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ABSTRACT 

Public sector decision-making typically involves complex problems that are riddled with competing performance ob- 
jecttives and possess design requirements which are difficult to capture at the time that supporting decision models are 
constructed. Environmental policy formulation can prove additionally complicated because the various system compo- 
nents often contain considerable stochastic uncertainty and frequently numerous stakeholders exist that hold completely 
incompatible perspectives. Consequently, there are invariably unmodelled performance design issues, not apparent at 
the time of the problem formulation, which can greatly impact the acceptability of any proposed solutions. While a 
mathematically optimal solution might provide the best solution to a modelled problem, normally this will not be the 
best solution to the underlying real problem. Therefore, in public environmental policy formulation, it is generally pref- 
erable to be able to create several quantifiably good alternatives that provide very different approaches and perspectives 
to the problem. This study shows how a computationally efficient simulation-driven optimization approach that com- 
bines evolutionary optimization with simulation can be used to generate multiple policy alternatives that satisfy required 
system criteria and are maximally different in decision space. The efficacy of this modelling-to-generate-alternatives 
method is specifically demonstrated on a municipal solid waste management facility expansion case. 
 
Keywords: Simulation-Driven Optimization; Modelling-to-Generate-Alternatives; Environmental Decision Making 

under Uncertainty 

1. Introduction 

Public sector decision-making typically involves com- 
plex problems that are riddled with competing perform- 
ance objectives and possessing performance design re- 
quirements which are very difficult to capture at the time 
that any supporting decision models are constructed [1-4]. 
Environmental policy formulation can prove even more 
complicated because the various system components 
often contain considerable degrees of stochastic uncer- 
tainty. Consequently, public sector environmental policy 
formulation proves to be an extremely complicated and 
challenging task. While mathematically optimal solutions 
can provide the best results to the modelled problems, 
they are frequently not the best solutions to the underly- 
ing real problems as there are invariably unquantified 
issues and unmodelled objectives not apparent at the time 
the models were constructed [1,2,5]. This is a familiar 
concern in public sector settings where final decisions 
tend to be shaped not only by quantified objectives, but 
also by stakeholder preferences and socio-economic/ 
political objectives that are extremely subjective in na-  

ture. It is often not possible to express these subjective 
considerations clearly and, therefore, impossible to cap- 
ture them quantitatively in any optimization model. 
Consequently, from an environmental policy formulation 
standpoint it is often preferable to be able to generate 
several alternatives that provide multiple, disparate per- 
spectives to the particular problem [6,7]. Preferably these 
alternatives should all possess good (i.e. near-optimal) 
objective measures with respect to the modelled objec- 
tive(s), but be fundamentally different from each other in 
terms of the system structures characterized by their de- 
cision variables [4,7]. 

In response to this option creation requirement, several 
approaches collectively referred to as modelling-to-gen- 
erate-alternatives (MGA) have been developed [5,8-12]. 
The primary motivation behind MGA is to produce a 
manageably small set of alternatives that are good with 
respect to modelled objectives yet as different as possible 
from each other in the decision space. In so doing, the 
resulting alternative solution set is likely to provide truly 
different choices that all perform somewhat similarly 
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with respect to the modelled objectives, yet very differ- 
ently with respect to the unmodelled issues. 

Yeomans et al. [13] showed how to incorporate data 
uncertainty directly into environmental planning using an 
approach referred to as simulation-driven optimization 
(SDO). SDO is a family of optimization techniques that 
incorporates inherent system uncertainties expressed as 
probability distributions into its computational procedure 
[14]. Linton et al. [15] and Yeomans [7] have shown that 
SDO can be considered an effective, though very com- 
putationally intensive, MGA technique for environmental 
policy formulation. However, none of these SDO MGA 
approaches have been able to provide guarantees to en- 
sure that the created alternatives are sufficiently different 
in decision variable structure from one another [16]. 

In this paper, it is shown how to efficiently generate a 
set of maximally different solution alternatives for public 
environmental policy planning situations containing con- 
siderable stochastic uncertainty by using a version of the 
EAGA technique of [12] that has been specifically modi- 
fied for SDO. This stochastic technique employs a spe- 
cialized scheme within the SDO procedure to produce 
sets of alternatives, then screens these solutions to select 
a small number that are simultaneously both good and 
very different from each other. The approach is very 
computationally efficient, since it permits the generation 
of multiple, good-but-very-different solution alternatives 
in only a single computational run of the SDO algorithm 
rather than the multiple separate implementations re- 
quired in earlier MGA procedures. Since this innovative 
MGA scheme has the effect of essentially inserting addi- 
tional subpopulations on top of the original population 
used for SDO function optimization, the best solution 
found by the MGA procedure within the subpopulation 
corresponding to this “original” SDO population will be 
indistinguishable from a problem’s overall optimal solu- 
tion. Hence, this new SDO MGA algorithm also per- 
forms well with respect to its role in function optimiza- 
tion. This study illustrates the efficacy of the MGA capa- 
bilities of this new SDO procedure to construct very dif- 
ferent, good solutions by testing it on a municipal solid 
waste (MSW) management facility expansion case study 
taken from [11]. 

2. Simulation-Optimization for Function 
Optimization 

Determining optimal solutions to large stochastic prob- 
lems proves to be very complicated when system uncer- 
tainties have to be accounted for and incorporated di- 
rectly into the solution procedure [14]. When stochastic 
conditions exist, values for the constraints and objectives 
can only ever be efficiently estimated by simulation. 
SDO is a broadly defined family of solution approaches 
that combines simulation with some type of optimization 

method for stochastic optimization [14]. In SDO, all un- 
known objective functions, constraints, and parameters 
are replaced by one or more discrete event simulation 
models in which the decision variables provide the set- 
tings under which the simulation is performed. Since all 
measures of system performance are stochastic, any po- 
tential solution, X, needs to be evaluated via simulation. 
As simulation is computationally intensive, an optimiza- 
tion component is used to guide the search for solutions 
through the problem’s feasible region using as few simu- 
lation runs as necessary. Evolutionary algorithms are 
conducive to these extensive searches because the com- 
plete set of candidate solutions maintained in their popu- 
lations permits concurrent searches to be undertaken 
throughout multiple sections of the feasible region. 

Evolutionary SDO consists of two alternating compu- 
tational phases: 1) an evolutionary module and 2) a 
simulation module. Evolutionary SDO maintains a set, or 
“population”, of candidate solutions throughout its exe- 
cution. The quality or “fitness” of each solution in this 
population is found by having its performance criterion, 
F, evaluated by simulation. After simulating each candi- 
date solution, the respective fitness values become inputs 
to the evolutionary module for the creation of the next 
generation of solutions. The fitness of each solution 
within the population is ranked in comparison to every 
other candidate solution. These ranked fitness measures 
are the inputs to the evolutionary module where the next 
solution population is created using the evolutionary al- 
gorithm. The driving force underlying evolutionary pro- 
cedures is that fitter solutions in a current population 
possess a greater likelihood for survival and progression 
into the subsequent generations. After generating a new 
candidate solution set, the evolutionary module returns 
the new population to the simulation module for com- 
parative evaluation. This alternating, two-phase search 
process terminates when an appropriately stable system 
state has been attained [7]. The optimal solution pro- 
duced by the procedure is the single best solution found 
over the course of the entire search. 

3. Modelling to Generate Policy Alternatives 
with Simulation-Optimization 

In public policy determination, there are always numer- 
ous system objectives and requirements that are never 
explicitly included or apparent in the decision formula- 
tion stage [1,4]. Moreover, it may never be possible to 
explicitly express all of the subjective considerations in 
environmental public policy formulation because there 
are generally numerous incompatible, competing, adver- 
sarial stakeholder groups. Therefore these subjective as- 
pects remain unquantified and unmodelled in the con- 
struction of any corresponding decision models. This is a 
common occurrence in situations where the final deci- 
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sions are constructed based not only upon clearly stated 
and modelled objectives, but also upon environmental, 
political and socio-economic goals and stakeholder pref- 
erences that are fundamentally subjective [9,10,12,16]. 

To illustrate the implications of an unmodelled objec- 
tive on a decision process, assume that the optimal solu- 
tion for a quantified, single-objective, maximization de- 
cision problem is X* with corresponding objective value 
Z1*. Now suppose that there exists a second, unmodelled, 
maximization objective Z2 that reflects environmen- 
tal/political acceptability. Let the solution Xa, belonging 
to the noninferior, 2-objective set, represent a potential 
best compromise solution if both objectives could some- 
how have been simultaneously evaluated by the deci- 
sion-maker. While Xa might be viewed as the best com- 
promise solution to the real problem, it would clearly 
appear inferior to the solution X* in the quantified model 
since it must be the case that Z1a ≤ Z1*. This observation 
implies that when unmodelled objectives are factored 
into decision making processes, mathematically inferior 
solutions for the modelled problem can potentially be 
optimal for the real problem. Therefore, when unmod- 
elled objectives and unquantified issues exist, different 
approaches are required in order to not only search the 
decision space for the noninferior set of solutions, but 
also to explore the decision space for inferior alternative 
solutions to the modelled problem. 

In the remainder of this section, an MGA procedure 
that is capable of incorporating uncertainty directly into 
its generated alternatives via SDO is developed using a 
modified adaptation of [12]. In order to properly moti- 
vate this procedure, it is necessary to provide a more 
formal definition of the goals of an MGA process 
[5,7,10]. Suppose the optimal solution to an original 
mathematical model is X* with objective value Z* = 
F(X*). The following model can then be solved to gener- 
ate an alternative solution that is maximally different 
from X*: 

*M ax i ii
X X           (P1) 

. .s t DX  

  *F Z T X  

where Δ is a difference function and T is a target speci-
fied in relation to the original optimal function value Z*. 
T is a user-supplied value that represents what proportion 
of the inferior region should be explored for alternative 
solutions. 

A direct, stepwise method to generate alternatives 
would be to iteratively solve the maximum difference 
model using SDO by incrementally updating the target T 
whenever a new alternative has been produced. In this 
manner, the initial problem formulation would be opti- 
mized and then supplementary alternatives would be 

generated by systematically adjusting target constraints 
to force the creation of the suboptimal solutions [10]. 
While a stepwise approach is straightforward, it would 
require repeated execution of the SDO algorithm, which 
would be extremely computationally intensive [7]. How- 
ever, by using the subsequent approach, it becomes pos- 
sible to implement an MGA procedure using SDO that 
produces alternatives which are analogous (but not nec- 
essarily identical) to those of the stepwise method. This 
is a more efficient procedure in that it exploits the popu- 
lation-based searches of evolutionary algorithms in order 
to represent multiple different solution alternatives si- 
multaneously. 

The new MGA procedure is based upon the concept of 
co-evolution and is designed to generate a small number 
of good but maximally different alternatives. In this al- 
gorithm, subpopulations within the evolutionary algo- 
rithm’s overall population concurrently evolve toward 
different alternative solutions. Each desired solution al- 
ternative is represented by one subpopulation that un- 
dergoes the evolutionary search procedure. This search 
can be structured based upon any standard evolutionary 
search procedure containing appropriate encodings and 
operators that best suit the problem being solved. The 
survival of solutions in each subpopulation depends upon 
how well the solutions perform with respect to the mod- 
elled objective(s) as well as upon how far they are away 
from the other solutions in the decision space. Thus, the 
evolution of solutions in each subpopulation is influ- 
enced by those solutions contained in the other subpopu- 
lations, forcing the evolution of each subpopulation to- 
wards good but distant regions of the decision space. 
This co-evolutionary concept enables the design of the 
following explicit algorithm to search for a set of good 
solutions that are maximally different from each other. 

The main steps within the algorithm are as follows: 
1).  Create an initial population stratified into P + 1 

equal-sized subpopulations. P represents the desired 
number of alternative solutions to the overall optimal 
solution and must be established a priori by the deci- 
sion-maker. Sp represents the pth subpopulation set of 
solutions, p = 0, ···, P and there are K solutions con- 
tained within each Sp. S0 is the subpopulation dedicated 
to the search for the overall optimal solution to the mod- 
elled problem. The best solution from S0 will be used to 
establish the benchmarks for the relaxation constraint. 

2).  Evaluate each of the solutions in S0 using simula-
tion and identify the best solution with respect to the 
modelled objective. In Sp, p = 1, ···, P, evaluate each of 
the solutions with respect to the modelled objective using 
the simulation module. Solutions satisfying the target 
constraint are designated as feasible, while all other solu-
tions are designated as infeasible 

3).  Apply an appropriate elitism operator to each Sp to 
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preserve the best individual in each subpopulation. In S0, 
this is the best solution measured with respect to the 
modelled objective. In all other subpopulations Sp, p = 
1, ···, P, the best solution is the feasible solution most 
distant (the distance measure is defined in Step 6) in de- 
cision space from all of the other subpopulations. If all 
solutions in Sp are infeasible, then this is the best indi- 
vidual solution with respect to the modelled objective. 
This step simultaneously selects a set of alternatives that 
respectively satisfy different values of the target T while 
being as far apart as possible (i.e. maximally different in 
the sense of P1) from the solutions generated in each of 
the other subpopulations. By the co-evolutionary nature 
of this algorithm, the alternatives are simultaneously 
generated in one pass of the procedure rather than the P 
implementations suggested by the necessary increments 
to T in problem [P1]. 

4).  Stop the algorithm if the termination criterion 
(such as maximum number of iterations or some appro-
priate measure of solution convergence) has been met. 
Otherwise, proceed to Step 5. 

5).  Identify the decision space centroid, Cip, for each 
of the N decision variables Xikp, i = 1, ···, N, in solution k 
= 1, ···, K, of Sp,  1 * ii k kpp XC K  . Each centroid 
represents the N-dimensional centre of mass for the solu- 
tions in each of the respective subpopulations, p. In the 
calculation shown, each dimension of each centroid is 
computed as the average value of that decision variable 
over all of the values for that variable within the respect- 
tive subpopulation. Alternatively, the centroid could be 
calculated as a fitness-weighted average or by some other 
appropriately defined measure. 

6).  For each solution k = 1, ···, K, in each Sq, q ≠ 0, 
calculate Dkq, a distance measure between that solution 
and all other subpopulations. 

Min ;  1, , ,kq ikp ipD X C p P p    q . 

This distance represents the minimum distance between 
solution k in subpopulation q and the centroids of all 
other subpopulations. 

7).  Apply a binary tournament to the solutions in each 
Sp. For S0, the selection is with respect to the modelled 
objective. In each Sp, p ≠ 0, the selection is based on the 
fitness of the solution with respect to the modelled objec- 
tive(s) as well as its distance from the other sub-popula- 
tions Dkp. For each Sp, p ≠ 0, 1) when both solutions are 
feasible with respect to the relaxed constraint, select the 
one with the better objective, else 2) if the majority of the 
solutions are feasible, select based upon the distance 
measure Dkp, otherwise, 3) select based upon the objec- 
tive function value. The goal of maximal difference is to 
force solutions from one subpopulation be as far apart as 
possible in the decision space from the solutions of each 
of the other subpopulations. This step identifies the spe- 

cific solution in each subpopulation which is as distant as 
possible from the solutions in all of the other subpopula- 
tions. In each Sp, apply recombination operators to the 
solutions selected and return to Step 2. 

By adopting this MGA methodology, multiple design 
options can be created that meet established system crite- 
ria, while simultaneously remaining acceptable and im- 
plementable in practice. These solutions can considered 
good from two perspectives: 1) based upon the evolving 
nature of the search process, all surviving solutions will 
be extremely fit—corresponding to policy solutions that 
have necessarily achieved near-optimal measures for 
their objective functions; and, 2) the solutions found will 
closely satisfy the required system criteria that each pol- 
icy option must possess, as represented by the constraints 
stated within the problem. Consequently, the SDO pro- 
cedure used within this MGA context automatically gen- 
erates a set of very good policy alternatives and most of 
these options would never have been constructed by 
planners during a normal policy setting phase. Further- 
more, all of these policy solutions will have their inher- 
ent planning uncertainty directly integrated into the gen- 
eration of these alternatives. SDO’s direct integration of 
uncertainty into the option generation produces major 
practical benefits in comparison to solutions created by 
any other deterministic MGA procedure. And since en- 
vironmental policy formulation problems contain so 
many uncertain components, reality dictates that they 
most likely possess more than one acceptable solution. 

In effect, the SDO MGA method expands the popula- 
tion size of a “standard” evolutionary algorithm by ap- 
pending an additional P subpopulations, Sp, p = 1, ···, P, 
onto the procedure’s original population, S0. It is the 
processing of these subpopulations in the MGA algo- 
rithm which generates the maximally different solution 
alternatives, while subpopulation S0, itself, remains 
dedicated to determining the problem’s overall optimal 
solution via the standard evolutionary optimization pro- 
cedure employed. Hence, irrespective of the operations 
occurring in subpopulation Sp, p = 1, ···, P, upon termi- 
nation of the SDO MGA algorithm, the best solution 
found residing within S0 should be essentially identical 
(subject to minor stochastical deviations) to that deter- 
mined by an SDO procedure operating solely in the role 
of a function optimizer. Furthermore, when contrasted 
with the intensive computational requirements necessary 
in SDO’s simulation phases, the storage and processing 
impacts attributable to the additional steps related to the 
additional operations in the evolutionary phases would 
contribute only a negligible increase to the execution 
time of any standard evolutionary algorithm. Conse- 
quently, the process outlined in the above algorithm 
could be used to readily project MGA capabilities onto 
any existing evolutionary optimization procedure (i.e. 
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perhaps the most computationally efficient one) with 
virtually insignificant additional operational require- 
ments. 

By using the maximal difference concept, the SDO- 
based MGA algorithm produces alternatives which pos- 
sess objective function bounds that are analogous, but not 
identical, to those of a more straightforward stepwise 
approach. While each alternative produced by a stepwise 
procedure is maximally different only from the single, 
overall optimal solution together with an objective value 
which is at least x% different from the best objective (i.e. 
x = 1%, 2%, etc.), the new procedure generates alterna- 
tives that are no more than x% different from the overall 
optimal solution but also with each one of these solutions 
being as simultaneously maximally different as possible 
from every other generated alternative that is produced in 
terms of the solution structure of their decision variables 
according to [P1]. 

Finally, the SDO MGA algorithm is a much more effi- 
cient process than a stepwise approach to [P1] in that it 
exploits the population-based searches of evolutionary 
algorithms by representing the multiple different solution 
alternatives simultaneously. Namely, while a stepwise 
procedure would be required to run n different times in 
order to generate its n alternatives, the new algorithm 
need only be run a single time to produce its set of alter- 
natives—irrespective of the value of n. Hence, it is much 
more computationally efficient. 

4. Case Study of SDO Used in MGA for  
Municipal Solid Waste Management 
Planning 

The application of the SDO MGA procedure will be il- 
lustrated using the municipal waste management facili- 
ties expansion case study taken from [11]. While this 
section briefly outlines the case, more extensive details 
and descriptions can be found in [7] and [11]. The nota- 
tion [a, b] is used to indicate that the value of an uncer- 
tain parameter is estimated to lie within the interval be- 
tween the values of a and b. Furthermore, if variable A 
represents an uncertain parameter specified by the inter- 
val [a, b], then the uncertainty of this variable will be 
indicated with the notation A


. For consistency, pa- 

rameters which are constants can be directly represented 
using the notation, A


, by the interval [a, a]. 

The region in the facility expansion planning problem 
contains three separate municipalities whose MSW dis- 
posal needs are collectively met by a landfill and two 
waste-to-energy (WTE) incinerators. The planning hori- 
zon consists of three separate time periods with each of 
the periods covering an interval of five years. At the start 
of the planning period, the landfill possesses an existing 
capacity of [0.625, 0.775]  106 tonnes and WTE facili- 

ties 1 and 2 have processing capacities of [100, 125] and 
[200, 250] tonnes/day, respectively. Both WTE facilities 
generate waste residues of approximately 30% of the 
incoming waste streams on a mass basis, and the revenue 
from the resulting energy re-sale is approximately [15, 25] 
$/tonne of combusted material. The landfill capacity can 
be expanded only once over the entire 15 year planning 
horizon by an increment of [1.55, 1.70]  106 tonnes. 
Each of the WTE facilities can be expanded by any one 
of four possible options in each of the three time periods. 
The maximum possible expansion option in any single 
time period would increase the processing capacity of a 
WTE facility by 250 tonnes/day. These expansion costs 
escalate temporally in order to reflect anticipated future 
conditions and have been discounted to present value 
cost terms for use in the objective function. The MSW 
waste generation rates and the costs for waste transporta- 
tion and treatment vary both temporally and spatially. 

The MSW problem requires the determination of the 
preferred facility expansion alternatives during the dif- 
ferent time periods and the effective allocation of the 
relevant waste flows in order to minimize the total sys- 
tem costs over the planning horizon. In the mathematical 
model, the type of waste management facility is identi- 
fied by subscript i, with i = 1 representing the landfill, 
and i = 2 and i = 3 corresponding to WTE facilities 1 and 
2, respectively. The three municipalities from which the 
waste originates will be identified using subscript j, j = 1, 
2, 3. Subscript k, k = 1, 2, 3, corresponds to the time pe- 
riod and m, m = 1, 2, 3, 4, denotes the expansion option 
selected for the WTE facilities. The decision variables 
for the problem will be designated by xijk, yk and zimk, 
where xijk represents the proportion of solid waste sent 
from municipality j to waste processing facility i in pe- 
riod k; yk corresponds to a binary decision variable for 
landfill expansion at the start of time period k (yk = 1 if 
the landfill expands in period k, 0 otherwise), and zimk 
represents a binary decision variable corresponding to the 
particular expansion option, m, selected for WTE facility 
i, i = 2, 3, at the start of period k. 

The total cost of waste management, in $/tonne, for the 
waste flowing from municipality j to processing facility i 
in period k is represented by ijk . The per tonne cost for 
transporting waste from municipality j to facility i in pe- 
riod k is ijk

C


TR


, and ikOP


 is the per tonne operating cost 
of processing facility i in period k. The transportation 
cost per tonne of waste from WTE facility i to the landfill 
in period k is denoted by ikFT


, for i = 2, 3. If FE repre- 

sents the residue flow rate from a WTE facility to the 
landfill, expressed as a percentage of the incoming mass 
to the WTE facility, and k  denotes the per tonne 
revenue from the WTE facilities in period k, then 

RE


1 1  1jk jkC TR OP  k

 
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and    ,  ijk ijk ik ik ik kC TR OP FE FT OP RE    
    

for i = 2, 3, j = 1, 2, 3, and k = 1, 2, 3. The existing ca- 
pacity of the landfill, in tonnes, is  and kLC


LC


 
represents the additional capacity resulting from the 
landfill expansion undertaken in period k, k = 1, 2, 3; 
where the cost of this landfill expansion is kFLC


. The 

existing capacity, in tonnes per day, for WTE facility i, i 
= 2, 3 is i . The amount of incremental capacity ex- 
pansion, in tonnes per day, under option m, m = 1, 2, 3, 4, 
for WTE facility i, i = 2, 3, at the start of period k, k = 1, 
2, 3, is provided by imk ; with imk

TC


 
TC


FTC


 correspond- 
ing to the capital cost of this expansion. Finally, if the 
number of days in time period k is Lk and if the number 
of tonnes of waste generated daily by municipality j dur- 
ing period k is jkWG


, then the complete mathematical 

model for MSW management expansion planning is to: 

3 4 3

1
2 1 1

3 3 3

1 1 1

Minimize

Cost k k imk imkk
i m k

k ijk jk ijk
i j k

FLC y FTC z

L C WG x


  

  

 



 



 

 

   (1) 

Subject to: 
3 3

1
1 1 2

1

, 1,2,3

k

k jk jk jk ijk
j k i

k

k k
k

L WG x WG x FE

LC y LC k



  





 

   

 



 

 




3

   (2) 

3 4

1 1 1

, 2,3, 1, 2,3
k

jk ijk imk imk i
j m k

WG x TC z TC i k


 
  

     
  

(3) 
3

1

, 1, 2,3, 1,2,jk ijk jk
i

WG x WG k j


  
 

    (4) 

4

1

1, 2,3, 1, 2,3imk
m

z i k


            (5) 

3

1

1k
k

y


                  (6) 

3

1

1, 1,2,3, 1,2,3ijk
i

x j k


            (7) 

1 0, 1,2,3, 1,2,3, 1, 2,3ijkx i j k        (8) 

or0  1, 1, 2,3ky k             (9) 

or0  1, 2,3, 1, 2,3, 1, 2,3,4imkz i k m      (10) 

The objective function (1) contains components relat- 
ing to the cost/benefit effects resulting from different 
waste management decisions and the capital costs re- 
quired for expanding the processing facilities. Con- 

straints (2) and (3) ensure that the upper limits for waste 
treatment and disposal in any time period are determined 
by both the existing facility capacity and any incremental 
expansion activities occurring in time period k', k' = 1, 2, 
3, for the landfill and WTE facilities. The dynamic as- 
pects of these constraints result from such considerations 
as future economic development, population increase, 
and environmental management activities. Constraint (4) 
establishes the waste disposal quantities generated by 
each of the three municipalities in each time period. 
Constraint (5) requires that only one option for each 
WTE facility expansion can be selected in any given time 
period, and constraint (6) stipulates that the landfill could 
be expanded only once over the entire planning time ho- 
rizon. Constraint (7) ensures the disposal of all waste 
generated by each municipality in every time period. 
Finally, constraints (8) to (10) provide the technical rela- 
tionships for the decision variables. 

To complete the formulation, Tables 1 and 2 show the 
actual values of the various parameters used within the 
model. Table 1 provides the detailed numerical informa- 
tion regarding the various capital costs and expansion 
options for both the landfill and WTE facilities. It should 
be duly noted that all of the capital costs are expressed in 
present value dollars. Table 2 gives the details for the 
waste generation rates for the three municipalities, the 
operating costs for the three processing facilities, and the 
transportation costs for waste flows between municipali- 
ties and processing facilities over each of the three time 
periods. 
 
Table 1. Capacity expansion options and their costs for the 
landfill and WTE facilities. 

Time period k = 1 k = 2 k = 3 

Capacity expansion option for WTE facility i, i = 2, 3 (tonnes/day): 

1i kTC


 (option 1) 100 100 100 

2i kTC


 (option 2) 150 150 150 

3i kTC


 (option 3) 200 200 200 

4i kTC


 (option 4) 250 250 250 

Capacity expansion option for the landfill (106 tonnes): 

kLC


 [1.55, 1.70] [1.55, 1.70] [1.55, 1.70]

Capital cost of WTE facility expansion, i = 2, 3 ($106 present value): 

1i kFTC


 (option 1) 10.5 8.3 6.5 

2i kFTC


 (option 2) 15.2 11.9 9.3 

3i kFTC


 (option 3) 19.8 15.5 12.2 

4i kFTC


 (option 4) 24.4 19.1 15.0 

Capital cost of landfill expansion ($106 present value): 

kFLC


 [13, 15] [13, 15] [13, 15] 
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Table 2. Waste generation, transportation costs, and facility operating costs. 

Time period k = 1 k = 2 k = 3 

Waste generation (tonnes/day): 

1kWG



 (Municipality 1) [200, 250] [225, 275] [250, 300] 

2kWG


 (Municipality 2) [375, 425] [425, 475] [475, 525] 

3kWG  (Municipality 3) [300, 350] [325, 375] [375, 425] 

Cost of waste transportation to the landfill ($/tonne): 

11kTR



 (Municipality 1) [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

12kTR


 (Municipality 2) [10.5, 14.0] [11.6, 15.4] [12.8, 16.9] 

13kTR  (Municipality 3) [12.7, 17.0] [14.0, 18.7] [15.4, 20.6] 

Cost of waste transportation to WTE facility 1 ($/tonne): 

21kTR



 (Municipality 1) [9.6, 12.8] [10.6, 14.1] [11.7, 15.5] 

22kTR


 (Municipality 2) [10.1, 13.4] [11.1, 14.7] [12.2, 16.2] 

23kTR  (Municipality 3) [8.8, 11.7] [9.7, 12.8] [10.6, 14.0] 

Cost of waste transportation to WTE facility 2 ($/tonne): 

31kTR



 (Municipality 1) [12.1, 16.1] [13.3, 17.7] [14.6, 19.5] 

32kTR


 (Municipality 2) [12.8, 17.1] [14.1, 18.8] [15.5, 20.7] 

33kTR  (Municipality 3) [4.2, 5.6] [4.6, 6.2] [5.1, 6.8] 

Cost of residue transportation from the WTE facilities to the landfill ($/tonne): 

2kFT


 (WTE facility 1) [4.7, 6.3] [5.2, 6.9] [5.7, 7.6] 

3kFT


 (WTE facility 2) [13.4, 17.9] [14.7, 19.7] [16.2, 21.7] 

Operational cost ($/tonne): 

1kOP


 (Landfill) [30, 45] [40, 60] [50, 80] 

2kOP



 (WTE facility 1) [55, 75] [60, 85] [65, 95] 

3kOP  (WTE facility 2) [50, 70] [60, 80] [65, 85] 

 
Using this model, Yeomans [7] solved this problem 

using SDO strictly as a function optimizer and produced 
a single best solution to the expansion problem costing 
$600.2 million. As outlined earlier, when public policy 
planners are faced with difficult and potentially contro- 
versial choices, they generally prefer to be able to select 
from a set of near-optimal alternatives that differ signify- 
cantly from each other in terms of the system structures 
characterized by their decision variables. In order to cre- 
ate these alternative planning options, it would be possi- 
ble to place extra target constraints into the original 
model as in [P1] which would force the generation of 
solutions that were different from this newly determined, 
optimal solution. By including such a technical constraint 
on the objective function, Yeomans [7] created three al- 
ternative expansion options that increased the total sys- 
tem cost of the original, optimized model by target val- 
ues of 2%, 5%, and 8%, respectively. By adding these 
specific constraints to the original model, the problem 
needed to be resolved an additional three times. 

However, to improve upon the process of running four 
separate instances of the SDO algorithm to determine 
these solutions, the co-evolution aspects of the MGA 
procedure described in the previous section was run only 
once, thereby directly producing the 4 alternatives shown 
in Table 3. The evolutionary parameters used in this 
computational experiment were a population size of 100, 
a maximum number of iterations of 300 (together with an 
additional check for solution convergence), a crossover 
parameter of 40% and a mutation rate of 5%. 

As described earlier, public sector, environmental pol- 
icy problems are typically riddled with incongruent per- 
formance requirements that contain significant stochastic 
uncertainty that are also very difficult to quantify. Con- 
sequently, it is preferable to create several quantifiably 
good alternatives that concurrently provide very different 
perspectives to the potentially unmodelled performance 
design issues during the policy formulation stage. The 
unique performance features captured within these dis- 
similar alternatives can result in very different system  
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Table 3. System expansion costs ($ millions) for the 4 maxi-
mally different alternatives. 

 Optimal Alternative #1 Alternative #2 Alternative #3

System  
expansion costs 

600.19 606.18 612.11 617.34 

 
performance with respect to the unmodelled issues, 
thereby incorporating the unmodelled issues into the ac- 
tual solution process. This example has demonstrated 
how the SDO MGA modelling approach can be used to 
efficiently generate multiple, good policy alternatives 
that satisfy required system performance criteria accord- 
ing to prespecified bounds within highly uncertain envi- 
ronments and yet remain as maximally different from 
each other as possible in the decision space. 

Given the performance bounds established for the ob- 
jective in each problem instance, the decision-makers can 
feel reassured by the stated performance for each of these 
options while also being aware that the perspectives pro- 
vided by the set of dissimilar decision variable structures 
are as maximally different from each other as is feasibly 
possible. Hence, if there are stakeholders with income- 
patible standpoints holding diametrically opposing view- 
points, the policy-makers can perform an assessment of 
these different options without being myopically con- 
strained by a single overriding perspective based solely 
upon the objective value. In addition to its alternative 
generating capabilities, the SDO MGA procedure has 
simultaneously performed exceedingly well with respect 
to its role in function optimization. Although a mathe- 
matically optimal solution may not provide the best ap- 
proach to the real problem, it can be demonstrated that 
the MGA procedure has indeed produced a very good 
solution value for the originally modelled optimization 
problem, itself. It should be explicitly noted that the cost 
of the overall best solution produced by the MGA pro- 
cedure (i.e. the solution S0) is indistinguishable from the 
one determined in the function optimization process of 
[7].  

In totality, the results of this section underscore several 
important findings with respect to the use of SDO within 
this MGA procedure: 1) SDO can be used to generate 
more good alternatives than planners would be able to 
create using other MGA approaches because of the 
evolving nature of its population-based solution searches; 
2) All of the solutions produced by SDO incorporate 
system uncertainties directly into their structure during 
their creation unlike all of the earlier deterministic MGA 
methods; 3) The alternatives generated are good for 
planning purposes since their structures are all as maxi- 
mally different from one another as possible (i.e. these 
differences are not just simply from the overall optimal 
solution); 4) The MGA procedure is computationally 
very efficient since it need only be run once to generate 

its entire set of multiple, good solution alternatives (i.e. 
to generate n solution alternatives, MGA needs to run 
exactly the same number of times that SDO would need 
to be run for function optimization purposes alone, ire- 
spective of the value of n); and, 5) The best overall solu- 
tions produced by the MGA procedure will be very simi- 
lar, if not identical, to the best overall solutions that 
would be produced by SDO for function optimization 
alone. 

5. Conclusions 

Public environmental policy formulation is a very com- 
plicated process that can be impacted by many uncertain 
factors, unquantified issues and unmodelled objectives. 
This combination of uncertainties and unknowns together 
with the competing interests of various stakeholders ob- 
ligates public policy-makers to integrate many conflict- 
ing sources of input into their decision process prior to 
final policy adoption. In this paper, a computational pro- 
cedure was presented that showed how SDO could be 
used to efficiently generate multiple, maximally different, 
near-best policy alternatives for difficult, stochastic, en- 
vironmental problems and the effectiveness of this MGA 
approach was illustrated using a case study of municipal 
solid waste facility expansion planning.  

In this stochastic MGA capacity, SDO was shown to 
efficiently produce numerous solutions possessing the 
requisite characteristics of the system, with each gener- 
ated alternative providing a very different planning per- 
spective. Because an evolutionary method guides the 
search, SDO actually provides a formalized, popula- 
tion-based mechanism for considering many more solu- 
tion options than would be created by other MGA ap- 
proaches. However, unlike the deterministic MGA me- 
thods, SDO incorporates system uncertainties directly 
into the generation of these alternatives. MSW systems 
provide an ideal testing environment for illustrating the 
wide variety of modelling techniques used to support 
public policy formulation, since they possess all of the 
prevalent incongruencies and system uncertainties that so 
often exist in complex planning processes. Since SDO 
techniques can be adapted to model a wide variety of 
problem types in which system components are stochas- 
tic, the practicality of this co-evolutionary MGA ap- 
proach can clearly be extended into numerous disparate 
operational and strategic planning applications contain- 
ing significant sources of uncertainty. 
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