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ABSTRACT 

This paper considers multiobjective integer programming problems involving random variables in constraints. Using 
the concept of simple recourse, the formulated multiobjective stochastic simple recourse problems are transformed into 
deterministic ones. For solving transformed deterministic problems efficiently, we also introduce genetic algorithms 
with double strings for nonlinear integer programming problems. Taking into account vagueness of judgments of the 
decision maker, an interactive fuzzy satisficing method is presented. In the proposed interactive method, after deter- 
mineing the fuzzy goals of the decision maker, a satisficing solution for the decision maker is derived efficiently by 
updating the reference membership levels of the decision maker. An illustrative numerical example is provided to 
demonstrate the feasibility and efficiency of the proposed method. 
 
Keywords: Multiobjective Programming; Stochastic Programming; Fuzzy Programming; Interactive Methods; Simple 

Recourse Model 

1. Introduction 

In actual decision making situations, we must often make 
a decision on the basis of imprecise information or un- 
certain data. For such decision making problems involve- 
ing uncertainty, there exist two typical approaches: sto- 
chastic programming and fuzzy programming. Stochastic 
programming, as an optimization method on the basis of 
the probability theory, has been developing in various 
ways [1-5], including two stage problem by [6], and 
chance constrained programming by [7]. Fuzzy mathe- 
matical programming representing the vagueness in deci- 
sion making situations by fuzzy concepts has been stud- 
ied by many researchers [8-12]. 

In most practical situations, however, it is natural to 
consider that the uncertainty in real world decision mak- 
ing problems is often expressed by a fusion of fuzziness 
and randomness rather than either fuzziness or random- 
ness. For handling not only the decision maker’s vague 
judgments in multiobjective problems but also the ran- 
domness of the parameters involved in the objectives 
and/or constraints, Sakawa and his colleagues incorpo- 
rated their interactive fuzzy satisficing methods for de- 
terministic problems [9,13] into multiobjective stochastic 
programming problems. Through the introduction of 
several stochastic programming models such as expecta- 
tion optimization [14,15], variance minimization [14], 
probability maximization [14,16,17] and fractile criterion 
optimization [14] together with chance constrained pro- 

gramming techniques, they introduced several interactive 
fuzzy satisficing methods to derive a satisficing solution 
for a decision maker from Pareto optimal solution sets. 

It should be stressed here that in the chance con- 
strained problems, for random data variations, a mathe- 
matical model is formulated such that the violation of the 
constraints is permitted up to specified probability levels. 
Compared with this, in a two-stage [18] or multistage [19] 
model including a simple recourse model as a special 
case, a shortage or an excess arising from the violation of 
the constraints is penalized, and then the expectation of 
the amount of the penalties for the constraint violation is 
minimized [20,21]. 

Furthermore, it is often found that in real-world deci- 
sion making situations, decision variables in a multiob- 
jective stochastic programming problem are not con- 
tinuous but rather discrete. From this observation, we 
discuss interactive fuzzy multiobjective stochastic integer 
programming which is a natural extension of multiobjec- 
tive stochastic programming with continuous variables. 
To deal with practical sizes of multiobjective stochastic 
nonlinear integer programming problems formulated for 
decision making problems in the real-world, we employ 
genetic algorithms to derive a satisficing solution to the 
decision maker. 

Under these circumstances, in this paper, we consider 
multiobjective integer programming problems involving 
random variables in constraints. The main contribution of 

Copyright © 2012 SciRes.                                                                                  AM 



M. SAKAWA, T. MATSUI 1246 

this paper is to provide a novel decision making method- 
ology including a new model, solution concept and solu- 
tion algorithm to deal with more realistic problems in the 
real world, by simultaneously considering various con- 
cepts such as fuzziness, randomness, integer decision 
variables and interactive fuzzy programming, while most 
of previous papers dealt with either of the concepts or a 
part of them. Using the concept of simple recourse [20], 
the formulated multiobjective stochastic simple recourse 
problems are transformed into deterministic ones. For 
solving transformed deterministic problems efficiently, 
genetic algorithms with double strings for nonlinear in- 
teger programming problems are introduced. Assuming 
that a decision maker has a fuzzy goal for each of the 
objective functions, we present an interactive fuzzy satis- 
ficing method to derive a satisficing solution for the de- 
cision maker by updating the reference membership lev- 
els for fuzzy goals represented by the membership func- 
tions. An illustrative numerical example is provided to 
demonstrate the feasibility and efficiency of the proposed 
method. 

2. Multiobjective Stochastic Integer 
Programming with Simple Recourse 

We consider a simple recourse model for the multi- 
objective stochastic integer programming problems 
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where x is an n dimensional integer decision variable 
column vector, cl, l = 1, 2, ···, k are n dimensional 
coefficient row vectors, A is an m × n coefficient matrix, 
and b  is an m dimensional random variable column 
vector. It should be noted here that, in a simple recourse 
model, the random variables are involved only in the 
right-hand side of the constraints. 

To understand an idea of the formulation in the simple 
recourse model, consider a decision problem of a manu- 
facturing company where the decision variables actually 
make sense only if they are integer values. Suppose that 
the company makes m types of products which requires n 
kinds of working processes, and a decision maker (DM) 
in the company desires to optimize the total profit and the 
total production cost simultaneously. 

Let  denote activity levels for the n 
kinds of working processes which are integer decision 
variables, and then Tx denotes the amount of products, 
where T is an m × n matrix transforming the n kinds of 
activity levels of the working processes into the m types 

of products. The total profit is expressed as c1Tx, where 
an m dimensional coefficient vector c1 is a vector of unit 
product profits for the m types of products, and the total 
production cost is represented by c2x, where an n 
dimensional coefficient vector c2 is a vector of unit costs 
for the n kinds of activity levels of the working processes. 
Assume that the demand coefficients 

 1, , nx x x 

 1, ,
T

 md d d  
for the m products are uncertain, and they are represented 
by random variables. The demand constraints are 
expressed as    Tx Iy Iy d , where y+ and y– 
represent the errors for estimating the demands, and I is 
the m dimensional identity matrix. These two objectives 
are optimized under the demand constraints  

   Tx Iy Iy d  together with the ordinary constraints 
Bx ≤ e without uncertainty for the activity levels such as 
the capacity, budget, technology, etc. The constraints 
Ax = b  in (1) can be interpreted as the combined form 

of the demand constraints with random variables and the 
ordinary constraints without uncertainty. 

Let us return to a general case of the recourse model. It 
is assumed that, in this model, the DM must make a 
decision before the realized values of the random 
variables involved in (1) are observed, and the penalty of 
the violation of the constraints is incorporated into the 
objective function in order to consider the loss caused by 
random date variations. 

To be more specific, by expressing the difference 
between xA  and b  in (1) as two vectors 

 1 , ,
T

my y   y  

and 

 1 , ,
T

my y   y , 

the expectation of a recourse for the lth objective 
function is represented by  

     
,

minl l lR E x
 

            y y
x q y q y y y b A  

(2) 

where l
q and l

q  are m dimensional constant row 
vectors, and b(ω) is an m dimensional realization vector 
of b  for an elementary event ω. Thinking of each 
element of  

 1 , ,
T

my y   y  

and  

 1 , ,
T

my y   y  

as a shortage and an excess of the left-hand side, 
respectively, we can regard each element of l

q  and l
q  

as the cost to compensate the shortage and the cost to 
dispose the excess, respectively. 
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Then, for the multiobjective stochastic programming 
problem, the simple recourse problem is formulated as  
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Because l  and l  are interpreted as penalty 
coefficients for shortages and excesses, it is quite natural 
to assume that l  and , and then, it is 
evident that, for all i = 1, ···, m, the complementary 
relations 
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should be satisfied for an optimal solution. With this 
observation in mind, we have  
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Recalling that , 1,2, , ib i m  are mutually indepen- 
dent, (2) can be explicitly calculated as 
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where Fi is the probability distribution function of ib . 
Then, (3) can be rewritten as 
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where 
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3. Fuzzy Goals 

In order to consider the imprecise nature of the DM’s 
judgments for each objective function  R

lz x
 R

lz x
 in (5), by 

introducing the fuzzy goals such as “  should be 
substantially less than or equal to a certain value,” (5) 
can be interpreted as 
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where μl is a membership function to quantify a fuzzy 
goal for the lth objective function in (5) as shown in 
Figure 1. 

It should be noted here that (6) is regarded as a 
multiobjective decision making problem, and that there 
rarely exists a complete optimal solution that simul- 
taneously optimizes all the objective functions. By 
directly extending Pareto optimality in ordinary multi- 
objective programming problems, Sakawa et al. defined 
M-Pareto optimality on the basis of membership function 
values as a reasonable solution concept for the fuzzy 
multiobjective decision making problem [9,13]. 

Definition 1 (M-Pareto optimal solution). A point 
* Xx  is said to be an M-Pareto optimal solution if 

and only if there does not exist another Xx  such 
that  

     *
l l l lz z x x  

for all  1, ,l  k  and 
 

1 

 

 

 

0 
,1
R
lz ,0

R
lz  R

lz x

  R
l lz x

 

Figure 1. Example of a membership function   R
l lz x . 
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     *
j j j jz z x x  

for at least one , where X denotes the 
feasible region of the problem. 

1, ,j  k

To help the DM specify the membership functions, it 
is recommended to calculate the individual minima of 

 by solving the nonlinear integer programming 
problems 

 R
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where intX  denotes the feasible region of (6). 
In order to find a candidate for the satisficing solution, 

the DM specifies the reference membership levels 
, 1, ,l l ,k    and then by solving the augmented mini- 

max problem 
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an M-Pareto optimal solution corresponding to  
, 1, ,l l k  

 is obtained, and (8) is equivalently 
expressed by  
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where ρ is a sufficiently small positive number.  
Observing that (7) and (9) are nonlinear integer 

programming problems, we cannot directly apply 
GADSLPRRSU [11] for solving them. 

4. Genetic Algorithms for Nonlinear Integer 
Programming 

For solving linear integer programming problems on the 
framework of genetic algorithms, Sakawa proposed 
GADSLPRRSU [11]. GADSLPRRSU is an abbreviation 
for genetic algorithms with double strings based on linear 
programming relaxation and reference solution updating. 
This method includes three key ideas: double strings 
(DS), linear programming relaxation (LPR), and reference 
solution updating (RSU). Unfortunately, however, due to 
nonlinearity, we cannot directly apply GADSLPRRSU 

for solving (7) and (9). However, we can introduce the 
revised GADSLPRRSU where GENOCOPIII [22,23] is 
employed for solving a nonlinear continuous relaxation 
problem. 

As an efficient approximate solution method, the 
revised GADSLPRRSU are designed for nonlinear integer 
programming problems formulated as: 

 
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where x is an n dimensional integer decision variable 
column vector. Furthermore,  f   and  

  , 1, 2, ,ig i   m  may be nonlinear.  
Quite similar to genetic algorithms with double 

(GADS) [11], an individual is represented by a double 
string shown in Figure 2. In Figure 2, for a certain j, 
   1, 2, ,s j  

 

n  represents an index of a decision 
variable s jx

  , 1, 2, ,s j j
 in the solution space, while  

n y  does the integer value among  
 0,1, , jv  of the  s j  th decision variable  s j

Now we can summarize the computational procedures 
of the revised GADSLPRRSU as follows. 

x . 

Computational procedures of the revised GADSLPRRSU 
Step 0: Determine values of the parameters used in the 

genetic algorithm. 
Set the generation counter t at 0.  
Step 1: Generate the initial population consisting of N 

individuals based on the information of the optimal 
solution to the continuous relaxation problem.  

Step 2: Decode each individual in the current po- 
pulation and calculate its fitness based on the cor- 
responding solution.  

Step 3: If the termination condition is fulfilled, stop. 
Otherwise, let : 1t t  . 

Step 4: Apply reproduction operator using elitist ex- 
pected value selection after linear scaling. 

Step 5: Apply crossover operator, called PMX (Par- 
tially Matched Crossover) for double string. 

Step 6: Apply mutation based on the information of a 
solution to the continuous relaxation problem. 

Step 7: Apply inversion operator, return to Step 2. 
Further details of GADSLPRRSU and the revised 

GADSLPRRSU can be found in [11,24]. 

5. Interactive Fuzzy Satisficing Method 

We can now construct the interactive algorithm for 
 

s(1) s(2) ··· s(n) 

ys(1) ys(2) ··· ys(n) 
 

Figure 2. Double string. 
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deriving a satisficing solution for the DM where (9) for 
the updated reference membership levelsis repeatedly 
solved until the DM is satisfied with an obtained optimal 
solution. 

Interactive Fuzzy Satisficing Method for the 
Simple Recourse Model with Integer Decision 
Variables 

Step 1: Calculate the individual minima ,min  of 
 by solving (7) through the revised 

GADSLPRRSU.  

R
lz

  , 1, ,R
lz l  x k

k
Step 2: Ask the DM to specify the membershipfunctions 
, 1, ,l l  

 taking into account the individual minima 
obtained in step 1. 

Step 3: Set the initial reference membership levels at 
1s, which can be viewed as the ideal values, i.e. 

, 1, ,l l k  
. 

Step 4: Solve the augmented minimax problem (9) for 
the current reference membership levels , 1, ,l l k  

 
by using the revised GADSLPRRSU. 

Step 5: The DM is supplied with the corresponding 
M-Pareto optimal solution . If the DM is satisfied 
with the current membership function values  

*x

  * , 1, ,R
l lz l  x k

k

, 

stop the algorithm. Otherwise, ask the DM to update the 
reference membership levels , 1, ,l l  

, in con- 
sideration of the current membership function values, 
and return to step 4.  

Here it should be stressed for the DM that any 
improvement of one membership function value can be 
achieved only at the expense of at least one of the other 
membership function values. 

6. Numerical Example 

In order to demonstrate the feasibility and efficiency of 
the interactive fuzzy satisficing method for the simple 
recourse model, as a numerical example of (1), consider 
the multiobjective stochastic integer programming 
problem formulated as  
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where 1b , 2b  and 3b  are Gaussian random variables 

N(230, 12), N(345, 18) and N(437, 22), respectively. 
Each element of coefficient vectors , 1, 2,3i i a  is 
randomly chosen from among a set of integers 
 1, ,10 , and each element of 1c , 2c  an d 3c  is also 
randomly chosen from among sets of integers 
 1, , 1  0 ,  1, ,10  and  1, , 10 


l lq

Rz
766.075 

 

, respectively. 
These values are shown in Table 1. The penalty 
coefficient row vectors l  and  for 
violating the constraints are given in Table 2. 
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By using the revised GADSLPRRSU, the individual 

minima  are calculated as 1,min , 

2,min and 3,min . Taking these 
values into account, suppose that the DM determines the 
linear membership functions as  
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z z
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

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
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


x
  (12) 

where Rz  and 1,0
Rz

1,0
Rz 

7Rz  

 are calculated as  
, , ,

2,0 , 3,1  and  by 
using the Zimmermann method [25]. 

1,1 61.4Rz 
662Rz 

67
.894

477.8
66.07

37 2,1
Rz  

5 3,0
Rz 

945.002
633.461

For the initial reference membership levels 
   1 2 3 , the corresponding aug- 
mentedminimax problem (8) is solved by using the 
revised GADSLPRRSU, and the DM is supplied with the 
membership function values of the first iteration shown 
in Table 3. 

, ,   

1c

1.00,1.00,1.00

Assume that the DM is not satisfied with these 
membership function values, and the DM updates the 
reference membership levels as  for 
improving the satisfaction levels μ1 and μ2 at the expense 
of μ3. For the updated reference membership levels, the 
corresponding augmented minimax problem is solved 

 0 01.00,1.0 ,0.9

 
Table 1. Value of each element of ci, i = 1, 2, 3 and ai, i = 1, 2, 
3. 

−8 −1 −2 −7 −3 −5 −1 −4 −10 5

2c 3 5 2 6 1 1 4 7 2 9

3c 2 3 −10 4 4 5 −9 1 −8 2

1a 4 4 1 2 6 1 1 7 5 8

2a 10 2 6 1 2 2 8 5 2 8

3a 3 8 8 5 1 9 7 7 3 2

 
Table 2. Value of each element of l

q and l
q , l = 1, 2, 3. 

1
q  2.0 0.4 0.4 1

q  0.2 0.6 0.3 

2
q  1.0 0.6 1.0 2

q  0.5 2.0 3.0 

3
q  1.2 1.0 0.6 3

q  1.4 0.9 1.1 
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Table 3. Process of interaction. 

Iteration 1st 2nd 3rd 

1̂  1.000 1.000 0.950 

2̂  1.000 1.000 1.000 

3̂  1.000 0.900 0.900 

  1 1
Rz x  0.543 0.583 0.554 

  2 2
Rz x  0.540 0.570 0.606 

  3 3
Rz x  0.543 0.474 0.507 

 1
Rz x  306.716 292.734 302.738 

 2
Rz x  –292.957 –329.051 –372.403 

 3
Rz x  –557.129 –530.395 –543.244 

 
again, and the membership function values calculated in 
the second iteration are shown in Table 3. 

A similar procedure continues until the DM is satisfied 
with the membership function values. In this example, 
we assume that the satisficing solution for the DM is 
derived in the third interaction. 

7. Conclusion 

In this paper, we focused on multiobjective integer pro-
gramming problems with random variables in in the 
right-hand side of the constraints. Through the use of the 
simple recourse model, the formulated multiobjective 
stochastic integer programming problems with simple 
recourse are transformed into deterministic ones. As-
suming that the DM has fuzzy goals for the objective 
functions, an interactive fuzzy satisficing method for 
deriving a satisficing solution for the decision maker 
from among the M-Pareto optimal solution set has been 
proposed. In the proposed interactive method, after de-
termining the fuzzy goals of the DM, a satisficing solu-
tion is derived efficiently by updating the reference 
membership levels of the DM. Genetic algorithm for 
nonlinear integer programming, called the revised 
GADSLPRRSU were introduced for solving transformed 
deterministic ones efficiently.An illustrative numerical 
example was provided to demonstrate the feasibility and 
efficiency of the proposed method. Extensions to other 
stochastic programming models will be considered else-
where. 
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