009) carries very small uncertainty, because it 
is assumed that the allocation is already determined when 
the model is used. The following years carry consider- 
able uncertainty. It is also assumed that dry years will 
occur in the mean. 

Table 2 shows the input parameters used in the nu- 
merical experiments. They reflect the information in pre- 
vious sections and are considered nominal for these nu- 
merical experiments. 

Figure 1 shows the histogram of the 5-year-average 
minimum cost from a run that generated 1000 ensemble 
members (possible SWP allocations). The distribution of 
minimum average annual costs is approximately Gaus- 
sian with a mean of approximately 5.4 million dollars 
over the planning horizon of 5 years. The minimum costs 
range from about 5.15 to 5.7 million dollars. No gener- 
ated sequence of SWP allocations was associated with an 
infeasible solution. 
 
Table 1. Statistics of generated SWP allocations in acre-feet 
(AF) for CLWA. 

(a) Mean annual SWP allocations 

Y2009 Y2010 Y2011 Y2012 Y2013 

0 15,000 5000 15,000 5000 

(b) St dev of annual SWP allocations 

Y2009 Y2010 Y2011 Y2012 Y2013 

0.1 7000 2000 10,000 2000 

 
Table 2. Values of initial conditions and input parameters 
for the 5-year planning horizon. 

(a) Initial storages (af) 

CrOv Semitrp SBnk RRB-Bnk CLakFlex1 CLakFlex2

0.0 50870.0 0.0 0.0 4684.0 1376.0 

(b) C lake flexible accounts maximal volumes 

4684.0 1376.0 

(c) C lake flexible accounts remaining refill years 

0.0 0.0 
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(d) Annual demand (af) inclusive of recycle contrib. (i) Annual storage costs ($/af) 

Carry-over: 20.0 20.0 20.0 20.0 20.0 20.0 

Semitropic: 2.0 2.0 2.0 2.0 2.0 2.0 

So bank: 50.0 50.0 50.0 50.0 50.0 50.0 

RRB bank: 30.0 30.0 30.0 30.0 30.0 30.0 

CL flex 1: 0.0 0.0 0.0 0.0 0.0 0.0 

CL flex 2: 15.0 15.0 15.0 15.0 15.0 15.0 

78800.0 80000.0 82300.0 84400.0 85600.0 

(e) Annual recycle contribution (af) 

12700.0 12700.0 12700.0 12700.0 12700.0 

(f) Annual local-gw withdrawal limits (af) 

Alluv min: 30000.0 30000.0 30000.0 30000.0 30000.0

Alluv max: 35000.0 35000.0 35000.0 35000.0 35000.0

Saugus min: 7500.0 7500.0 7500.0 7500.0 7500.0

Saugus max: 25000.0 25000.0 25000.0 25000.0 25000.0

(j) Annual transfer costs ($/af) 

Semitropic wthdr: 25.0 25.0 25.0 25.0 25.0

So bank wthdr: 100.0 100.0 100.0 100.0 100.0

RRB bank wthdr: 30.0 30.0 30.0 30.0 30.0

So bank depst: 100. 100.0 100.0 100.0 100.0

RRB bank depst: 30.0 30.0 30.0 30.0 30.0

SWP wthdr: 110.0 110.0 110.0 110.0 110.0

Alluvium wthdr: 50.0 50.0 50.0 50.0 50.0

Saugus wthdr: 150.0 150.0 150.0 150.0 150.0

CL flex 1 dep: 120.0 120.0 120.0 120.0 120.0

CL flex 1 wthdr: 0.0 0.0 0.0 0.0 0.0 

CL flex 2 dep: 120.0 120.0 120.0 120.0 120.0

CL flex 2 wthdr: 0.0 0.0 0.0 0.0 0.0 

(g) Annual maximum storage volumes (af) 

Carry-over: 30000.0 30000.0 30000.0 30000.0 30000.0

Semitropic: 50870.0 50870.0 50870.0 50870.0 50870.0

S. bank: 14000.0 14000.0 14000.0 14000.0 14000.0

RRB bank: 100000.0 100000.0 100000.0 100000.0 100000.0

CL flex 1: 4684.0 4684.0 4684.0 4684.0 4684.0 

CL flex 2: 1376.0 1376.0 1376.0 1376.0 1376.0 

(h) Annual maximum withdrawals from banks (af) 

South bank: 6900.0 

RRB bank: 20000.0 

CL flex 1: 4684.0 

CL flex 2: 1376.0 

 

 

Figure 1. Histogram of 1000 ensemble members of the 5-year average minimum cost. The cost is in millions of $ per year. 
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Although the range of 5-year-average minimum costs 

is considerable, the first year cost for the optimal policies 
that lead to the minimum 5-year-cost is substantially less 
dispersed among ensemble members. The reader is re- 
minded that although the solution refers to the optimal 
policy over the planning horizon of 5 years, only the first 
year solution may be implemented, using an adaptive 
principle. 

Figure 2 shows the histogram of the first year costs 
associated with the minimum 5-year-average cost solu- 
tions of Figure 1. Very few ensemble members have 
values different from the bulk of values near 3.6 million 
per year. In fact, the median and the 95th percentile first 
year cost are identical for this experiment. Table 3 shows 
the median first year cost together with the first year so- 
lution for the numerical experiment. The allocation of 
12,700 af of recycled water is assumed given and it is not 
considered for the optimization experiment, leaving a 
total of 66,100 af of first-year demand to be satisfied 
from various bank and groundwater storages (the first 
year allocation from SWP is assumed to be 0 af for this 
experiment). It is shown that the first year demand, as- 
sumed to be 78,800 af, is satisfied with a 23,600 af with- 
drawal from Semitropic bank, a 35,000 af withdrawal 
from Alluvium groundwater storage, and a 7500 af 
withdrawal from Saugus groundwater storage. The 
median first year cost is estimated to be $3587380.0. 

The optimal policy for the entire planning horizon for  

the median first year solution is given in Table 4. Table 
4 also shows the generated SWP allocations for this me- 
dian solution ensemble member. Withdrawals from 
Semitropic, Alluvium and Saugus formations satisfy the 
residual annual demands after the recycled water alloca- 
tion is subtracted from the total annual demand of Table 
2 for each year. It is noted that the Semitropic storage is 
depleted by 2013 as required, and no carryover SWP 
storage is generated due to the low SWP allocations ex- 
pected for this experiment. No activity is projected for 
this solution pertaining to the southern banking storage, 
the RRB and the Castaic Flexible storages for minimum 
 

Table 3. Median of first-year cost solutions. 

Carryover storage: 0.0 So bank withdrawal: 0.0 

Semitropic storage: 50870.0 Alluvium withdrawal: 35000.0

South bank storage: 0.0 Saugus withdrawal: 7500.0

R-RB storage: 0.0 CL flex 1 deposit: 0.0 

CL flex 1 storage: 4684.0 CL flex 1 withdrawal: 0.0 

CL flex 2 storage: 1376.0 CL flex 2 deposit: 0.0 

SWP withdrawal: 0.0 CL flex 2 withdrawal: 0.0 

SWP use for demand: 0.0 R-RB bank deposit: 0.0 

Semitropic withdrawal: 23600.0 RRB bank withdrawal: 0.0 

So bank deposit: 0.0   

 

 

Figure 2. As in Figure 1 but for first year costs. 
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Table 4. Optimal 5-year policy for median of first-year cost 
solutions. 

(a) Generated annual SWP allocations (af) 

0.0 10836.0 5408.0 19829.1 6835.5 

(b) Solutions for CLWA linear program 

Caryovr store: 0.0 0.0 0.0 0.0 0.0 0.0 

Semitropic: 50,870 27,270 13,306 6064.5 6064.5 0.0 

South bank: 0.0 0.0 0.0 0.0 0.0 0.0 

RRB store: 0.0 0.0 0.0 0.0 0.0 0.0 

CL flex 1 store: 4684.0 4684.0 4684.0 4684.0 4684.0 4684.0

CL flex 2 store: 1376.0 1376.0 1376.0 1376.0 1376.0 1376.0

SWP wth:  0.0 10,836 5408.0 19829.1 6835.5

SWP use:  0.0 10,836 5408.0 19829.1 6835.5

Semitropic Wth  23,600 13964 7241.5 0.0 6064.5

So bank dep:  0.0 0.0 0.0 0.0 0.0 

So bank wth:  0.0 0.0 0.0 0.0 0.0 

RRB bank dep:  0.0 0.0 0.0 0.0 0.0 

RRB bank wth:  0.0 0.0 0.0 0.0 0.0 

Alluvium wth:  35,000 35,000 35,000 35,000 35,000

Saugus wth:  7500 7500 21950.5 16870.9 25,000

CL flex 1 dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 1 wth:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 wth:  0.0 0.0 0.0 0.0 0.0 

cost over the 5-year horizon given the SWP allocations 
generated. The first year total cost is $3587380.0, while 
the 5-year average annual cost (inclusive of initial stor- 
age) is 5379179.2. 

5.2. Increasing Demand 

In this section we explore the dependence of the optimal 
solutions to increases in demand. The SWP allocation 
statistics are as shown in Table 1, and the rest of the in- 
put parameters are as shown in Table 2. At first, a 5% 
increase of demand is imposed for all the years of the 
5-year planning horizon. Figure 3 shows the histogram 
of the 5-year-average minimum costs for 1000 realiza- 
tions of SWP allocations with the statistics of Table 1. 

The Figure shows that the histogram in this case devi- 
ates significantly from the Gaussian distribution and it 
has a median cost that is about 6 million dollars per year; 
a substantial increase from the 5.4 million dollars per 
year associated with the nominal solution. That is a 5% 
increase in demand generates more than a 10% increase 
in the median 5-year-average minimum cost. The shape 
of the distribution is truncated for high values of cost due 
to the fact that there are now realizations of SWP alloca- 
tions that are infeasible (cannot meet demand due to the 
violation of the constraint in Equation (32)). In fact, 
1.5% of the realizations generated do not have feasible 
solutions. There is a 1.5% chance that given the statistics 
of the SWP allocations of Table 1, a 5% increase in de- 
mand will not be met. 

 

 

Figure 3. As in Figure 1 but for a 5% increase in annual demand for the entire planning horizon. 
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Figure 4 shows the first year cost histogram for the 

feasible solutions (analogous to Figure 2). Significant 
increase of the median first-year cost is implied by the 
long tail of the histogram. The median fist year cost and 
associated solution are shown in Table 5. The difference 
in first year median cost from that of the nominal run is 
due to the increased withdrawal from the Semitropic 
bank and from the Saugus groundwater formation. The 
first-year median cost increase is about 5% with respect 
to the run with nominal demand. This is equal to the 5% 
increase in demand. 

In variance with the nominal case, in this case of in- 
creased demand the 95th-percentile first-year cost is dif- 
ferent (higher) from the median such cost. Table 5 also 
shows the 95th-percentile cost and associated solution. 
There is an increase of more than 40% of first year cost 
with respect to the median first year cost. The demand 
increase resulted in an increase of first year cost associ- 
ated with a high probability of meeting demand (risk 
reduction is in this case associated with substantially 
increased cost). The cost increase is due to the increase 
of the withdrawal from the Saugus groundwater storage 
and a decrease of the Semitropic withdrawal. The full 
5-year solutions associated with the median and the 
95th-percentile first-year costs discussed above are shown 
in Tables 6 and 7, respectively. The first year costs are 
$3780805.0 and $5440467.5, respectively. The 5-year 
average annual costs are $5964445.0 and $6157747.9, 
respectively. Different strategies are exhibited over the  

Table 5. Median and 95th-percentile of first-year cost for a 
demand increase of 5% for all years. 

SWP carryover storage: 0.0 0.0 

Semitropic storage: 50870.0 50870.0 

South bank storage: 0.0 0.0 

R-RB storage: 0.0 0.0 

CL flex1 storage: 4684.0 4684.0 

CL flex2 storage: 1376.0 1376.0 

SWP withdrawal: 0.0 0.0 

SWP use for demand: 0.0 0.0 

Semitropic withdrawal: 26780.6 13503.3 

So bank deposit: 0.0 0.0 

So bank withdrawal: 0.0 0.0 

R-RB bank deposit: 0.0 0.0 

R-RB bank withdrawal: 0.0 0.0 

Alluvium withdrawal: 35000.0 35000.0 

Saugus Withdrawal: 8259.4 21536.7 

CL flex 1 deposit: 0.0 0.0 

CL flex 1 withdrawal: 0.0 0.0 

CL flex 2 deposit: 0.0 0.0 

CL flex 2 withdrawal: 0.0 0.0 

First-year ($/YR): 3780805.0 5440467.5 

Median 95th-percentile. 

 

 

Figure 4. As in Figure 2 but for a 5% increase in annual demand for the entire planning horizon. 
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Table 6. Optimal 5-year policy for median of first-year cost 
solutions for a 5% increase in demand 

(a) Generated annual SWP allocations (af) 

0.0 4235.8 9727.7 29450.3 4142.1 

(b) Solutions for CLWA linear program 

Semitropic: 50,870 24089.4 17025.2 13037.9 13037.9 0.0 

South bank: 0.0 0.0 0.0 0.0 0.0 0.0 

RRB store: 0.0 0.0 0.0 0.0 0.0 0.0 

CL flex 1 sto: 4684 4684 4684 4684 4684 4684

CL flex 2 sto: 1376 1376 1376 1376 1376 1376

SWP wth:  0.0 4235.8 9727.7 29450.3 4142.1

SWP use:  0.0 4235.8 9727.7 29450.3 4142.1

Semitropi wth  26780.6 7064.2 3987.3 0.0 13,038

So bank dep:  0.0 0.0 0.0 0.0 0.0 

So bank wth:  0.0 0.0 0.0 0.0 0.0 

RRB bank dep:  0.0 0.0 0.0 0.0 0.0 

RRB bank wth:  0.0 0.0 0.0 0.0 0.0 

Alluvium wth:  35,000 35,000 35,000 35,000 35,000

Saugus wth:  8259.4 25,000 25,000 11469.7 25,000

CL flex 1dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 1 wth:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 wth:  0.0 0.0 0.0 0.0 0.0 

 
Table 7. Optimal 5-year policy for 95th percentile of 
first-year cost solutions for a 5% increase in demand. 

(a) Generated annual SWP allocations (af) 

0.0 16339.0 1715.3 5528.4 2204.6 

(b) Solutions for CLWA linear program 

Semitropic: 50870.0 37366.7 37366.7 25367.0 14975. 0.0 

South bank: 0.0 0.0 0.0 0.0 0.0 0.0 

RRB store: 0.0 0.0 0.0 0.0 0.0 0.0 

CL flex 1 sto: 4684 4684 4684 4684 4684 4684

CL flex 2 sto: 1376 1376 1376 1376 1376 1376

SWP wth:  0.0 16339.0 1715.3 5528.4 2204.6

SWP use:  0.0 16339.0 1715.3 5528.4 2204.6

Semitropi wth  13503.3 0.0 11999.7 10391.6 14975.4

So bank dep:  0.0 0.0 0.0 0.0 0.0 

So bank wth:  0.0 0.0 0.0 0.0 0.0 

RRB bank dep:  0.0 0.0 0.0 0.0 0.0 

RRB bank wth:  0.0 0.0 0.0 0.0 0.0 

Alluvium wth:  35,000 35,000 35,000 35,000 35,000

Saugus wth:  21536.7 19,961 25,000 25,000 25,000

CL flex 1 dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 1 wth:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 dep:  0.0 0.0 0.0 0.0 0.0 

CL flex 2 wth:  0.0 0.0 0.0 0.0 0.0 

planning horizon. The SWP allocations are different for 
the median and the 95th-percentile solutions and this is 
reflected in the optimal policy for storage and withdrawal. 
In all cases, the SWP carryover storage remained at zero, 
and no activity was noted for the southern and RRB 
banks and the flexible Castaic lake storage. 

An additional sensitivity experiment was conducted to 
determine the variation of the first year cost and of the 
percent infeasible solutions for a 10% increase of de- 
mand for each year of the 5-year planning horizon. The 
median first-year cost in this case was $5506655.0 and 
the percent of runs with infeasible solutions rose to 
43.4%. It is apparent that a 10% increase of demand un- 
der the dry conditions for SWP allocation depicted in the 
statistics of Table 1 yields a high chance of not being 
able to meet the demand over the planning horizon. 
Among the feasible solutions, there is an increase of the 
median first-year cost of about 54% with respect to the 
nominal demand run. 

The sensitivity of the solution costs to demand 
changes may be seen in Figure 5. The median first-year 
cost of the optimal solutions is shown by the bars for 
increases in demand that span the range from 0 to 10% 
for each year of the planning horizon. Read on the right 
vertical axis and indicated by the black heavy line is the 
corresponding percent of the infeasible solutions (that 
also describes the risk of failure to meet demand). It is 
apparent that for the set of assumptions regarding the 
statistics of the SWP allocation of Table 1 and for the 
parameters of Table 2 (apart from the demand values), 
the sensitivity of the median first-year solution with re- 
spect to the demand increase as well as the sensitivity of 
the risk of failure to meet demand increase substantially 
for percent increases in demand higher than 5%. Up to 
that value of demand increase, the CLWA system as de- 
fined herein exhibits robustness with respect to median 
first-year cost and risk of failure to meet demand. 

6. Concluding Remarks 

A linear programming formulation and application is 
demonstrated for a surface- and ground-water manage- 
ment problem that involves a variety of water supply 
sources and the ability for water banking operations. The 
formulated mathematical optimization problem is de- 
signed to minimize the cost of water management opera- 
tions due to water allocations and water storage over the 
management horizon of N years with the objective to 
meet annual water demands. 

The mathematical solutions of the resultant minimum 
cost problem are then used to guide water supply alloca- 
tion and to study the sensitivity of the minimum cost 
solutions to water supply uncertainty and to demand in- 
creases. The results allow quantitative evaluation of the 
possible strategies of the water management agency for 
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the first year allocations under the cases examined. 
Notable is the significant increase in cost and 

infeasible solutions with even a moderate increase in 
water demand. Reliable water demand estimation is then 
a prerequisite for useful application of the mathematical 
programming formulations presented to decision making. 
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